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and log(1−x) ≈ −x to (56) and (63) and neglecting the
term of N2

tr, the following approximation holds,

CBE ≈ C(2) ≈ −Ntr log Ntr + Ntr for Ntr � 1. (64)

This result shows that the binary discretization provides
a simple optimal strategy to construct a quantum code.
The classical continuous channel does not have such a
good property[29]; the binary discretization necessarily
causes some loss of information and hence it provides no
optimal way to use the channel. The code achieving the
capacity of continuous channel should be found in more
complicated way considering sphere packing.

B. Binary Discretization for zero rate exponents

Let us find the optimum binary discretization for zero
rate exponents of ideal channel with squeezed states. We
consider the optimization,

E(2)(+0) = max
{m1,m2}

max
Q

E(+0)({m1,m2}, Q), (65)

where E(+0)({m1,m2}, Q) is the zero rate exponents
for the binary channel with two pure states σ(γ)m1 and
σ(γ)m2 and with a priori probability {Q, 1 − Q}. It is
known [6] that

E(+0)({m1,m2}, Q) = −2Q(1 − Q) log κ2, (66)

where κ2 is given by (61b). Carrying out the maximiza-
tion in Eq.(65), we have

E(2)(+0) = 2B(γ), (67)

This equals to the value of zero rate exponents in the
unrestricted case (55).

VI. CONCLUSION

We have evaluated effects of squeezing for the follow-
ing cases.

1) capacity for attenuated noisy channel
2) capacity for ideal channel with squeezed state sig-

nals whose coherent amplitudes are restricted to
real number

3) expurgated bound for ideal channel
4) zero rate exponents for attenuated noisy channel
5) binary discretization for capacity of ideal channel
6) binary discretization for zero rate exponents of ideal

channel
In the case of (1), squeezing does not improve capacity;
whenever a channel is not ideal the value of capacity
decreases by using squeezed states. In the case of (2)
and (5), effects of squeezing is so small that it vanishes
when transmittance k of channel is small. Only in the case
of (3) , (4) and (6) squeezing effects are remarkable. As
seen in the subsection V-B, at low communication rates,
binary discretization is very effective and hence signal-to-
noise ratio is essential. This is the reason why squeezing
is good at low communication rates.
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Abstract—The effective nonlinearity ENL of periodically
poled KTiOPO4 crystal is precisely measured with SHG
experiment at various focusing conditions. The result shows
the optimum focusing condition which maximizes the ENL

at focusing parameter ξ at around 2.8 and is consistent
with Boyd and Kleinman theory. The analysis based on the
theory shows the nonlinear optical coefficient d33 of 17.5
[pm/V].

I. INTRODUCTION

The second order nonlinearity in nonlinear optical
crystal is very important effect for many applications. One
of the important utilization of the second order nonlinear
effect is efficient generation of second harmonic wave.
There are many examples of previous research about
second harmonic generation (SHG). Another important
utilization is optical parametric process in order to gener-
ate squeezed states of light. Squeezed light is an important
resource for quantum optics and quantum information
processing with continuous variables [1]. In both cases,
high nonlinearity is important factor.

A periodically poled KTiOPO4 (PPKTP) is one of
the promising nonlinear optical crystal because of its
high nonlinearity. In a recent work of SHG, Targat,
et al. achieved 75% of conversion efficiency at 461
nm by using a PPKTP crystal in an external resonant
cavity with a bow-tie configuration [2]. In recent exper-
iments for generating highly squeezed light with sub-
threshold optical parametric oscillator (OPO), Suzuki,
et al. −7.2 ± 0.14dB [3] and Takeno, et al. achieved
−9.01 ± 0.14dB [4] of squeezing at 860 nm by using
a PPKTP crystal, respectively. In both cases, efficient
SHG and squeezing experiments, high nonlinearity is
very important factor.

A typical indication resulting from second order non-
linear effect is the effective nonlinearity ENL (W−1)
which is defined by

ENL =
P2ω

P 2
ω

(1)

where Pω and P2ω are the power of fundamental and
second harmonic wave respectively. It is shown that the
conversion efficiency with an external cavity configura-
tion depends largely on the ENL [5]. In case of squeezing

PPKTP

Focusing lens Harmonic 

separator

Second harmonic wave (430 nm)

Fundamental wave (860 nm) Optical 

power meter

Fig. 1. Schematic diagram of experimental setup for second harmonic
generation.

experiment by using an OPO, an oscillation threshold
is one of the important parameter and related with the
ENL [6].

The purpose of this work is to measure the ENL

of PPKTP crystal at various focusing conditions and
find out the optimum focusing. The experimental results
are analyzed by utilizing famous Boyd and Kleinman
(BK) theory which gives precise description of SHG
with focused Gaussian light beams [7]. And the second
order nonlinear optical coefficient d33 is also derived from
theoretical calculations.

