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Abstract—This is a note on quantum detection of quater-
nary amplitude-shift keying (QASK) coherent state signal.
The closed-form expression of the square-root measurement
(SRM) of QASK coherent state signal is derived by solving
the eigenvalue problem of the Gram matrix consisting of
the signal. The Bayes-optimal detection and the minimax
detection for QASK coherent state signal are respectively
analyzed by using novel iterative calculation algorithms of
Nakahira et al. [15]. Toward derivation of the closed-form
expressions of the Bayes-optimal detection and the minimax
detection, mathematical structure of the corresponding op-
timal detection vectors is discussed based on the numerical
calculation results.

I. INTRODUCTION

The main role of quantum signal detection theory
[1], [2], [3], [4] is to examine the performance limit
of quantum state signals and to clarify the mathemati-
cal structure of optimal quantum detection. Hence it is
expected to be a guiding theory that provides design
methods for optimal quantum detection that enables a
highly functional communication system which close to
quantum limits beyond classical ones. In this article, we
attempt to apply quantum signal detection theory to a
particular coherent state signal.

A coherent state signal is characterized by its mod-
ulation format. For example, phase-shift keying (PSK)
and quadrature amplitude modulation (QAM) are major
formats widely used in advanced digital coherent optical
communication systems [5]. Here let us recall some
preceding studies about coherent state signals based on
quantum signal detection theory. The early work on the
optimal detection problem of PSK coherent state signal
can be found in the literatures [6], [7] in which the
so-called Belavkin weighted square-root measurement
(BWSRM) was introduced. Since PSK coherent state
signal is a kind of symmetric quantum state signals,
analysis of symmetric signals may involve the case of
PSK coherent state signal. In this context, the analysis of
optimal detection of symmetric quantum states by Ban et
al. [8] is remarkable. Based on the analyses of Belavkin
and Ban et al., it can be understood that the square-
root measurement (SRM) for PSK coherent state signal
is not only the Bayes-optimal detection at the uniform
signal distribution but also the minimax detection. The
numerical comparison of the error rate performance of

quantum detection for M -ary PSK and M -ary QAM
coherent state signals was done under the assumption that
every signal state is pure and the SRM is employed as a
receiver [9]. Extending this result, numerical simulations
for 4PSK, 8PSK and 16QAM coherent state signals in the
presence of thermal noise were performed by Cariolaro
and Pierobon [10]. Since the error rate performance of
Bayes-optimal detection depends on a priori probability
distribution of signal elements in general, the minimax
strategy would be preferable than Bayes-optimal strategy
in some cases. The error rate performance of the minimax
detection for 16QAM coherent state signal was numeri-
cally investigated by the author [11].

As for another type of coherent state signals, some
results with respect to amplitude-shift keying (ASK)
coherent state signal can be found. In the literature [12]
by Helstrom, the error rates of Bayes-optimal detection
for ternary amplitude-shift keying (3ASK) and quaternary
amplitude-shift keying (QASK) coherent state signals
were computed using his Bayes-cost reduction algorithm
[12]. In contrast, the closed-form expressions of the SRM
and the minimax detection for 3ASK coherent state signal
were derived by the author [13], [14]. Taking account
of recent progress in the applications of quantum signal
detection theory, the analysis of M -ary ASK coherent
state signal is of importance. However, no comprehensive
analysis of M -ary ASK coherent state signal has been
done. Towards a future study on M -ary ASK coherent
state signal, we focus on quaternary amplitude-shift key-
ing (QASK) coherent state signal in this article as a first
step.

As mentioned above, the error rate performance of
the Bayes-optimal detection for QASK coherent state
signal at the uniform signal distribution has been already
shown in the literature [12]. Hence the central problem
in our analysis is to derive closed-form expressions of
optimal quantum detection in each detection strategy.
However, as we will see later, derivation of the closed-
form expressions of optimal quantum detection for QASK
coherent state signal was restricted only to the case of
SRM. Aiming to break through this deadlock, we perform
numerical analysis of QASK coherent state signal with
the help of the calculation algorithms of Nakahira et al.
[15], because the results to be obtained in the numerical
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calculation will be helpful to figure out the structure of
optimal quantum detection.

The remaining part of this article is organized as
follows. In Section II, the error rate performance and
the optimal detection operators of QASK coherent state
signal are investigated for the SRM, the Bayes-optimal
detection at the uniform signal distribution, and the min-
imax detection, respectively. In the first half of Section
II, the closed-form expression of the SRM for QASK
coherent state signal is derived by solving the eigenvalue
problem of the corresponding Gram matrix. In the re-
maining part of Section II, the Bayes-optimal detection
and the minimax detection cases are numerically investi-
gated. In each case, the optimal detection vectors and the
corresponding minimal average probability of error are
numerically shown. In Section III, some discussions on
the properties of QASK coherent state signal are given,
and we summarize the results in Section IV.

II. ERROR RATE PERFORMANCE OF QASK COHERENT
STATE SIGNAL

A. QASK coherent state signal

Let |ψi〉 denote a quantum state that corresponds to a
signal element. We define QASK coherent state signal as
follows (See also Appendix A).

S = {|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉}
= {|−3α〉, |−α〉, |α〉, |3α〉}, (1)

where |α〉 is a coherent state defined by â|α〉 = α|α〉
with the photon annihilation operator â. In this article,
we assume α > 0 for simplicity.

The signal constellation of QASK coherent sate signal
is shown in Fig. 1, where x̂c = (â + â†)/2, x̂s = (â −
â†)/2i, and i =

√−1. Let p = (p1, p2, p3, p4) denote

xs

xc

−3α −α α(> 0) 3α

ψ1 ψ2 ψ3 ψ4

0

Fig. 1. Signal constellation of QASK.

a probability distribution of the signal elements. If the
distribution is uniform, p = u = (1/4, 1/4, 1/4, 1/4),
then the average number of signal photons for QASK
coherent state signal is given as n̄s = 5|α|2.

In general, the Gram operator and the Gram matrix of
pure states |ψi〉 are respectively defined by

Ĝ =
M∑
k=1

|ψk〉〈ψk|, (2)

and

G =

⎡
⎢⎢⎢⎣
〈ψ1|ψ1〉 〈ψ1|ψ2〉 · · · 〈ψ1|ψM 〉
〈ψ2|ψ1〉 〈ψ2|ψ2〉 · · · 〈ψ2|ψM 〉

...
...

. . .
...

〈ψM |ψ1〉 〈ψM |ψ2〉 · · · 〈ψM |ψM 〉

⎤
⎥⎥⎥⎦ , (3)

where M is the number of states. Suppose that |ψi〉 are
linearly independent. Then the Gram operator is strictly
positive-definite, Ĝ > 0. The SRM vectors are defined
by

|μ•
i 〉 ≡ Ĝ−1/2|ψi〉, 1 ≤ i ≤M. (4)

Conversely,

|ψi〉 = Ĝ1/2|μ•
i 〉, 1 ≤ i ≤M. (5)

Letting γ = {|μ•
i 〉 : 1 ≤ i ≤ M}, the set γ is

an orthonormal basis for the space spanned by linearly
independent states {|ψi〉}. In fact, it satisfies

〈μ•
i |μ•

j 〉 = δij ∀(i, j), and

M∑
k=1

|μ•
k〉〈μ•

k| = 1̂, (6)

where δij is the Kronecker delta and 1̂ is the identity.
Note that matrix representation of Ĝ in the basis γ is the
Gram matrix G:

[Ĝ]γ =
[
〈μ•

i |Ĝ|μ•
j 〉
]

=
[
〈μ•

i |Ĝ1/2Ĝ1/2|μ•
j 〉
]

= [〈ψi|ψj〉] = G. (7)

Applying the completeness relation of Eq.(6) to Eq.(5),
we have

|ψi〉 =

(
M∑
k=1

|μ•
k〉〈μ•

k|
)
Ĝ1/2|μ•

i 〉

=
M∑
k=1

[
〈μ•

k|Ĝ1/2|μ•
i 〉
]
|μ•

k〉

=
M∑
k=1

(
g1/2

)
ki
|μ•

k〉, (8)

where
(
g1/2

)
ki

is the (k, i)-entry of G1/2. From this we
observe that the ith column of G1/2 corresponds to the
coefficients in the expansion by the basis γ. Conversely,
the relation Ĝ1/2Ĝ−1/2 = 1̂ and the completeness rela-
tion provide the following expression.

