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Abstract—Baez, Fritz, and Leinster derived a method for
characterizing Shannon entropy in classical systems. In this
method, they considered a functor from a certain category to
the monoid of non-negative real numbers with addition as a
map from measure-preserving functions to non-negative real
numbers, and derived Shannon entropy by imposing several
simple conditions. We propose a method for characterizing
von Neumann entropy by extending their results to quantum
systems.

I. Introduction

Von Neumann entropy is a key concept in quantum

information theory, which quantifies the ambiguity in

quantum states. Also, Shannon entropy, an important

concept in classical information theory, can be regarded

as von Neumann entropy in classical states. Baez, Fritz,

and Leinster derived Shannon entropy as a quantity that

characterizes measure-preserving functions from classical

systems to classical systems [1]. Specifically, they showed

that if a map from such measure-preserving functions

with probability measures to non-negative real numbers

is regarded as a functor in category theory and satis-

fies certain properties, it is expressed as the difference

of Shannon entropy. In this paper, we try to derive

von Neumann entropy (or Segal entropy) by extending

their result to quantum systems. Parzygnat has recently

extended their result [2]. The main difference of our

method compared to the one of Ref. [2] is the use of

conditions that are considered weaker. In Refs. [1] and

[2], the discussion was limited to measure-preserving

functions (or their extensions to quantum systems, uni-

tal *-homomorphisms), but in this paper, we consider

quantities characterizing any quantum channel. Although

not mentioned in this paper, many different approaches

are known for characterizing Shannon entropy and von

Neumann entropy (e.g., [3]–[6]).

II. Previous research

A. Preliminaries

Let N, R, and C denote the sets of natural numbers,

real numbers, and complex numbers, respectively. Also,

let [0, 1] be the set of real numbers between 0 and 1

inclusive.

In this paper, we refer to a finite-dimensional quantum

system with decoherence as a quantum system, or simply

a system. Any system A can be represented in the

following form:

A =
k⊕

i=1

Ai, Ai � Mni , (1)

where Mn is the set of complex square matrices of order

n and ni is a natural number determined by the subsystem

Ai. The set of states (i.e., density operators) of a system

A, which is always convex, is denoted by StA, and the

set of channels (i.e., trace-preserving completely positive

maps) from a system A to a system B is denoted by

Chn(A, B). A state is called pure if it is an extreme point

of the convex set StA.

Example 1: In the case of k = 1, we have A � Mn1
. StA

is isomorphic to the set of density matrices of order n1.

Example 2: When n1 = · · · = nk = 1, we call a system

A a classical system and its states classical states. We

often represent a classical system A as CX , where X is

a finite set with |X| = k elements. A classical system CX

satisfies CX �
⊕|X|

i=1
M1 � C|X|. StCX is isomorphic to the

set of diagonal density matrices of order |X|, which is also

isomorphic to the set of |X|-dimensional non-negative row

vectors whose sum of components are 1. For example, we

have

StC2 �
{[

p1 0

0 p2

] ∣∣∣∣∣∣ p1, p2 ≥ 0, p1 + p2 = 1

}

�
{[

p1

p2

] ∣∣∣∣∣∣ p1, p2 ≥ 0, p1 + p2 = 1

}
.

Each state can also be represented as a collection {px}x∈X
of non-negative real numbers satisfying

∑
x∈X px = 1,

which can be regarded as a probability distribution. In

particular, when |X| = k = 1, we often simply write

C, by abuse of notation. Without loss of generality, we

may assume StC = {1}. There are |X| pure states in

the classical system CX , which we will denote by φX
x

(x ∈ X). For example, when |X| = 2, there are two pure

states represented by [1, 0]T and [0, 1]T, where T denotes

transposition. The state p of the classical system CX can

be expressed in the form

p =
∑
x∈X

pxφ
X
x , px ≥ 0 (∀x ∈ X),

∑
x∈X

px = 1.
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A channel f from a system A to a system B is called

pure-to-pure1 if it maps any pure state to a pure state.

For each system A, the map

StA � ω �→ Trω = 1 ∈ StC

is the unique channel from A to C. This channel, denoted

by TrA, is pure-to-pure.

Let FinProb be the following category:

• Its each object is a pair (CX , p) of a classical system

C
X and its state p ∈ StCX .