II. EXPERIMENTAL SETUP AND CONDITION

A schematic of experimental configuration is shown
in Fig. 1. A continuous-wave Ti:Sapphire laser at 860
nm is used as a fundamental wave. Spatial transverse
mode of the laser beam is Gaussian mode. The 860 nm
beam is focused with a plano-convex lens (productions
of Thorlabs Inc.) and introduced into a PPKTP crystal
(production of Raicol Crystals Ltd.) with 10 mm of length
l and 1*1 mm2 of cross section. The position of the
beam waist is aligned to be located at almost center of
the crystal. Both crystal surfaces are highly anti-reflective
coated at 860 nm and 430 nm. The crystal assembly is
attached with a Peltier device and temperature controlled
at 40◦C for achieving phase matching condition. Second
harmonic wave generated at the PPKTP crystal is sepa-
rated by a harmonic separator which highly reflects 430
nm beam and transmits unconverted 860 nm beam. The
power of second harmonic wave is detected by optical
sensor (Advantest Q82017A).
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TABLE I
SUMMARY OF EXPERIMENTAL CONDITIONS

Focusing length Beam waist size w0 Focusing parameter ξ ENL

(mm) (µm) (W−1)
50.6 6.5 17.36 0.0137
75.7 9.8 7.77 0.0256

101.0 13.0 4.38 0.0331
126.4 16.3 2.81 0.0348
151.7 19.5 1.95 0.0351
176.8 22.7 1.44 0.0322
202.1 25.9 1.11 0.0267
252.7 32.3 0.71 0.0195
303.1 38.7 0.50 0.0141
404.2 51.5 0.28 0.0081
505.4 64.1 0.18 0.0056

The SHG experiment is conducted with various focus-
ing conditions which are realized by changing focusing
length of lenses. Table. I summarizes experimental con-
ditions of focusing length of lenses, beam waist size w0

in radius, focusing parameter ξ described later in Eq.( 2),
and experimental results of ENL at each conditions. The
accurate focusing length of lenses at 860 nm is calculated
by using radius of curvature of lenses and refractive index
of lens material (=1.510 :BK7 glass). Gaussian beam
waist size w0 at the center of the crystal is calculated
by analysis of ABCD matrix which consists of optical
elements with an incident beam size of 2.1 mm. The
focusing parameter ξ is defined in the BK-theory as

ξ = l/b (2)

where l is crystal length and b is confocal parameter of
the Gaussian beam. The b is calculated from beam waist
size w0 and wave vector of fundamental wave kω as

b = w2
0kω (3)

where kω is expressed as

kω =
2π

λω
nω (4)

with the refractive index of nonlinear optical crystal nω

(=1.840) at fundamental wavelength λω (=860 nm). It is
obvious that the confocal length defined by Eq.( 3) is
twice the Rayleigh length of Gaussian beam.

III. EXPERIMENTAL RESULTS AND THEORETICAL

ANALYSIS

Fig. 2 shows one of the typical SHG measurement
which is obtained at focusing condition of w0 = 16.3
µm, (ξ = 2.81). The horizontal axis is fundamental wave
power Pω observed before the PPKTP crystal. The SHG
power P2ω increases as parabolic curve with the Pω . And
the conversion efficiency η which is calculated from a
relation of P2ω/Pω increases in direct proportion to the
Pω . These property agrees well with a consequence from
conventional nonlinear optics. The η can be described in
association with ENL as following

η = ENLPω. (5)

Fig. 2. Experimental result of single pass frequency doubling. Horizon-
tal axis is input power of fundamental wave. Circles and squares indicate
the power of second harmonic wave at 430 nm and the conversion
efficiency respectively. Solid lines are calculation results with Eq. (5)and
(6), respectively.

In the same way, the P2ω is expressed as

P2ω = ENLP
2
ω . (6)

Solid lines in Fig. 2 are calculation results with Eq. (5)
and (6) respectively with 0.0348 (W−1) of ENL. By
this means, the ENL at various focusing condition is
evaluated from the coefficient of fitting curve.

Similar SHG experiments are repeated at various fo-
cusing conditions summarized in Table. I. Fig. 3 shows
summary of experimental results of the ENL versus (i)
beam waist size w0 and (ii) focusing parameter ξ, respec-
tively. It is noteworthy that there is optimum focusing
condition which mazimizes the ENL. In order to verify
these property, experimental results are analyzed with the
BK-theory. Solid lines in Fig. 3 (i) and (ii) represent
calculation results based on the BK-theory. Theoretical
description of the ENL in MKS unit is given by

ENL = Klkωhm(ξ) (7)

where constant parameter K is

K =
2ω2d2eff

ϵ0n2
ωn2ωc3π

. (8)
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(i)

(ii)

Fig. 3. Summary of experimental results under various focusing
condition. (i) and (ii) represent ENL dependence on beam waist size
w0 and focusing parameter ξ, respectively. Circles indicate experimental
results and solid lines are calculation results from Boyd and Kleinman
theory based on Eq.( 7).

