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I. INTRODUCTION

Motivated by some problems on quantum computation,
the present author has recently investigated issues on
rotations in the Euclidean space or the corresponding
unitary operations [1], [2], [3]. Specifically, in a previous
article [2] in this bulletin, the author described a result
of an unpublished manuscript on rotations (its abstract
is available online [1]). As the title suggests, it contains
some fundamental lemma on Euler angles. The lemma has
already led to a result on construction of unitary operations
or rotations [3]. The original lemma was reduced to a neat
form, which the present author thought was natural when
it was included in [3]. Therefore, the published form of
the lemma in [3] is not exactly the same as the original
form described in [1], [2]. In this memorandum, a relation
between these two forms of the lemma will be described.
Specifically, they will be shown to be essentially equivalent
to each other based on some basic facts on rotations.

The primary reason for presenting the proof of equiv-
alence is that the equivalence may not be immediate to
see unless one is familiar with some basic properties of
rotations, and such basics are likely to be forgotten since
the set of rotations is typically regarded as a (relatively
easy) special case of general mathematical objects such
as the Lie groups. [Besides, we remind the reader of the
fact that, as several authors have remarked in the literature
(see the previous articles [2], [4] in this bulletin), around
issues on SU(2) and SO(3), whereas these are fundamental
in physics, quite many errors can be found in the literature.
In this author’s opinion, one source of these errors would be
the lack of acquirement of the logical (and rigorous) way of
thinking. Below, from this viewpoint, he will offer a proof
(of this annotative statement) that may be persistently more
logical than usual.]

In addition, a constructive result on rotations is de-
scribed. Namely, a constructive method (proof) for obtain-
ing the inverse image of an arbitrary element in SO(3) un-
der the well-known homomorphism from SU(2) onto SO(3)
is presented. (In this article, the very basic knowledges on
algebra such as homomorphisms and kernels are assumed.)

II. DEFINITIONS

Let X,Y and Z denote the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Throughout, I denotes the 2 × 2 identity matrix. The
transpose of a vector v̂ is denoted by v̂T.

We put

Rv̂(θ) = (cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ) (1)

where v̂ = (vx, vy, vz)
T ∈ R3 with ‖v̂‖ =√

v2x + v2y + v2z = 1 and θ ∈ R, with R denoting the set
of real numbers. The matrices Ry(θ) and Rz(θ) denote
the following special cases of Rv̂, respectively: Ry(θ) =
Rŷ(θ), where ŷ = (0, 1, 0)T, and Rz(θ) = Rẑ(θ), where
ẑ = (0, 0, 1)T.

We put S2 = {v̂ ∈ R3 | ‖v‖ = 1}. The set of
2 × 2 unitary matrices, the set of 2 × 2 unitary matrices
with determinant 1 and the set of 3 × 3 real orthogonal
matrices with determinant 1 are denoted by U(2), SU(2)
and SO(3), respectively. They stand for the unitary group,
the special unitary group and the special orthogonal group,
respectively.

III. THE FUNDAMENTAL LEMMA ON EULER ANGLES
IN SEVERAL FORMS

We have the following lemma.
Lemma 1: [1, Theorem]. For any φ, β, θ ∈ R and v̂ =

(vx, vy, vz)
T ∈ R

3 with v2x + v2y + v2z = 1, the following
two conditions are equivalent.

I. There exist some α, γ ∈ R such that

Rv̂(θ) = eiφRz(α)Ry(β)Rz(γ).

II. Both of the following hold:

eiφ ∈ {1,−1},√
1− v2z | sin θ

2 | = | sin β
2 |.

The original manuscript the main result of which is this
lemma is unpublished. That manuscript also includes the
following (trivially equivalent but useful) form of the above
lemma.

Lemma 2: For any φ, β, θ ∈ R and for any n̂, l̂, m̂ ∈
S2 such that l̂Tm̂ = 0, the following two conditions are
equivalent.

I◦. There exist some α, γ ∈ R such that

Rn̂(θ) = eiφRm̂(α)Rl̂(β)Rm̂(γ).
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II◦. Both of the following hold:

eiφ ∈ {1,−1},√
1− (m̂Tn̂)2| sin θ

2 | = | sin β
2 |.

On the other hand, the author has stated that the follow-
ing lemma is fundamental to the results in the recent work
of this author [3].

Lemma 3: For any β, θ ∈ R and for any n̂, l̂, m̂ ∈ S2

such that l̂Tm̂ = 0, the following two conditions are
equivalent.

I. There exist some α, γ ∈ R such that

Rn̂(θ) = Rm̂(α)Rl̂(β)Rm̂(γ).

II.
√
1− (m̂Tn̂)2| sin θ

2 | = | sin β
2 |.

Ostensibly, Lemma 2 seems more detailed than
Lemma 3. In fact, Lemma 2, if we set φ = 0, readily
implies Lemma 3.

In this article, we shall show that Lemma 3, with some
basic facts, implies Lemma 2.