• Its each morphism from an object (CX , p) to an

object (CY , q) is a pure-to-pure channel f from CX

to CY such that q = f ◦p. To indicate that the domain

of this morphism is (CX , p), we write fp instead of

f .

• The composite of its morphisms is the composite of

channels as maps, and its each identity morphism is

the identity channel.

Also, let BR be the following category:

• It has a single object.

• Its each morphism is a real number.

• The composite of morphisms is the sum of real

numbers, and its identity morphism is 0.

Let BR+ be the subcategory of BR restricted to non-

negative numbers as morphisms.

For any two classical systems CX and CY , the classical

system CX	Y (where 	 denotes disjoint union) can be

considered as their direct sum. The state r of CX	Y can

be expressed in the form

r = λp ⊕ (1 − λ)q �
∑
x∈X
λpxφ

X	Y
x +

∑
y∈Y

(1 − λ)qyφ
X	Y
y

using some p ∈ StCX , q ∈ StCY , and λ ∈ [0, 1]. The set

of pure states of CX	Y is {φX	Y
x }x∈X 	 {φX	Y

y }y∈Y . For any

two channels f ∈ Chn(CX ,CX′ ) and g ∈ Chn(CY ,CY ′ )2,

the channel defined by the map

StCX	Y � λp ⊕ (1 − λ)q
�→ λ( f ◦ p) ⊕ (1 − λ)(g ◦ q) ∈ StCX′	Y′

is denoted by f ⊕ g ∈ Chn(CX	Y ,CX′	Y ′ ). If f and g are

pure-to-pure, then so is f ⊕ g.

A functor H from FinProb to BR is said to be con-

tinuous if, for any two classical systems CX and CY and

any sequence N � n �→ f (n)

p(n) : (CX , p(n))→ (CY , f (n) ◦ p(n))

converging to a morphism fp : (CX , p)→ (CY , f ◦ p), the

sequence N � n �→ H( f (n)

p(n) ) converges to the morphism

H( fp). Note that we can consider the convergence of a

sequence of pure-to-pure channels; indeed, any pure-to-

pure channel from CX to CY belongs to the normed vector

space CX×Y , which has a metric d( f , g) � ‖ f − g‖ (where

f , g ∈ CX×Y ).

1In Ref. [1], a pure-to-pure channel is called a measurement-
preserving function.

2When we say “for any f ∈ Chn(CX ,CX′ )”, unless otherwise stated,
we assume that CX and CX′ are also arbitrary.

B. Baez, Fritz, and Leinster’s theorem
Baez, Fritz, and Leinster proved the following theorem

[1] (expressed in the above notation):

Theorem 1 (Baez, Fritz, and Leinster (BFL) [1]): As-

sume that a functor HBFL from FinProb to BR+ satisfies

the following conditions:

1) Continuity: HBFL is continuous.

2) Convex linearity: For any two pure-to-pure chan-

nels f ∈ Chn(CX ,CX′ ) and g ∈ Chn(CY ,CY ′ )

and any p ∈ StCX , q ∈ StCY , and λ ∈ [0, 1],

HBFL(( f ⊕g)λp⊕(1−λ)q) = λHBFL( fp)+ (1−λ)HBFL(gq)

holds.

Then, there exists a non-negative real number c such that

HBFL( fp) = c(SSh(p) − SSh( f ◦ p)), (2)

where fp is any morphism from (CX , p) to (CY , f ◦ p) in

FinProb, and SSh(p) is the Shannon entropy of p, i.e.,

SSh(p) � −∑x∈X px log px, where we set for convenience

0 log 0 = 0.

C. Parzygnat’s theorem
Parzygnat showed that Segal entropy (or von Neumann

entropy) can be derived by extending BFL’s theorem

(Theorem 1) to quantum systems [2]. We introduce

Parzygnat’s results after some preparation. Note that since

it is difficult to concisely state Parzygnat’s theorem in a

self-contained manner, this paper omits explanations of

some terms (for details, see [2] and the references cited

therein).
When a system A is expressed in the form of Eq. (1),

its state ω can be expressed in the form ω =
∑k

i=1 piωi

(ωi ∈ StAi ). When expressed in this way, the Segal

entropy, SSe(ω), of ω is defined by

SSe(ω) � SSe(p) +

k∑
i=1

piSvN(ωi)

= −
k∑

i=1

Tr(piωi log(piωi)),

where SvN is von Neumann entropy, i.e., SvN(ρ) �
−Tr(ρ log ρ). The Segal entropy SSe(ω) is equal to the

von Neumann entropy SvN(ω̃) when the state ω ∈ StA is

represented as a density matrix ω̃ of order n =
∑k

i=1 ni.