The hm(ξ) in Eq. (7) is the optimized BK-factor which
is explained in detail in appendix. In Eq.( 8) the ϵ0 is
vacuum permittivity (= 8.85 ∗ 10−12 [F/m]), the c is
speed of light (= 3 ∗ 108 [m/s]), and the n2ω (=1.938) is
refractive index at second harmonic wave length of 430
nm. The effective nonlinear optical coefficient deff in
Eq. (7) is calculated from nonlinear optical coefficient d33
of KPT crystal with following relation deff = (2/π)d33.
Solid lines in Fig. 3 are calculation results with nonlinear
optical coefficient d33 of 17.5 [pm/V] and shows good
agreement with experimental results. In the BK-theory
it is reported that the hm(ξ) has has maximum value
of 1.068 at ξ = 2.84. Experimental results shows the
optimum ENL is achieved at around 2.8 of ξ. These
results agree well with the consequence from the BK-
theory. Moreover, the value of d33 is very close to
previously reported value of 16.5 [pm/V] by Shoji, et
al. in KTP crystal at 852 nm [8].

IV. CONCLUSION

In conclusion, the effective nonlinearity ENL of PP-
KTP crystal is precisely measured with SHG experiment
at various focusing conditions. The result shows the
optimum ENL is achieved with focusing parameter ξ

at around 2.8 and agree well with the BK-theory. The
nonlinear optical coefficient d33 is evaluated as 17.5
[pm/V] based on the BK-theory and very closed to
previously reported value by Shoji, et al. [8].
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APPENDIX

The expression of the optimum Boyd and Kleinman
factor hm(ξ) is derived theoretically in appendix. In
original theory the BK-factor h is given as a function
of all the parameters σ, β, κ, ξ, and µ which can
be optimized. In experiments of this work, the double
refraction parameter β is zero, since both fundamental
and second harmonic are ordinary waves and have same
polarization in a quasi phase matching configuration.
Therefore, there is no walk-off between both waves in
a crystal. The absorption parameter κ is assumed to be
zero, since the power of both fundamental and second
harmonic is low level in this experiment. The focusing
position parameter µ is also expected to be zero. The
focusing position is aligned at almost center of the crystal
while experiments. So, the h is expected to be a function
of the only σ and ξ as below

h(σ, ξ) =
1

4ξ

∫∫ ξ

−ξ

exp [iσ (τ − τ ′)]

(1 + iτ) (1− iτ ′)
dτdτ ′. (9)

The Eq.( 9) can be easily translated to following equation

h(σ, ξ) =
1

4ξ

(∫ ξ

−ξ

cosστ + τ sinστ

1 + τ2
dτ

)2

. (10)

The phase mismatching parameter σ is expressed as

σ =
1

2
b∆k (11)
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σ =0.05

σ = 0.2σ =0.1

σ =0.4

σ =0.0

Fig. 4. Integrand in Fq.( 10) as a function of τ at various σ.

σ =0.05

σ = 0.2σ =0.1

σ =0.4

σ =0.0

h
m

Fig. 5. Summary of calculation results of the function h at various σ.
The envelope of various h curves corresponds to the optimum BK-factor
hm(ξ) which yields the maximum ENL at certain value of ξ.

where mismatching in wave vectors ∆k is given as

∆k = 2kω − k2ω. (12)

The integrand in Eq.( 10) as a function of τ is shown
in Fig. 4 at various phase mismatching parameters σ. It
is noteworthy that the value of function increases at the

Fig. 6. Calculation result of optimum phase mismatching parameter
σm which yields the optimum Boyd and Kleinman factor hm(ξ).

lower τ and sinusoidally varies at the higher range of τ by
increasing the σ. So there is possibility that the BK-factor
h improves by optimizing the σ. Fig. 5 shows calculation
results of the h as a function of ξ at various σ. The
optimized Boyd and Kleinman factor hm(ξ) corresponds
to the envelope curve in Fig. 5 and yields the maximum
ENL at certain value of ξ. This envelope is identical to
the curve with the condition of B=0 in Fig.2 in ref. [7].

The optimum σ (=σm) which attains the optimum
hm(ξ) is shown in Fig. 6. Experimentally the optimum
σm is achieved by fine tuning of the phase matching
temperature or adjustment of the crystal orientation in
order to maximize the SHG power. The mechanism that
the h improves with increasing the phase mismatching
parameter σ from zero to one is not clear for the author
yet.