|μ•
i 〉 = Ĝ1/2Ĝ−1/2|μ•

i 〉

= Ĝ1/2

(
M∑
k=1

|μ•
k〉〈μ•

k|
)
Ĝ−1/2|μ•

i 〉

=
M∑
k=1

[
〈μ•

k|Ĝ−1/2|μ•
i 〉
] (

Ĝ1/2|μ•
k〉
)

=
M∑
k=1

(
g−1/2

)
ki
|ψk〉, (9)
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where
(
g−1/2

)
ki

is the (k, i)-entry of G−1/2.
From the analysis mentioned above, the column vector

representation of each signal element of QASK coherent
state signal in the basis γ is given as follows.

|ψi〉 .
= [|ψi〉]γ =

⎡
⎢⎢⎣

(g1/2)1i
(g1/2)2i
(g1/2)3i
(g1/2)4i

⎤
⎥⎥⎦ , i = 1, 2, 3, 4, (10)

where the symbol .
= means the left-hand side is rep-

resented by the right-hand side. Similarly, the column
vector representation of each SRM vector for QASK
coherent state signal in the basis γ is given by

|μ•
i 〉 .

= [|μ•
i 〉]γ =

⎡
⎢⎢⎣

δ1i
δ2i
δ3i
δ4i

⎤
⎥⎥⎦ , i = 1, 2, 3, 4. (11)

B. Square-root of Gram matrix of QASK

The Gram matrix of QASK coherent state signal is
given by

G =

⎡
⎢⎢⎣

1 κ κ4 κ9

κ 1 κ κ4

κ4 κ 1 κ
κ9 κ4 κ 1

⎤
⎥⎥⎦ , (12)

where κ = exp[−2|α|2]. The eigenvalues and the cor-
responding eigenvectors of G are respectively given as
follows:

λ1 =
1

2
(1− κ)

(
2− κz1

√
y+
)
; (13)

λ2 =
1

2
(1 + κ)

(
2− κz2

√
y−
)
; (14)

λ3 =
1

2
(1− κ)

(
2 + κz3

√
y+
)
; (15)

λ4 =
1

2
(1 + κ)

(
2 + κz4

√
y−
)
, (16)

and

�λ1 =
1

2

⎡
⎢⎢⎣

√
z1

−√z3√
z3

−√z1

⎤
⎥⎥⎦ ; (17)

�λ2 =
1

2

⎡
⎢⎢⎣

√
z2

−√z4
−√z4√

z2

⎤
⎥⎥⎦ ; (18)

�λ3 =
1

2

⎡
⎢⎢⎣

√
z3√
z1

−√z1
−√z3

⎤
⎥⎥⎦ ; (19)

�λ4 =
1

2

⎡
⎢⎢⎣
√
z4√
z2√
z2√
z4

⎤
⎥⎥⎦ , (20)

where

z1 = 1− x+√
y+

; (21)

z2 = 1 +
x−√
y−

; (22)

z3 = 1 +
x+√
y+

; (23)

z4 = 1− x−√
y−

, (24)

and

y+ = 4
(
1 + κ+ κ2

)2
+ x2

+; (25)

y− = 4
(
1− κ+ κ2

)2
+ x2

−; (26)

x+ = (1 + κ)(1 + κ2)(1 + κ4); (27)
x− = (1− κ)(1 + κ2)(1 + κ4), (28)

and where the eigenvectors have been normalized. Since
the signal elements are linearly independent, the Gram
matrix G of Eq.(12) is a positive definite matrix. There-
fore every eigenvalue is positive, λi > 0, i = 1, 2, 3, 4.

Further, the projectors Pi = �λi
t�λi, where t�λi means the

transpose of �λi, are given by

P1 =
1

4

⎡
⎢⎣

z1 −√z1z3
√
z1z3 −z1

−√z1z3 z3 −z3 √
z1z3√

z1z3 −z3 z3 −√z1z3
−z1 √

z1z3 −√z1z3 z1

⎤
⎥⎦ ,

(29)

P2 =
1

4

⎡
⎢⎣

z2 −√z2z4 −√z2z4 z2
−√z2z4 z4 z4 −√z2z4
−√z2z4 z4 z4 −√z3z4

z2 −√z2z4 −√z2z4 z2

⎤
⎥⎦ ,

(30)

P3 =
1

4

⎡
⎢⎣

z3
√
z1z3 −√z1z3 −z3√

z1z3 z1 −z1 −√z1z3
−√z1z3 −z1 z1

√
z1z3

−z3 −√z1z3
√
z1z3 z3

⎤
⎥⎦ ,

(31)

P4 =
1

4

⎡
⎢⎣

z4
√
z2z4

√
z2z4 z4√

z2z4 z2 z2
√
z2z4√

z2z4 z2 z2
√
z3z4

z4
√
z2z4

√
z2z4 z4

⎤
⎥⎦ .

(32)

A straightforward calculation yields the following prop-
erties:

1) Eigenequation holds:

G�λi = λi
�λi, i = 1, 2, 3, 4.

2) Trace of Gram matrix:

λ1 + λ2 + λ3 + λ4 = 4.
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3) Orthonormality of eigenvectors:

t�λi
�λj = δij , (i, j) ∈ {1, 2, 3, 4}2.

4) Completeness of eigenvectors:

P1 + P2 + P3 + P4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

5) Reconstruction of Gram matrix:

λ1P1 + λ2P2 + λ3P3 + λ4P4 = G.

By using the eigenvalues λi and the projectors Pi, G1/2

is formally given by

G1/2 =
√

λ1P1 +
√
λ2P2 +

√
λ3P3 +

√
λ4P4

=

⎡
⎢⎢⎣

(g1/2)11 (g1/2)12 (g1/2)13 (g1/2)14
(g1/2)21 (g1/2)22 (g1/2)23 (g1/2)24
(g1/2)31 (g1/2)32 (g1/2)33 (g1/2)34
(g1/2)41 (g1/2)42 (g1/2)43 (g1/2)44

⎤
⎥⎥⎦ .

(33)

Substituting Eqs.(29)-(32) to this matrix, each entry of
this matrix is given as follows:

(g1/2)11 =
1

4

(√
λ1z1 +

√
λ2z2 +

√
λ3z3 +

√
λ4z4

)
=(g1/2)44; (34)

(g1/2)12 =
1

4

{(
−
√
λ1 +

√
λ3

)√
z1z3

+
(√

λ2 +
√
λ4

)√
z2z4

}
=(g1/2)21 = (g1/2)34 = (g1/2)43; (35)

(g1/2)13 =
1

4

{(√
λ1 −

√
λ3

)√
z1z3

+
(
−
√
λ2 +

√
λ4

)√
z2z4

}
=(g1/2)31 = (g1/2)24 = (g1/2)42; (36)

(g1/2)14 =
1

4

(
−
√

λ1z1 +
√
λ2z2 −

√
λ3z3 +

√
λ4z4

)
=(g1/2)41; (37)

(g1/2)22 =
1

4

(√
λ3z1 +

√
λ4z2 +

√
λ1z3 +

√
λ2z4

)
=(g1/2)33; (38)

(g1/2)23 =
1

4

(
−
√

λ3z1 +
√
λ4z2 −

√
λ1z3 +

√
λ2z4

)
=(g1/2)32. (39)

Similarly, we have the inverse of the square-root of
Gram matrix as follows:

G−1/2

=
1√
λ1

P1 +
1√
λ2

P2 +
1√
λ3

P3 +
1√
λ4

P4

=

⎡
⎢⎢⎣

(g−1/2)11 (g−1/2)12 (g−1/2)13 (g−1/2)14
(g−1/2)21 (g−1/2)22 (g−1/2)23 (g−1/2)24
(g−1/2)31 (g−1/2)32 (g−1/2)33 (g−1/2)34
(g−1/2)41 (g−1/2)42 (g−1/2)43 (g−1/2)44

