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Abstract—In this work, presented is a simple method
for obtaining symplectic codes over a finite field F from
symplectic codes over an extension field of . This task has
been known to be accomplished by expanding elements of
the extension field in terms of dual bases, but the proposed
simpler method does not directly use dual bases. Here,
symplectic codes, which resemble classical linear codes,
stand for a general class of quantum error-correcting codes.
This work may fall in the area of coding theory, but are
directly related to quantum error correction.

I. INTRODUCTION

Most known quantum error-correcting codes (QECCs),
explicitly or implicitly, use the structure of symplectic
geometry in a vector space over a finite filed [1], [2]. As
a result, naturally, such quantum error-correcting codes
can be represented as error-correcting codes over a finite
filed, which will be called symplectic codes.

This work presents a simple method for obtaining
symplectic codes over F, from symplectic codes over
IFx, the extension field of [F,. Here and throughout, Fy
denotes the finite field consisting of ¢ elements.

The topic treated in this work is coding-theoretic while
it is motivated by issues on constructing quantum error-
correcting codes [3], [4]. Note it is known how to obtain a
quantum error-correcting code that corresponds to a given
symplectic code [3], [2]. It may be said that a symplectic
code over a finite field represents the essential structure
of the corresponding quantum error-correcting codes that
are expressed in terms of Hilbert spaces.

II. PRELIMINARIES ON SYMPLECTIC CODES

First, we fix some notation. The juxtaposition of vec-
tors z and z is denoted by (z|z). We write B < C' if B
is a subspace of C. We use the dot product defined by
(T1,-o oy Tn) - Y1y -y Yn) = Doiq Tiy; on F™, where
F is a finite field. While C* denotes the usual dual
{yeF* |Vz € C, -y =0} of C <F", C** denotes
the symplectic dual, i.e., the dual {y € F?>" | Vz €
C, fs(z,y) = 0} with respect to the standard symplectic
bilinear form fs defined by

fS((umWZ)» (Uz|UZ)) = Ug " Vy — Uy " Ug.

We let spang M denote the space spanned by the rows of
a matrix M, i.e., the space consisting of vectors of the
form ayv1 + - - - + amVm, wWhere vy, ...,v,, are the rows
of M, and a; € F fori € {1,...,m}. If F is clear from
the context, we write span M instead of spanp M.

From the viewpoint of coding theory [5], a symplectic
QECC (additive code [1]) can be viewed as a subspace
of ]Fg” that contains its symplectic dual, i.e., a subspace
D with

Dt <D. 1

Such an (n + k)-dimensional subspace may be called an
fs-dual-containing code, but will be called a symplectic
code or an [[n,k]] symplectic code (over Fy) for sim-
plicity in this work. It will be also called a g-ary [[n, k]
symplectic code.

Note a symplectic code can be rephrased as the sym-
plectic dual of a subspace C < F2" with

c<ch, 2)
and (2) is equivalent to
Vz,y € C, fs(z,y) = 0.

A matrix G is called a generator matrix of a symplectic
code D < ngn if D = span@; a matrix H is called a
check matrix or symplectic check matrix of D if Dts =
span H.

When we say ‘obtaining D, as will be natural for
coding theorists, it may be understood as obtaining a gen-
erator matrix of D. However, it may also be understood
as obtaining a check matrix, H, of D since D is expressed
as

D={ye Ian | Vo € spanH, fs(z,y) = 0}.

In fact, the check matrix H is more important than a
generator matrix in the context of quantum error cor-
rection. For example, known encoders and decoders of
the quantum error-correcting code corresponding to the
symplectic code D can be described, in the framework
of quantum theory, in terms of operators associated with



the check matrix H. Hence, we primarily pay attention
to obtaining H. (Obtaining a generator matrix of D from
‘H is easy in case a generator matrix is needed.)

III. EXPANSIONS OF CODES

It will be shown that g-ary codes can be obtained from
g®-ary codes by means of dual bases in this section.
This fact seems to have been known for long in the
literature [6].