IV. SOME BASICS ON ROTATIONS

A. Rotations as SU(2) Elements

The following fact is well-known.
Property 1: For v̂ = (vx, vy, vz)

T ∈ R3 with ‖v̂‖ = 1
and θ ∈ R,

Rv̂(θ)

lies in SU(2).
Proof. Put w = cos(θ/2), x = −vx sin(θ/2), y =

−vy sin(θ/2) and z = −vz sin(θ/2). Then, we have
w2 + x2 + y2 + z2 = 1, so that

Rv̂(θ) = wI + i(xX + yY + zZ) =

(
w + iz y + ix
−y + ix w − iz

)
(2)

is an element in SU(2). �
Conversely, any element in SU(2) can be written as

Rv̂(θ) for some v̂ and θ (see Appendix if a proof is
needed).

B. A relation of SU(2) to SO(3)

We define a map F : U(2) → SO(3) as follows. With
any matrix U ∈ U(2), we associate a 3 × 3 real matrix
R = F (U) that satisfies

UM(x, y, z)U † = M(x′, y′, z′)

and ⎛
⎝x′

y′

z′

⎞
⎠ = R

⎛
⎝x
y
z

⎞
⎠

for any (x, y, z)T ∈ R3.
The restriction of the homomorphism F to SU(2) is

well-known [5]. This restriction is denoted by F .

Example. We have

R̂y(θ) := F (Ry(θ)) =

⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠ (3)

and

R̂z(θ) := F (Rz(θ)) =

⎛
⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠ . (4)

Definition 1: For v̂ = (vx, vy, vz)
T ∈ R3 with ‖v̂‖ = 1

and θ ∈ R,
R̂v̂(θ) = F (Rv̂(θ)).

One can check that through this homomorphism F , the
matrix Rv̂(θ) really acts as rotation about v̂ by angle θ on
R3 (see, e.g., [2, Section III]).

We shall also use the following fact.
Property 2: For any U, V ∈ SU(2), F (U) = F (V ) if

and only if U = ±V .
Proof. This directly follows from the well-known fact

that the kernel of F : SU(2) → SO(3) is {I,−I}, which
can be checked with (1). �

V. PROOF OF THE EQUIVALENCE OF LEMMA 3 TO
LEMMA 2

As already mentioned, Lemma 2 immediately implies
Lemma 3. We shall show the converse using the basic facts
given in Section IV.

First, we strengthen Lemma 3 slightly.
Lemma 4: For any β, θ ∈ R and for any n̂, l̂, m̂ ∈ S2

such that l̂Tm̂ = 0, the following three conditions are
equivalent.

I. There exist some α, γ ∈ R such that

Rn̂(θ) = Rm̂(α)Rl̂(β)Rm̂(γ).

Î. There exist some α, γ ∈ R such that

R̂n̂(θ) = R̂m̂(α)R̂l̂(β)R̂m̂(γ).

II.
√
1− (m̂Tn̂)2| sin θ

2 | = | sin β
2 |.

Proof. It suffices to show that I ↔ Î (for any β, θ ∈ R

and for any n̂, l̂, m̂ ∈ S2 with l̂Tm̂ = 0). We immediately
see the part [I → Î] applying the homomorphism F to both
sides of the equation in I. Conversely, assume that Î holds.
Then, by Property 2, there exist some α, γ ∈ R such that

Rn̂(θ) = ±Rm̂(α)Rl̂(β)Rm̂(γ).

But −Rm̂(α) = Rm̂(α+ 2π). Thus, we have condition I,
and hence, the lemma. �

Up to now, we have shown implications

Lemma 2 → Lemma 3 → Lemma 4.

We shall show

Lemma 4 → Lemma 2.
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To derive Lemma 2 from Lemma 4, assume that I◦ in
Lemma 2 holds. Then, applying the homomorphism F to
both sides of the equation in I◦, we have Î and hence, II,
which is a half of II◦. To see the other half, we shall use
Property 2. Note I◦ in Lemma 2, which is being assumed
to hold, can be rewritten as

Rn̂(θ)[Rm̂(α)Rl̂(β)Rm̂(γ)]−1 = eiφI.

Then, since Rn̂(θ) and [Rm̂(α)Rl̂(β)Rm̂(γ)]−1 lie in
SU(2), eiφI must also lie in SU(2). Hence, we have
eiφ ∈ {1,−1}, and II◦.

Conversely, assume II◦. Then, if eiφ = 1, by the part
[II → I] of Lemma 4, we have I◦; if eiφ = −1, using the
relation Rm̂(α) = −Rm̂(α+ 2π), we have I◦ similarly.

Thus, we have shown the implications

Lemma 2 → Lemma 3 → Lemma 4 → Lemma 2.

This completes the proof of the equivalence among
Lemma 3, Lemma 2 and Lemma 4.

VI. INVERSE IMAGE UNDER THE HOMOMORPHISM
FROM SU(2) ONTO SO(3)

It is known that the map F : SU(2) → SO(3) is
surjective (onto), i.e., that for any R ∈ SO(3), we have
some U ∈ SU(2) with R = F (U).

In this section, we shall prove this fact in a construc-
tive manner, where one should note that SO(3) can be
expressed as

{(l̂ × m̂ l̂ m̂) | l̂, m̂ ∈ R
3, ‖l̂‖ = ‖m̂‖ = 1, l̂ Tm̂ = 0}.