⎤
⎥⎥⎦ ,

(40)

where

(g−1/2)11 =
1

4

(
z1√
λ1

+
z2√
λ2

+
z3√
λ3

+
z4√
λ4

)
= (g−1/2)44; (41)

(g−1/2)12 =
1

4

{(
− 1√

λ1

+
1√
λ3

)√
z1z3

+

(
1√
λ2

+
1√
λ4

)√
z2z4

}
= (g−1/2)21 = (g−1/2)34 = (g−1/2)43;

(42)

(g−1/2)13 =
1

4

{( 1√
λ1

− 1√
λ3

)√
z1z3

+

(
− 1√

λ2

+
1√
λ4

)√
z2z4

}
= (g−1/2)31 = (g−1/2)24 = (g−1/2)42;

(43)

(g−1/2)14 =
1

4

(
− z1√

λ1

+
z2√
λ2

− z3√
λ3

+
z4√
λ4

)
= (g−1/2)41; (44)

(g−1/2)22 =
1

4

(
z1√
λ3

+
z2√
λ4

+
z3√
λ1

+
z4√
λ2

)
= (g−1/2)33; (45)

(g−1/2)23 =
1

4

(
− z1√

λ3

+
z2√
λ4

− z3√
λ1

+
z4√
λ2

)
= (g−1/2)32. (46)

Some specific examples of the square-root of the Gram
matrix for QASK coherent state signal are shown in
Appendix B. Further, we show some examples of the
column vector representation of the signal elements in
Appendix C for the later analysis done in Section III.
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C. SRM for QASK

The detection vectors of the SRM are defined by
|μ•

i 〉 = Ĝ−1/2|ψi〉. The column vector representation of
|μ•

i 〉 for QASK coherent state signal in the basis γ was
already shown in Eq.(11). In accordance with Theorem 5
of the literature [16], we set p• = (p•1, p

•
2, p

•
3, p

•
4) with

p•1 = p•4 =
(g1/2)22

2
{
(g1/2)11 + (g1/2)22

} , (47)

p•2 = p•3 =
(g1/2)11

2
{
(g1/2)11 + (g1/2)22

} . (48)

It satisfies

|μ•
i 〉〈μ•

i |
(
p•i |ψi〉〈ψi| − p•j |ψj〉〈ψj |

)
|μ•

j 〉〈μ•
j | = 0 (49)

for every (i, j). Therefore, Π• = {|μ•
i 〉〈μ•

i | : i =
1, 2, 3, 4} becomes the Bayes-optimal detection strategy
at the signal distribution p•, and the closed-form expres-
sion of the minimal average probability of error at p• is
given by

P̄ •
e = min

Π
P̄e(Π,p•)

= P̄e(Π
•,p•) = 1− (g1/2)11(g

1/2)22. (50)

This minimal error probability P̄ •
e at p• is illustrated

in (a) of Fig. 2. The associated signal probabilities,
p•1 = p•4 and p•2 = p•3, are plotted in (b) and (c) of
Fig. 2, respectively. In each figure, the parameter κ was
taken from 0.001 to 0.99. Some specific examples of
the optimal distribution p•, the channel matrix obtained
by the SRM, and the minimal error probability P̄ •

e for
κ = 0.1, 0.3, 0.5, 0.7, and 0.9 are shown in Appendix D.

D. Bayes-optimal detection of QASK at the uniform input

Numerical analysis of error rate performance of the
Bayes-optimal detection for QASK coherent state signal
at the uniform signal distribution can be found in Fig.1 of
the literature [12] by Helstrom. In this section, we redo
a numerical simulation in the same problem settings as
that but by using another algorithm.

The problem is to find the minimal error probability
P̄ bayes
e (u) such that

P̄ bayes
e (u) = min

Π
P̄e(Π,u), (51)

where Π stands for a positive operator-valued measure
(POVM). For this type of optimization problem, several
numerical calculation algorithms have been developed
[12], [17], [18], [15]. In this article, we use Nakahira’s
iterative algorithm for finding the Bayes-optimal error
probability (Section IV.A of the literature [15]). Calcula-
tion program was implemented by Mathematica, and the
constant for stopping criteria in Nakahira’s algorithm was
set to be δPC = 10−12. The optimality of the simulation
results has been verified with the condition (15) of the
literature [15] which is equivalent to the Holevo’s original
condition for Bayes-optimality [2].
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Fig. 2. SRM: (a) P̄ •
e , (b) p•1 = p•4 , and (c) p•2 = p•3 .

The simulation results are shown in Fig. 3, which
is essentially the same as Fig.1 of the literature [12]
although the parameters of horizontal axis are different.
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The parameter κ in Fig. 3 was taken from 0.001
to 0.99. Some specific examples of the Bayes-optimal
detection vectors |μbayes

i (u)〉, the channel matrix obtained
by the Bayes-optimal detection, and the minimal error
probability P̄ bayes

e (u) for κ = 0.1, 0.3, 0.5, 0.7, and 0.9
are shown in Appendix E.
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Fig. 3. Bayes-optimal detection at u: P̄bayes
e (u).

E. Minimax detection of QASK

The minimax strategy is one of fundamental strategies
in quantum signal detection theory [4], [19], [20]. The
minimax detection problem is formulated as follows:

P̄ ◦
e = P̄e(Π

◦,p◦)
= min

Π
max
p

P̄e(Π,p)

= max
p

min
Π

P̄e(Π,p). (52)

To solve this problem, Nakahira’s iterative calculation
algorithm for the minimax detection problem (Section
V.A of the literature [15]) is used. Like in the Bayes-
optimal detection case, calculation program was imple-
mented by Mathematica and the stopping constant was
set to δPC = 10−12. The simulation results have been
verified with the condition (22) of the literature [15]
which is equivalent to the optimality conditions of Hirota
and Ikehara [4]. The simulation results are shown in Fig.
4. Note that numerically obtained result on the optimal

probability p◦1 (or p◦2) is equal to that of p◦4 (p◦3). This
is a reflection of its own symmetric structure of QASK
coherent state signal. Some specific examples of the
minimax distribution p◦, the minimax detection vectors
|μ◦

i 〉, the channel matrix, and the minimax value P̄ ◦
e for

κ = 0.1, 0.3, 0.5, 0.7, and 0.9 are shown in Appendix F.

III. SOME DISCUSSIONS ON QASK COHERENT STATE
SIGNAL

A. Comparison of SRM, Bayes-optimal, minimax

Here let us compare the three cases considered in the
preceding section. Basically, the following discussion is
parallel to Section IV of the literature [14].

To begin with, we define the following factors.
• The rate of difference for P̄e:

ε(P̄e) =
P̄ ◦
e − P̄ •

e

P̄ •
e

and ε′(P̄e) =
P̄ bayes
e (u)− P̄ •

e

P̄ •
e

.

• The rate of difference for p1:

ε(p1) =
p◦1 − p•1

p•1
and ε′(p1) =

1/4− p•1
p•1

.

• The rate of difference for p2:

ε(p2) =
p◦2 − p•2

p•2
and ε′(p2) =

1/4− p•2
p•2

.

The behavior of these factors is shown in Fig.5. In each
comparison, the parameter κ was taken from 0.001 to
0.99. Fig. 5 (a) shows ε(P̄e) > 0.0 and ε′(P̄e) < 0.0.
That is,

P̄ ◦
e > P̄ •

e > P̄ bayes
e (u) (53)

holds for 0.001 ≤ κ ≤ 0.99. The similar relation was
observed also in the case of 3ASK [14]. Similarly, we
observed ε(p1) < 0.0 and ε′(p1) > 0.0 in (b) of Fig. 5.
Hence we can say that

p◦1 < p•1 < 0.25 (54)

holds for 0.001 ≤ κ ≤ 0.99. Alternatively,

p◦2 > p•2 > 0.25 (55)

holds for 0.001 ≤ κ ≤ 0.99, because ε(p2) > 0.0 and
ε′(p2) < 0.0 are observed in (c) of Fig. 5. Overviewing
(a), (b), and (c) of Fig. 5 and the specific examples for
κ = 0.1, we observed that the structure of the detection
vectors of the SRM is similar to that of the Bayes-
optimal detection at the uniform distribution of signal
elements when κ < 0.1. On the other hand, all the optimal
probability of signal converges to 1/4 when κ is close to
1, but this is just a reflection of pure guessing situation
caused by the preparation of almost identical quantum
states.