It is known that a ¢*-ary [N, K] symplectic code D <
F2) or its symplectic dual D+= can be used as a g-ary
[[kN, kK]] symplectic code by expanding the coordinates

of (x1,...,xN, 21, -+ ,2n) in D or in D+ to obtain
1 1 N N
(mg),...,zé),...,fvg ),...,3:,(C ),
z§1),...,z,(cl),...,z%N),...,z,(cN))E]FS’“N 3)
where

T = wgi)m +---+:n,(ci)ﬂk and z; = z%i)ﬁ{ +---+z,(j)ﬂ;c

with some dual bases (3;)F_; and (3/)%_; of F,, which
satisfy Tr]Fq,c /¥, BiB; = dij (the Kronecker delta) by
definition.! In particular, it is trivially true that the g-ary
expansions, as in (3), of vectors in DL are orthogonal
to each other with respect to the symplectic bilinear
form fs.2 Hence, those expansions form the symplectic
dual of some symplectic codes over F,;, which is, in
fact, the g-ary expansion of D. Here, when obtaining
a g-ary [[kN,kK]] symplectic code D from a ¢*-ary
[V, K]] symplectic code D in this way, we call D a
g-ary expansion of D.

IV. MAIN RESULT

A. Homomorphism of Extension Field
Into Space of Matrices

We use the following known lemma.

Lemma 1: There exists a one-to-one map @ : For —
Fkxk (the set of k x k matrices over F,) with the
following property:

2(€)2(¢) = 2(&¢"), (&) +2(¢) =2(¢E+¢)

for any &,&" € Fye.

Note that the map @ is called a homomorphism by
definition.

We can construct such a map concretely as follows.

Construction of ®. Take a root o of a monic primitive
polynomial f of degree k over F,.> We set ®(a’) = T
fori =0,...,¢* — 2, where T is the companion matrix
of f, and put ®(0) = Oy, where Oy, denotes the k X k
Zero matrix.

A widely known definition of the operation ‘trace’ Tr & /F, Would
q
be as follows: Try , /p, v =7 +7%+ - +7qk_1.
ok

20f course, ‘z is orthogonal to i with respect to fs’ means fs(z,y) =
0.

3 A monic polynomial is a polynomial the leading coefficient of which
is one.

Here, the companion matrix of a monic polynomial
f is defined as follows. Let us write f(z) as f(z) =

xF — fo_12F"1 — ... — fiz — fo. The companion matrix
of fis
Ok-1 fo
. fi @
N Iy :
fe—1

where Ox_1 is the zero vector in ]F’g_l, and I_q is the
(k—1) x (k — 1) identity matrix.

Example. Let ¢ = 2 and k£ = 3. The companion matrix
of a primitive polynomial f(z) = 2® +x + 1 is

T:

o RO

0
0
1

e

A proof that the above constructed map ® has the
property in the lemma can be found in [3]. In [3], one can
also find the following useful fact with a proof. Noticing
(aj_l);?:l is a basis of the [Fy-linear vector space Fgx,
let us write o* as

a =T +x2a+---+mkak_l.

The vector (x1,...,2;)T obtained in this way is denoted

by
]
o,
|
Namely,
\ 1
ot = .
‘ Tk
Then, we have
N )
T = |at - qitk-l 0<i<g:—2. (5

| |
B. Main Result

In this section, we present a simple method for obtain-
ing a check matrix of a g-ary expansion of an arbitrary
qF-ary symplectic code D from a check matrix of D.

Note that given an m x 2n matrix H = [HpH,]
consisting of a pair of m xn matrices H, and H, over [,
the rows of H are orthogonal to each other with respect
to the symplectic form fs if and only if

H.H,” — H,H,T = O,,. (6)

Hence, (6) is a condition that 7 is a check matrix of
some symplectic code.

Theorem 1: Let ® be a one-to-one map having the
property in Lemma 1, i.e., a homomorphism. Assume



px 2N matrix H = [H,H,| consisting of ;X N matrices

hit -+ hin
Hy= | : .
hur -+ hun
and
/ /
1 o i
H, =] :
/ . e ,
nl ulN
satisfies

H,H," — H,H," = O,.