(5)
Proof that the map F in Section IV-B is onto SO(3).

In view of the expression of SO(3) in (5), our goal is to
prove that for any pair of vectors l̂, m̂ ∈ R

3 with ‖l̂‖ =
‖m̂‖ = 1 and l̂ Tm̂ = 0, there exists some element in
SU(2) such that l̂ = F (U)(0, 1, 0)T, m̂ = F (U)(0, 0, 1)T

and l̂ × m̂ = F (U)(1, 0, 0)T. Expressing U , in terms of
Euler angles (Appendix), as

U = Uα,β,γ := Rz(α)Ry(β)Rz(γ),

we can calculate F (U) directly (using Example in Sec-
tion IV-B) as

F (U) = F (Uα,β,γ) = R̂z(α)R̂y(β)R̂z(γ)

=

⎛
⎝a − cosα cosβ sin γ − sinα cos γ cosα sinβ
b − sinα cosβ sin γ + cosα cos γ sinα sinβ
c sinβ sin γ cosβ

⎞
⎠
(6)

where (a, b, c)T is the vector product of the second and
third columns of F (U). Moreover, the condition l̂ =
F (U)(0, 1, 0)T is equivalent to

R̂y(−β)R̂z(−α)l̂ = R̂z(γ)(0, 1, 0)
T,

i.e.,⎛
⎝cosβ cosα cosβ sinα − sinβ

− sinα cosα 0
cosα sinβ sinα sinβ cosβ

⎞
⎠ l̂ =

⎛
⎝− sin γ

cos γ
0

⎞
⎠ .

(7)

From (6) and (7), we conclude that for any pair of orthog-
onal unit vectors l̂ and m̂, there exists some α, β, γ ∈ R,
and hence, an element U = Uα,β,γ in SU(2) such that
l̂ = F (U)(0, 1, 0)T, m̂ = F (U)(0, 0, 1)T and l̂ × m̂ =
F (U)(1, 0, 0)T, as desired. �

Remark on constructiveness. Given a rotation matrix
R ∈ SO(3), the elements U ∈ SU(2) such that R = F (U)
are directly specified by (6) and (7). Namely, the relation
m̂ = (cosα sinβ, sinα sinβ, cosβ)T, which is from (6),
specifies α and β, cf. spherical coordinates, and (7) spec-
ifies γ. Thus, this proof is constructive.

Note that there are two elements U ∈ SU(2) such that
R = F (U) for each R ∈ SO(3). This is a consequence
of the fact that the kernel of F is {I,−I}. (If one gets an
element U ∈ SU(2) such that R = F (U), with the above
method or another, then the other element U ′ such that
R = F (U ′) is U ′ = −U .)

Here is another remark. The argument in the above
proof and remark is essentially the same as that in [3,
Appendix A]. The intention there was to construct an
element in SU(2) such that l̂ = F (U)(0, 1, 0)T and
m̂ = F (U)(0, 0, 1)T. For the present purpose of obtaining
the inverse image, the above proof explicitly mentions the
form (l̂× m̂ l̂ m̂) of an SO(3) element. This is the only
difference.

VII. CONCLUSION

A fundamental lemma of [3, Lemma 6.1] has a form
different from the original one (2012, unpublished). This
article has shown that these different forms of the lemma
imply each other. A constructive method for realizing
the inverse of F̃ : SU(2)/{I,−I} → SO(3) has been
presented, where F̃ is the isomorphism induced by the
well-known homomorphism F from SU(2) onto SO(3),
which has the kernel {I,−I}.
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APPENDIX

PARAMETERIZATIONS OF THE ELEMENTS IN SU(2)

It can be shown easily that any matrix in SU(2) can be
written as [5] (

a b
−b∗ a∗

)
(8)

with some complex numbers a and b such that |a|2+|b|2 =
1. Hence, any matrix in SU(2) can be written as(

w + iz y + ix
−y + ix w − iz

)
= wI + i(xX + yY + zZ) (9)

with some real numbers x, y, z and w such that w2+x2+
y2+z2 = 1. Take a real number θ such that cos(θ/2) = w
and sin(θ/2) =

√
1− w2 =

√
x2 + y2 + z2; write x, y

and z as x = −vx sin(θ/2), y = −vy sin(θ/2) and z =
−vz sin(θ/2), where vx, vy, vz ∈ R and v2x + v2y + v2z = 1.
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Thus, using real numbers θ, vx, vy, vz ∈ R with v2x + v2y +
v2z = 1, any matrix in SU(2) can be written as

(cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ),

which is nothing but Rv̂(θ) in (1).
A better-known parameterization for SU(2) would be(
e−i γ+α

2 cos β
2 − ei

γ−α
2 sin β

2

e−i γ−α
2 sin β

2 ei
γ+α

2 cos β
2

)
= Rz(α)Ry(β)Rz(γ).

(10)
Here, α, β and γ are real numbers, which are called Euler
angles. This parameterization can be obtained by rewriting
(8).
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