A typical schematic of the relationships (53)-(55) is
shown in Fig. 6, where we have assumed p1 = p4
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Fig. 4. Minimax detection: (a) P̄ ◦
e , (b) p◦1 = p◦4 , and (c) p◦2 = p◦3 .

and p2 = p3 for simplicity. In this figure, the con-
cave curve stands for the all of Bayes-optimal detection
cases, P̄ bayes

e (p). Point A(0.23690, 0.23820) stands for
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Fig. 5. Rates of difference. (a) P̄e, (b) p1 (or p4), (c) p2 (or p3).

the case of SRM, Point B(0.18750, 0.24621) the case
of minimax detection, and Point C(0.25000, 0.23348)
the case of Bayes-optimum detection at the uniform
distribution of signal elements. The straight lines (dashed,
dotted and dot-dashed) are tangent lines that touch to
the concave curve at Points A, B, and C, respectively.
Each line represents the error rate performance of the
corresponding detection strategy when the probability
distribution of signal elements varies from the optimal
one. The error rate performance of the minimax detection
is stable even if the distribution varies. This is a basic
feature of the minimax detection.

B. Toward derivation of the optimal detection vectors

In the analysis of error rate performance for the Bayes-
optimal detection and the minimax detection, we per-
formed a numerical calculation. Hence the closed-form
solutions are still open. Toward analytical derivation of
the optimal detection vectors in each case, we analyze the
structure of the vectors based on the examples shown in



16

Sections II.D and II.E. From observations of the results,
a template of the optimal detection vectors is conjectured
to the following form.

[
|μbayes

1 (u)〉
]
γ
, or [|μ◦

1〉]γ →

⎡
⎢⎢⎣

A
B
C
D

⎤
⎥⎥⎦ ; (56)

[
|μbayes

2 (u)〉
]
γ
, or [|μ◦

2〉]γ →

⎡
⎢⎢⎣
−B
A
D
−C

⎤
⎥⎥⎦ ; (57)

[
|μbayes

3 (u)〉
]
γ
, or [|μ◦

3〉]γ →

⎡
⎢⎢⎣
−C
D
A

−B

⎤
⎥⎥⎦ ; (58)

[
|μbayes

4 (u)〉
]
γ
, or [|μ◦

4〉]γ →

⎡
⎢⎢⎣

D
C
B
A

⎤
⎥⎥⎦ . (59)

As demonstrated in the literatures [4], [21], this type of
conjecture might be helpful to derive the closed-form
expressions. If these are the optimal detection vectors,
then the parameters A,B,C, and D must satisfy the
orthonormality condition,

A2 +B2 + C2 +D2 = 1, AD +BC = 0. (60)

In the case of Bayes-optimal detection at the uniform
distribution of signal elements, its optimality condition
yields the following equations.

(r1A+ r2B + r3C + r4D)

×(r2A− r1B − r4C + r3D)

= (r2A+ r5B + r6C + r3D)

×(r5A− r2B − r3C + r6D); (61)
(r1A+ r2B + r3C + r4D)

×(r3A− r4B − r1C + r2D)

= (r3A+ r6B + r5C + r2D)

×(r5A− r2B − r3C + r6D), (62)

where r1 = (g)
1/2
11 , r2 = (g)

1/2
12 , r3 = (g)

1/2
13 , r4 =

(g)
1/2
14 , r5 = (g)

1/2
22 , and r6 = (g)

1/2
23 . The conditions

(60), (61), and (62) form a system of equations for
unknowns A, B, C, and D. Unfortunately, it is still
difficult to solve this system of equations analytically.
However, it has been verified that the same results as the
examples shown in Section II.D are numerically obtained
from the system of equations. Although it is just only
a numerical verification, we expect the set of equations
mentioned above correctly captures an algebraic structure
of the optimal detection. .

In the case of minimax detection, the following condi-
tions are enforced:

• Symmetry of the minimax distribution.

p◦1 = p◦4 and p◦2 = p◦3, (63)

and p◦1 + p◦2 + p◦3 + p◦4 = 1 and p◦i ≥ 0 for every i.
• Bayes-optimality at the minimax distribution.

p◦1(r1A+ r2B + r3C + r4D)

×(r2A− r1B − r4C + r3D)

= p◦2(r2A+ r5B + r6C + r3D)

×(r5A− r2B − r3C + r6D); (64)
p◦1(r1A+ r2B + r3C + r4D)

×(r3A− r4B − r1C + r2D)

= p◦2(r3A+ r6B + r5C + r2D)

×(r5A− r2B − r3C + r6D). (65)

• Minimax condition.

r1A+ r2B + r3C + r4D

= r5A− r2B − r3C + r6D. (66)

We expect the conditions, (60) and (63)-(66), will be
helpful for finding the analytical solution to the minimax
detection problem of QASK.

IV. SUMMARY

Quantum detection of quaternary amplitude-shift key-
ing (QASK) coherent state signal was investigated. The
closed-form expression of the square-root measurement
(SRM) for QASK coherent state signal was derived by
solving the eigenvalue problem of the corresponding
Gram matrix. The optimal detection vectors of the Bayes-
optimal detection at the uniform distribution of signal
elements and the minimax detection were respectively
calculated by Nakahira’s iterative calculation algorithms
[15]. Toward derivation of the closed-form expressions of
the Bayes-optimal detection and the minimax detection,
the structure of optimal detection vectors was discussed
based on the calculation results. From this, templates of
the optimal detection vectors for the Bayes-optimal detec-
tion at the uniform signal distribution and for the minimax
detection were conjectured. Based on this conjecture,
the systems of equations to determine the correspond-
ing optimal detection vectors for QASK coherent state
signal were proposed. Thus the derivation of the closed-
form expressions for the Bayes-optimal detection at the
uniform signal distribution and for the minimax detection
for QASK coherent state signal are still remaining. This
problem will be discussed else where.
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APPENDIX

A. Definition of QASK

We have defined QASK coherent state signal by Eq.(1).
However, QASK coherent state signal may be defined as
follows.

S ′ = {|0〉, |2α〉, |4α〉, |6α〉}.
When this type of definition is employed, the average
number of signal photons is given as n̄s = 14|α|2. Even
in this case, the Gram matrix is given by Eq.(12).

B. Numerical example of the square-root of Gram matrix

The following examples are obtained from Eqs.(13)-
(16) and (17)-(20).

Case of κ = 0.1
Gram matrix G:⎡
⎢⎣

1.0000E+0 1.0000E-1 1.0000E-4 1.0000E-9
1.0000E-1 1.0000E+0 1.0000E-1 1.0000E-4
1.0000E-4 1.0000E-1 1.0000E+0 1.0000E-1
1.0000E-9 1.0000E-4 1.0000E-1 1.0000E+0

⎤
⎥⎦ .

Eigenvalues and eigenvectors of G:

λ1 = 0.83829, �λ1 =

⎡
⎢⎢⎣

0.37163
−0.60158
0.60158
−0.37163

⎤
⎥⎥⎦ ;
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λ2 = 0.93811, �λ2 =

⎡
⎢⎢⎣

0.60143
−0.37187
−0.37187
0.60143

⎤
⎥⎥⎦ ;

λ3 = 1.0617, �λ3 =

⎡
⎢⎢⎣

0.60158
0.37163

−0.37163
−0.60158

⎤
⎥⎥⎦ ;

λ4 = 1.1619, �λ4 =

⎡
⎢⎢⎣

0.37187
0.60143
0.60143
0.37187

⎤
⎥⎥⎦ .