Then, ku x 2kN matrix H = [H, H,] consisting of

®(h11) O(hin)
Hy=| ;
O(hyu) @(hyun)
and
o(hiy)" - (hiN)T
i, = . .
@ (hy,)" O(hyn)*
satisfies
AAT - LA =0
where 11 = kpu.
Proof. The statement immediately follows from the fact
that the map ® is a homomorphism. O

Remark. One construction of the map ® was given just
below Lemma 1. Given a map ® of the property in the
lemma, the map ® : & — A~1®(£)A, where A is an
invertible matrix, also has the desirable property of being
a homomorphism. O

By this theorem, we have obtained a method for
producing a desirable check matrix H from the original
check matrix H = [HyH,]. The method is simply
replacing the entries of H, with their images under ®
and replacing the entries of H, with the transposes of
their images under ®.

V. DISCUSSIONS

A. Advantage

As already mentioned in Section III, it has been known
that we can obtain g-ary expansions of symplectic codes
from ¢*-ary symplectic codes using dual bases.

An advantage of this work’s method would be that we
need not explicitly obtain such a pair of dual bases.

B. Relation to Concatenations of Calderbank-Shor-
Steane Codes

A symplectic code with check matrix of the form
Hy, O
O H; |’
where O is the matrix whose entries are all zero, is called
a Calderbank-Shor-Steane (CSS) code.*

This is consistent with saying [5] that the CSS code

construction [7], [8] is to take classical codes C7 and Cy
with Ci- < Cy, and form

| Gi O | H» O
g—[ 0 Gg}’ H—{ 0 HJ ®
where G; and H; are the classical generator and parity
check matrices of C;. Following this, in [3], we have

called a pair of linear codes (C1,Cs), where C1,Cy <
[y, satisfying the constraint

Cy <4 )

H= { (7

and
k = dimg, C1 + dimp, C2 —n (10)

an [[n,k]] code pair over Fy. Since an [[n,k]] code
pair, also referred to as a CSS code pair, is a succinct
representation of the corresponding CSS code, the pair
sometimes means the corresponding CSS code, and vice
versa in what follows.

In [3], we have applied the present work’s approach
to the problem of obtaining check matrices of check
matrices of ‘concatenations’ of CSS codes.” We remark
that g-ary expansions of g¥-ary CSS codes can be viewed
as an extreme case of the ‘concatenations’ of CSS codes.
Specifically, ‘Procedure for Creating G;’i’ (consisting of
Step 1 and Step 2) in [3, p. 2693, right column] is the
method for obtaining check matrices. For the purpose of
obtaining g-ary expansions of ¢*-ary CSS codes, not the
general ‘concatenations,’” in Step 2 thereof, we can set
(ng)) equal to the standard basis of IF’; since the g-ary
expansion of a gF-ary CSS code pair (Dq,D5) is the
‘concatenation’ of (]F’;,IF’;) and (Dq, D3).

C. The Term g-ary Expansion

In Section III, the author has written that when ob-
taining a g-ary [[kNV, kK]] symplectic code D from a g*-
ary [[N, K]| symplectic code D in the manner described
there (using dual basis), we call D a g-ary expansion of
D. The fact that codes obtained with this work’s method
using the explicitly constructed homomorphisms ®(&)
and A71®(£)A are, in fact, such g-ary expansions, has
been checked with developments in [3]. (For CSS codes,

4For consistency, CSS codes mean the indicated class of symplectic
codes, which are subspaces of discrete vector spaces. Of course, a CSS
code represents a quantum error-correcting code, which is a subspace
of a Hilbert space, as an arbitrary symplectic code does.

5The usage of the term ‘concatenation’ in [3] is different from the
original usage of Forney.



this fact is known [3].) The main theorem does not rely
on this fact.

VI. CONCLUSION

We have presented a simple method for obtaining a

check matrix of a g-ary expansion of an arbitrary qF-ary
symplectic code D from a check matrix of D.
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