Square-root of G, G1/2:[
9.9874E-1 5.0125E-2 −1.2116E-3 6.0810E-5
5.0125E-2 9.9748E-1 5.0187E-2 −1.2116E-3

−1.2116E-3 5.0187E-2 9.9748E-1 5.0125E-2
6.0810E-5 −1.2116E-3 5.0125E-2 9.9874E-1

]
.

case of κ = 0.3
Gram matrix G:⎡
⎢⎣

1.0000E+0 3.0000E-1 8.1000E-3 1.9683E-5
3.0000E-1 1.0000E+0 3.0000E-1 8.1000E-3
8.1000E-3 3.0000E-1 1.0000E+0 3.0000E-1
1.9683E-5 8.1000E-3 3.0000E-1 1.0000E+0

⎤
⎥⎦ .

Eigenvalues and eigenvectors of G:

λ1 = 0.52181, �λ1 =

⎡
⎢⎢⎣

0.36843
−0.60354
0.60354

−0.36843

⎤
⎥⎥⎦ ;

λ2 = 0.80734, �λ2 =

⎡
⎢⎢⎣

0.59952
−0.37493
−0.37493
0.59952

⎤
⎥⎥⎦ ;

λ3 = 1.1782, �λ3 =

⎡
⎢⎢⎣

0.60354
0.36843

−0.36843
−0.60354

⎤
⎥⎥⎦ ;

λ4 = 1.4927, �λ4 =

⎡
⎢⎢⎣

0.37493
0.59952
0.59952
0.37493

⎤
⎥⎥⎦ .

Square-root of G, G1/2:[
9.8813E-1 1.5339E-1 −8.0778E-3 1.2639E-3
1.5339E-1 9.7591E-1 1.5497E-1 −8.0778E-3

−8.0778E-3 1.5497E-1 9.7591E-1 1.5339E-1
1.2639E-3 −8.0778E-3 1.5339E-1 9.8813E-1

]
.

case of κ = 0.5
Gram matrix G:⎡
⎢⎣

1.0000E+0 5.0000E-1 6.2500E-2 1.9531E-3
5.0000E-1 1.0000E+0 5.0000E-1 6.2500E-2
6.2500E-2 5.0000E-1 1.0000E+0 5.0000E-1
1.9531E-3 6.2500E-2 5.0000E-1 1.0000E+0

⎤
⎥⎦ .

Eigenvalues and eigenvectors of G:

λ1 = 0.24562, �λ1 =

⎡
⎢⎢⎣

0.35543
−0.61129
0.61129

−0.35543

⎤
⎥⎥⎦ ;

λ2 = 0.63582, �λ2 =

⎡
⎢⎢⎣

0.59262
−0.38574
−0.38574
0.59262

⎤
⎥⎥⎦ ;

λ3 = 1.2524, �λ3 =

⎡
⎢⎢⎣

0.61129
0.35543

−0.35543
−0.61129

⎤
⎥⎥⎦ ;

λ4 = 1.8661, �λ4 =

⎡
⎢⎢⎣

0.38574
0.59262
0.59262
0.38574

⎤
⎥⎥⎦ .

Square-root of G, G1/2:[
9.6410E-1 2.6547E-1 −5.4718E-3 2.5196E-3
2.6547E-1 9.2498E-1 2.7185E-1 −5.4718E-3

−5.4718E-3 2.7185E-1 9.2498E-1 2.6547E-1
2.5196E-3 −5.4718E-3 2.6547E-1 9.6410E-1

]
.

case of κ = 0.7
Gram matrix G:⎡
⎢⎣

1.0000E+0 7.0000E-1 2.4010E-1 4.0354E-2
7.0000E-1 1.0000E+0 7.0000E-1 2.4010E-1
2.4010E-1 7.0000E-1 1.0000E+0 7.0000E-1
4.0354E-2 2.4010E-1 7.0000E-1 1.0000E+0

⎤
⎥⎦ .

Eigenvalues and eigenvectors of G:

λ1 = 0.063880, �λ1 =

⎡
⎢⎢⎣

0.32296
−0.62904
0.62904

−0.32296

⎤
⎥⎥⎦ ;

λ2 = 0.37390, �λ2 =

⎡
⎢⎢⎣

0.57686
−0.40895
−0.40895
0.57686

⎤
⎥⎥⎦ ;

λ3 = 1.1958, �λ3 =

⎡
⎢⎢⎣

0.62904
0.32296

−0.32296
−0.62904

⎤
⎥⎥⎦ ;

λ4 = 2.3665, �λ4 =

⎡
⎢⎢⎣

0.40895
0.57686
0.57686
0.40895

⎤
⎥⎥⎦ .

Square-root of G, G1/2:⎡
⎢⎣

9.1980E-1 3.8946E-1 4.7841E-2 1.6795E-3
3.8946E-1 8.2823E-1 4.0009E-1 4.7841E-2
4.7841E-2 4.0009E-1 8.2823E-1 3.8946E-1
1.6795E-3 4.7841E-2 3.8946E-1 9.1980E-1

⎤
⎥⎦ .
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case of κ = 0.9
Gram matrix G:⎡
⎢⎣

1.0000E+0 9.0000E-1 6.5610E-1 3.8742E-1
9.0000E-1 1.0000E+0 9.0000E-1 6.5610E-1
6.5610E-1 9.0000E-1 1.0000E+0 9.0000E-1
3.8742E-1 6.5610E-1 9.0000E-1 1.0000E+0

⎤
⎥⎦ .

Eigenvalues and eigenvectors of G:

λ1 = 0.002494, �λ1 =

⎡
⎢⎢⎣

0.26249
−0.65658
0.65658

−0.26249

⎤
⎥⎥⎦ ;

λ2 = 0.06665, �λ2 =

⎡
⎢⎢⎣

0.53910
−0.45757
−0.45757
0.53910

⎤
⎥⎥⎦ ;

λ3 = 0.71009, �λ3 =

⎡
⎢⎢⎣

0.65658
0.26249

−0.26249
−0.65658

⎤
⎥⎥⎦ ;

λ4 = 3.2208, �λ4 =

⎡
⎢⎢⎣

0.45757
0.53910
0.53910
0.45757

⎤
⎥⎥⎦ .

Square-root of G, G1/2:⎡
⎢⎣

8.1749E-1 5.1564E-1 2.4239E-1 8.4065E-2
5.1564E-1 6.5521E-1 4.9604E-1 2.4239E-1
2.4239E-1 4.9604E-1 6.5521E-1 5.1564E-1
8.4065E-2 2.4239E-1 5.1564E-1 8.1749E-1

⎤
⎥⎦ .

C. Numerical example of the column vector representa-
tion of the signal elements

case of κ = 0.1

|ψ1〉 .
= [|ψ1〉]γ =

⎡
⎢⎢⎣

9.9874E-1
5.0125E-2

−1.2116E-3
6.0810E-5

⎤
⎥⎥⎦ ;

|ψ2〉 .
= [|ψ2〉]γ =

⎡
⎢⎢⎣

5.0125E-2
9.9748E-1
5.0187E-2

−1.2116E-3

⎤
⎥⎥⎦ ;

|ψ3〉 .
= [|ψ3〉]γ =

⎡
⎢⎢⎣
−1.2116E-3
5.0187E-2
9.9748E-1
5.0125E-2

⎤
⎥⎥⎦ ;

|ψ4〉 .
= [|ψ4〉]γ =

⎡
⎢⎢⎣

6.0810E-5
−1.2116E-3
5.0125E-2
9.9874E-1

⎤
⎥⎥⎦ .

case of κ = 0.3

|ψ1〉 .
= [|ψ1〉]γ =

⎡
⎢⎢⎣

9.8813E-1
1.5339E-1

−8.0778E-3
1.2639E-3

⎤
⎥⎥⎦ ;

|ψ2〉 .
= [|ψ2〉]γ =

⎡
⎢⎢⎣

1.5339E-1
9.7591E-1
1.5497E-1

−8.0778E-3

⎤
⎥⎥⎦ ;

|ψ3〉 .
= [|ψ3〉]γ =

⎡
⎢⎢⎣
−8.0778E-3
1.5497E-1
9.7591E-1
1.5339E-1

⎤
⎥⎥⎦ ;

|ψ4〉 .
= [|ψ4〉]γ =

⎡
⎢⎢⎣

1.2639E-3
−8.0778E-3
1.5339E-1
9.8813E-1

⎤
⎥⎥⎦ .

case of κ = 0.5

|ψ1〉 .
= [|ψ1〉]γ =

⎡
⎢⎢⎣

9.6410E-1
2.6547E-1

−5.4718E-3
2.5196E-3

⎤
⎥⎥⎦ ;

|ψ2〉 .
= [|ψ2〉]γ =

⎡
⎢⎢⎣

2.6547E-1
9.2498E-1
2.7185E-1

−5.4718E-3

⎤
⎥⎥⎦ ;

|ψ3〉 .
= [|ψ3〉]γ =

⎡
⎢⎢⎣
−5.4718E-3
2.7185E-1
9.2498E-1
2.6547E-1

⎤
⎥⎥⎦ ;

|ψ4〉 .
= [|ψ4〉]γ =

⎡
⎢⎢⎣

2.5196E-3
−5.4718E-3
2.6547E-1
9.6410E-1

⎤
⎥⎥⎦ .

case of κ = 0.7

|ψ1〉 .
= [|ψ1〉]γ =

⎡
⎢⎢⎣

9.1980E-1
3.8946E-1
4.7841E-2
1.6795E-3

⎤
⎥⎥⎦ ;

|ψ2〉 .
= [|ψ2〉]γ =

⎡
⎢⎢⎣

3.8946E-1
8.2823E-1
4.0009E-1
4.7841E-2

⎤
⎥⎥⎦ ;

|ψ3〉 .
= [|ψ3〉]γ =

⎡
⎢⎢⎣

4.7841E-2
4.0009E-1
8.2823E-1
3.8946E-1

⎤
⎥⎥⎦ ;
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|ψ4〉 .
= [|ψ4〉]γ =

⎡
⎢⎢⎣

1.6795E-3
4.7841E-2
3.8946E-1
9.1980E-1

⎤
⎥⎥⎦ .

case of κ = 0.9

|ψ1〉 .
= [|ψ1〉]γ =

⎡
⎢⎢⎣

8.1749E-1
5.1564E-1
2.4239E-1
8.4065E-2

⎤
⎥⎥⎦ ;

|ψ2〉 .
= [|ψ2〉]γ =

⎡
⎢⎢⎣

5.1564E-1
6.5521E-1
4.9604E-1
2.4239E-1

⎤
⎥⎥⎦ ;

|ψ3〉 .
= [|ψ3〉]γ =

⎡
⎢⎢⎣

2.4239E-1
4.9604E-1
6.5521E-1
5.1564E-1

⎤
⎥⎥⎦ ;

|ψ4〉 .
= [|ψ4〉]γ =

⎡
⎢⎢⎣

8.4065E-2
2.4239E-1
5.1564E-1
8.1749E-1

⎤
⎥⎥⎦ .

D. Numerical example of the SRM

case of κ = 0.1
Optimal distribution p• of signal:

p•1 = p•4 = 0.24984;

p•2 = p•3 = 0.25016.

Channel matrix [P (j|i)] = [〈ψi|Π̂•
j |ψi〉]:⎡

⎢⎣
9.9749E-1 2.5125E-3 1.4681E-6 3.6979E-9
2.5125E-3 9.9497E-1 2.5188E-3 1.4681E-6
1.4681E-6 2.5188E-3 9.9497E-1 2.5125E-3
3.6979E-9 1.4681E-6 2.5125E-3 9.9749E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ •
e :

P̄ •
e = 3.7742E-3.

case of κ = 0.3
Optimal distribution p• of signal:

p•1 = p•4 = 0.24844;

p•2 = p•3 = 0.25156.

Channel matrix [P (j|i)] = [〈ψi|Π̂•
j |ψi〉]:⎡

⎢⎣
9.7641E-1 2.3528E-2 6.5251E-5 1.5974E-6
2.3528E-2 9.5239E-1 2.4017E-2 6.5251E-5
6.5251E-5 2.4017E-2 9.5239E-1 2.3528E-2
1.5974E-6 6.5251E-5 2.3528E-2 9.7641E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ •
e :

P̄ •
e = 3.5677E-2.

case of κ = 0.5

Optimal distribution p• of signal:

p•1 = p•4 = 0.24482;

p•2 = p•3 = 0.25518.

Channel matrix [P (j|i)] = [〈ψi|Π̂•
j |ψi〉]:⎡

⎢⎣
9.2949E-1 7.0476E-2 2.9941E-5 6.3486E-6
7.0476E-2 8.5559E-1 7.3900E-2 2.9941E-5
2.9941E-5 7.3900E-2 8.5559E-1 7.0476E-2
6.3486E-6 2.9941E-5 7.0476E-2 9.2949E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ •
e :

P̄ •
e = 0.10822.

case of κ = 0.7
Optimal distribution p• of signal:

p•1 = p•4 = 0.23690;

p•2 = p•3 = 0.26310.

Channel matrix [P (j|i)] = [〈ψi|Π̂•
j |ψi〉]:⎡

⎢⎣
8.4603E-1 1.5168E-1 2.2888E-3 2.8207E-6
1.5168E-1 6.8596E-1 1.6007E-1 2.2888E-3
2.2888E-3 1.6007E-1 6.8596E-1 1.5168E-1
2.8207E-6 2.2888E-3 1.5168E-1 8.4603E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ •
e :

P̄ •
e = 0.23820.

case of κ = 0.9
Optimal distribution p• of signal:

p•1 = p•4 = 0.22245;

p•2 = p•3 = 0.27755.

Channel matrix [P (j|i)] = [〈ψi|Π̂•
j |ψi〉]:⎡

⎢⎣
6.6829E-1 2.6588E-1 5.8755E-2 7.0669E-3
2.6588E-1 4.2931E-1 2.4606E-1 5.8755E-2
5.8755E-2 2.4606E-1 4.2931E-1 2.6588E-1
7.0669E-3 5.8755E-2 2.6588E-1 6.6829E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ •
e :

P̄ •
e = 0.46437.

E. Numerical example of the Bayes-optimal detection at
the uniform signal distribution

case of κ = 0.1
Detection vectors:

|μbayes
1 (u)〉 .

= [|μbayes
1 (u)〉]γ =

⎡
⎢⎢⎣

1.0000E+0
3.1863E-5

−1.5708E-6
5.0048E-11

⎤
⎥⎥⎦ ;

|μbayes
2 (u)〉 .

= [|μbayes
2 (u)〉]γ =

⎡
⎢⎢⎣
−3.1863E-5
1.0000E+0
5.0048E-11
1.5708E-6

⎤
⎥⎥⎦ ;
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|μbayes
3 (u)〉 .

= [|μbayes
3 (u)〉]γ =

⎡
⎢⎢⎣

1.5708E-6
5.0048E-11
1.0000E+0

−3.1863E-5

⎤
⎥⎥⎦ ;

|μbayes
4 (u)〉 .

= [|μbayes
4 (u)〉]γ =

⎡
⎢⎢⎣

5.0048E-11
−1.5708E-6
3.1863E-5
1.0000E+0

⎤
⎥⎥⎦ .

Note that 1.0000E+0 in this example is not 1 with
machine accuracy. It is very close to 1, but below 1.
Channel matrix [P (j|i)] = [〈ψi|Π̂bayes

j (u)|ψi〉]:⎡
⎢⎣

9.9749E-1 2.5093E-3 1.4643E-6 3.6836E-9
2.5157E-3 9.9496E-1 2.5188E-3 1.4680E-6
1.4680E-6 2.5188E-3 9.9496E-1 2.5157E-3
3.6836E-9 1.4643E-6 2.5093E-3 9.9749E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ bayes
e (u):

P̄ bayes
e (u) = 3.7734E-3.

case of κ = 0.3
Detection vectors:

|μbayes
1 (u)〉 .

= [|μbayes
1 (u)〉]γ =

⎡
⎢⎢⎣

1.0000E+0
1.0076E-3

−1.3216E-4
1.3316E-7

⎤
⎥⎥⎦ ;

|μbayes
2 (u)〉 .

= [|μbayes
2 (u)〉]γ =

⎡
⎢⎢⎣
−1.0076E-3
1.0000E+0
1.3316E-7
1.3216E-4

⎤
⎥⎥⎦ ;

|μbayes
3 (u)〉 .

= [|μbayes
3 (u)〉]γ =

⎡
⎢⎢⎣

1.3216E-4
1.3316E-7
1.0000E+0

−1.0076E-3

⎤
⎥⎥⎦ ;

|μbayes
4 (u)〉 .

= [|μbayes
4 (u)〉]γ =

⎡
⎢⎢⎣

1.3316E-7
−1.3216E-4
1.0076E-3
1.0000E+0

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂bayes
j (u)|ψi〉]:⎡

⎢⎣
9.7671E-1 2.3224E-2 6.3178E-5 1.5267E-6
2.3825E-2 9.5209E-1 2.4026E-2 6.4812E-5
6.4812E-5 2.4026E-2 9.5209E-1 2.3825E-2
1.5267E-6 6.3178E-5 2.3224E-2 9.7671E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ bayes
e (u):

P̄ bayes
e (u) = 3.5602E-2.

case of κ = 0.5
Detection vectors:

|μbayes
1 (u)〉 .

= [|μbayes
1 (u)〉]γ =

⎡
⎢⎢⎣

9.9998E-1
6.4790E-3

−1.0502E-3
6.8043E-6

⎤
⎥⎥⎦ ;

|μbayes
2 (u)〉 .

= [|μbayes
2 (u)〉]γ =

⎡
⎢⎢⎣
−6.4790E-3
9.9998E-1
6.8043E-6
1.0502E-3

⎤
⎥⎥⎦ ;

|μbayes
3 (u)〉 .

= [|μbayes
3 (u)〉]γ =

⎡
⎢⎢⎣

1.0502E-3
6.8043E-6
9.9998E-1

−6.4790E-3

⎤
⎥⎥⎦ ;

|μbayes
4 (u)〉 .

= [|μbayes
4 (u)〉]γ =

⎡
⎢⎢⎣

6.8043E-6
−1.0502E-3
6.4790E-3
9.9998E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂bayes
j (u)|ψi〉]:⎡

⎢⎣
9.3278E-1 6.7197E-2 2.0014E-5 4.8925E-6
7.3536E-2 8.5237E-1 7.4071E-2 2.1902E-5
2.1902E-5 7.4071E-2 8.5237E-1 7.3536E-2
4.8925E-6 2.0014E-5 6.7197E-2 9.3278E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ bayes
e (u):

P̄ bayes
e (u) = 0.10743.

case of κ = 0.7
Detection vectors:

|μbayes
1 (u)〉 .

= [|μbayes
1 (u)〉]γ =

⎡
⎢⎢⎣

9.9956E-1
2.9636E-2

−2.7782E-3
8.2371E-5

⎤
⎥⎥⎦ ;

|μbayes
2 (u)〉 .

= [|μbayes
2 (u)〉]γ =

⎡
⎢⎢⎣
−2.9636E-2
9.9956E-1
8.2371E-5
2.7782E-3

⎤
⎥⎥⎦ ;

|μbayes
3 (u)〉 .

= [|μbayes
3 (u)〉]γ =

⎡
⎢⎢⎣

2.7782E-3
8.2371E-5
9.9956E-1

−2.9636E-2

⎤
⎥⎥⎦ ;

|μbayes
4 (u)〉 .

= [|μbayes
4 (u)〉]γ =

⎡
⎢⎢⎣

8.2371E-5
−2.7782E-3
2.9636E-2
9.9956E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂bayes
j (u)|ψi〉]:⎡

⎢⎣
8.6639E-1 1.3107E-1 2.5359E-3 4.3697E-6
1.7034E-1 6.6665E-1 1.5972E-1 3.2957E-3
3.2957E-3 1.5972E-1 6.6665E-1 1.7034E-1
4.3697E-6 2.5359E-3 1.3107E-1 8.6639E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ bayes
e (u):

P̄ bayes
e (u) = 0.23348.

case of κ = 0.9
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Detection vectors:

|μbayes
1 (u)〉 .

= [|μbayes
1 (u)〉]γ =

⎡
⎢⎢⎣

9.8990E-1
1.3977E-1
2.3468E-2

−3.3136E-3

⎤
⎥⎥⎦ ;

|μbayes
2 (u)〉 .

= [|μbayes
2 (u)〉]γ =

⎡
⎢⎢⎣
−1.3977E-1
9.8990E-1

−3.3136E-3
−2.3468E-2

⎤
⎥⎥⎦ ;

|μbayes
3 (u)〉 .

= [|μbayes
3 (u)〉]γ =

⎡
⎢⎢⎣
−2.3468E-2
−3.3136E-3
9.8990E-1

−1.3977E-1

⎤
⎥⎥⎦ ;

|μbayes
4 (u)〉 .

= [|μbayes
4 (u)〉]γ =

⎡
⎢⎢⎣
−3.3136E-3
2.3468E-2
1.3977E-1
9.8990E-1

⎤
⎥⎥⎦ ,

Channel matrix [P (j|i)] = [〈ψi|Π̂bayes
j (u)|ψi〉]:⎡

⎢⎣
7.8627E-1 1.5476E-1 4.2974E-2 1.5999E-2
3.7558E-1 3.2398E-1 1.9614E-1 1.0429E-1
1.0429E-1 1.9614E-1 3.2398E-1 3.7558E-1
1.5999E-2 4.2974E-2 1.5476E-1 7.8627E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ bayes
e (u):

P̄ bayes
e (u) = 0.44488.

F. Numerical example of the minimax detection

case of κ = 0.1
Optimal distribution p◦:

p◦1 = 0.18757;

p◦2 = 0.31243;

p◦3 = 0.31243;

p◦4 = 0.18757.

Detection vectors:

|μ◦
1〉 .

= [|μ◦
1〉]γ =

⎡
⎢⎢⎣

9.9992E-1
−1.2564E-2
6.9815E-4
8.7721E-6

⎤
⎥⎥⎦ ;

|μ◦
2〉 .

= [|μ◦
2〉]γ =

⎡
⎢⎢⎣

1.2564E-2
9.9992E-1
8.7721E-6

−6.9815E-4

⎤
⎥⎥⎦ ;

|μ◦
3〉 .

= [|μ◦
3〉]γ =

⎡
⎢⎢⎣
−6.9815E-4
8.7721E-6
9.9992E-1
1.2564E-2

⎤
⎥⎥⎦ ;

|μ◦
4〉 .

= [|μ◦
4〉]γ =

⎡
⎢⎢⎣

8.7721E-6
6.9815E-4

−1.2564E-2
9.9992E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂◦
j |ψi〉]:⎡

⎢⎣
9.9607E-1 3.9274E-3 3.6390E-6 1.4348E-8
1.4156E-3 9.9607E-1 2.5142E-3 1.3116E-6
1.3116E-6 2.5142E-3 9.9607E-1 1.4156E-3
1.4348E-8 3.6390E-6 3.9274E-3 9.9607E-1

⎤
⎥⎦ .

(Note that the diagonal entries are identical.)
Minimal average probability of error, P̄ ◦

e :

P̄ ◦
e = 3.9311E-3.

case of κ = 0.3
Optimal distribution p◦:

p◦1 = 0.18793;

p◦2 = 0.31207;

p◦3 = 0.31207;

p◦4 = 0.18793.

Detection vectors:

|μ◦
1〉 .

= [|μ◦
1〉]γ =

⎡
⎢⎢⎣

9.9921E-1
−3.9396E-2
5.9399E-3
2.3419E-4

⎤
⎥⎥⎦ ;

|μ◦
2〉 .

= [|μ◦
2〉]γ =

⎡
⎢⎢⎣

3.9396E-2
9.9921E-1
2.3419E-4

−5.9399E-3

⎤
⎥⎥⎦ ;

|μ◦
3〉 .

= [|μ◦
3〉]γ =

⎡
⎢⎢⎣
−5.9399E-3
2.3419E-4
9.9921E-1
3.9396E-2

⎤
⎥⎥⎦ ;

|μ◦
4〉 .

= [|μ◦
4〉]γ =

⎡
⎢⎢⎣

2.3419E-4
5.9399E-3

−3.9396E-2
9.9921E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂◦
j |ψi〉]:⎡

⎢⎣
9.6287E-1 3.6936E-2 1.9196E-4 7.4183E-6
1.3396E-2 9.6287E-1 2.3670E-2 6.96210E-5
6.9621E-5 2.3670E-2 9.6287E-1 1.3396E-2
7.4183E-6 1.9196E-4 3.6936E-2 9.6287E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ ◦
e :

P̄ ◦
e = 3.7135E-2.

case of κ = 0.5
Optimal distribution p◦:

p◦1 = 0.18789;

p◦2 = 0.31211;
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p◦3 = 0.31211;

p◦4 = 0.18789.

Detection vectors:

|μ◦
1〉 .

= [|μ◦
1〉]γ =

⎡
⎢⎢⎣

9.9725E-1
−7.2632E-2
1.4557E-2
1.0602E-3

⎤
⎥⎥⎦ ;

|μ◦
2〉 .

= [|μ◦
2〉]γ =

⎡
⎢⎢⎣

7.2632E-2
9.9725E-1
1.0602E-3

−1.4557E-2

⎤
⎥⎥⎦ ;

|μ◦
3〉 .

= [|μ◦
3〉]γ =

⎡
⎢⎢⎣
−1.4557E-2
1.0602E-3
9.9725E-1
7.2632E-2

⎤
⎥⎥⎦ ;

|μ◦
4〉 .

= [|μ◦
4〉]γ =

⎡
⎢⎢⎣

1.0602E-3
1.4557E-2

−7.2632E-2
9.9725E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂◦
j |ψi〉]:⎡

⎢⎣
8.8754E-1 1.1204E-1 3.6203E-4 6.0792E-5
4.0607E-2 8.8754E-1 7.1726E-2 1.3121E-4
1.3121E-4 7.1726E-2 8.8754E-1 4.0607E-2
6.0792E-5 3.6203E-4 1.1204E-1 8.8754E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ ◦
e :

P̄ ◦
e = 0.11246.

case of κ = 0.7
Optimal distribution p◦:

p◦1 = 0.18750;

p◦2 = 0.31250;

p◦3 = 0.31250;

p◦4 = 0.18750.

Detection vectors:

|μ◦
1〉 .

= [|μ◦
1〉]γ =

⎡
⎢⎢⎣

9.9281E-1
−1.1798E-1
2.0250E-2
2.4063E-3

⎤
⎥⎥⎦ ;

|μ◦
2〉 .

= [|μ◦
2〉]γ =

⎡
⎢⎢⎣

1.1798E-1
9.9281E-1
2.4063E-3

−2.0250E-2

⎤
⎥⎥⎦ ;

|μ◦
3〉 .

= [|μ◦
3〉]γ =

⎡
⎢⎢⎣
−2.0250E-2
2.4063E-3
9.9281E-1
1.1798E-1

⎤
⎥⎥⎦ ;

|μ◦
4〉 .

= [|μ◦
4〉]γ =

⎡
⎢⎢⎣

2.4063E-3
2.0250E-2

−1.1798E-1
9.9281E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂◦
j |ψi〉]:⎡

⎢⎣
7.5379E-1 2.4527E-1 9.0039E-4 3.7492E-5
8.8304E-2 7.5379E-1 1.5758E-1 3.2416E-4
3.2416E-4 1.5758E-1 7.5379E-1 8.8304E-2
3.7492E-5 9.0034E-4 2.4527E-1 7.5379E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ ◦
e :

P̄ ◦
e = 0.24621.

case of κ = 0.9

Optimal distribution p◦:

p◦1 = 0.19516;

p◦2 = 0.30484;

p◦3 = 0.30484;

p◦4 = 0.19516.

Detection vectors:

|μ◦
1〉 .

= [|μ◦
1〉]γ =

⎡
⎢⎢⎣

9.8789E-1
−1.5517E-1
−6.8750E-4
−1.0799E-4

⎤
⎥⎥⎦ ;

|μ◦
2〉 .

= [|μ◦
2〉]γ =

⎡
⎢⎢⎣

1.5517E-1
9.8789E-1

−1.0799E-4
6.8750E-1

⎤
⎥⎥⎦ ;

|μ◦
3〉 .

= [|μ◦
3〉]γ =

⎡
⎢⎢⎣

6.8750E-4
−1.0799E-4
9.8789E-1
1.5517E-1

⎤
⎥⎥⎦ ;

|μ◦
4〉 .

= [|μ◦
4〉]γ =

⎡
⎢⎢⎣
−1.0799E-4
−6.8750E-4
−1.5517E-1
9.8789E-1

⎤
⎥⎥⎦ .

Channel matrix [P (j|i)] = [〈ψi|Π̂◦
j |ψi〉]:⎡

⎢⎣
5.2912E-1 4.0485E-1 6.4013E-2 2.0242E-3
1.6594E-1 5.2912E-1 2.7871E-1 2.6238E-2
2.6238E-2 2.7871E-1 5.2912E-1 1.6594E-1
2.0242E-3 6.4013E-2 4.0485E-1 5.2912E-1

⎤
⎥⎦ .

Minimal average probability of error, P̄ ◦
e :

P̄ ◦
e = 0.47089.
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G. Optimal detection of QPSK

The quadrature phase-shift keying (QPSK) coherent
state signal is defined as

S = {|α〉, |iα〉, |−α〉, |−iα〉}.
The average number of signal photons for QPSK is
given as n̄s = |α|2. The optimality of the SRM for the
symmetric pure state signal (including PSK coherent state
signal) was proved by Belavkin [6] and by Ban et al. [8],
independently.

The Gram matrix of QPSK is given as follows [21].

G =

⎡
⎢⎢⎣

1 Zc + iZs ζ2 Zc − iZs

Zc − iZs 1 Zc + iZs ζ2

ζ2 Zc − iZs 1 Zc + iZs

Zc + iZs ζ2 Zc − iZs 1

⎤
⎥⎥⎦ ,

where ζ = exp[−|α|2], Zc = ζ cos[|α|2], and Zs =
ζ sin[|α|2]. Since this matrix is a circular matrix, its
eigenvalues and eigenvectors are respectively given as
follows.

λQPSK
1 = 1 + ζ2 − 2Zc, �λQPSK

1 =
1

2

⎡
⎢⎢⎣
−1
1
−1
1

⎤
⎥⎥⎦ ;

λQPSK
2 = 1 + ζ2 + 2Zc, �λQPSK

2 =
1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ;

λQPSK
3 = 1− ζ2 − 2Zs, �λQPSK

3 =
1

2

⎡
⎢⎢⎣

i
−1
−i
1

⎤
⎥⎥⎦ ;

λQPSK
4 = 1− ζ2 + 2Zs, �λQPSK

4 =
1

2

⎡
⎢⎢⎣
−i
−1
i
1

⎤
⎥⎥⎦ .

From these, the minimal average probability of error at
the uniform distribution of signal elements is given as
follows (See also [9]).

P̄e(QPSK) = 1− 1

16

(
4∑

i=1

√
λQPSK
i

)2

. (67)

Here let us compare the error rate performance of
QASK coherent state signal with that of QPSK. Since
QPSK coherent state signal is a symmetric pure state
signal, its SRM is identical to the Bayes-optimal detection
at the uniform distribution of signal elements and to the
minimax detection. The simulation results are shown in
Fig. 7. When the designed error probability is set to
P̄e = 10−5, QASK requires 13.2 photons, while QPSK
requires 5.4 photons. Thus, 3.9dB power budget of QPSK

is expected than QASK at P̄e = 10−5. In an ordinary
usage of the optical communications system, QPSK co-
herent state signal is clearly better than QASK. However,
QASK might have a potential than QPSK in some cases
of unusual usage of an optical communications system.
Such applications of QASK coherent state signal will be
discussed else where.
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Fig. 7. QASK v.s. QPSK