Therefore, it can be said that there is no substantial

difference between Segal entropy and von Neumann

entropy for finite-dimensional systems (while a noticeable

difference arises for infinite-dimensional systems). Also,

for any state p ∈ StCX of a classical system, we have

SSe(p) = SSh(p).
A finite-dimensional C∗-algebra A can be expressed in

the form of Eq. (1) [7]. We denote a state of such a C∗-
algebra A by adding a symbol ∗ such as ω∗. Each state

ω∗ of A can be expressed as a map

ω∗ : A � Q �→ Tr(ωQ) ∈ C

2



using a density operator ω ∈ StA. For each state ω∗, we

write ω for the density operator satisfying this equation.

Note that when referring to a state of a C∗-algebra A, it

means a map from A to C, not an element of StA.

Let NCFinProb be the following category:

• Its each object is a pair (A, ω∗) of a C∗-algebra A
and its state ω∗.

• Its each morphism from an object (A, ω∗) to

an object (B, ξ∗) is a state-preserving unital *-

homomorphism f from B to A such that ξ∗ = ω∗ ◦ f .

To indicate that the domain of this morphism is

(A, ω∗), we write fω∗ instead of f .

• The composite of its morphisms is the composite of

maps, and its each identity morphism is the identity

map.

Parzygnat proved the following theorem:

Theorem 2 (Parzygnat [2]): Assume that a functor H
from NCFinProb to BR satisfies the following conditions:

1) H is continuous.

2) H(!A
ω∗ ) ≥ 0 holds for any state ω∗ of a C∗-algebra A,

with equality for a pure state, where !A is the unique

unital *-homomorphism from C to A.

3) H is a fibred functor from the fibration

NCFinProb→ fdC∗-Alg to the fibration BR→ 1.

4) H is orthogonally affine.

Then, there exists a non-negative real number c such that

H( fω∗ ) = c(SSe(ω) − SSe(ξ))

holds, where fω∗ is any morphism from (A, ω∗) to (B, ξ∗ �
ω∗ ◦ f ) in NCFinProb.

In this theorem, Condition 3) defines a functor H as a

(Grothendieck) fibration. This condition seems to make

the relationship that should hold between the fibrations

NCFinProb → fdC∗-Alg and BR → 1 more explicit.

Condition 1) of this theorem and Condition 1) of BFL’s

theorem (i.e., Theorem 1) are essentially the same3. Fur-

thermore, Condition 2) is closely related to the condition

of BFL’s theorem that HBFL is a functor from FinProb to

BR+, and Condition 4) is closely related to Condition 2)

of BFL’s theorem.

In a categorical sense, the four conditions of Theorem 2

seem to be elegant, but they may seem somewhat too

strong intuitively. In what follows, we try to derive Segal

entropy (or von Neumann entropy) from different condi-

tions, which seem intuitively weaker than the conditions

of Theorem 2.

III. Main theorem

Let FinState be the following category:

3By considering the inclusion functor I : FinProbop → NCFinProb
from the opposite category FinProbop of FinProb as a subcategory of
NCFinProb, we can regard the functor HBFL in BFL’s theorem as the
composite functor HI : FinProbop → BR.

• Its each object is a pair (A, ω) of a system A and its

state ω ∈ StA.

• Its each morphism from an object (A, ω) to an object

(B, ξ) is a channel f from A to B such that ξ =
f ◦ω. To indicate that the domain of this morphism

is (A, ω), we write fω instead of f .

• The composite of its morphisms is the composite of

channels as maps, and its each identity morphism is

the identity channel.

Note that the morphisms of FinState are not limited

to pure-to-pure channels (or unital *-homomorphisms).

FinProb is a subcategory of FinState. For any two chan-

nels f ∈ Chn(A, B) and g ∈ Chn(B,C) and any ω ∈ StA,

the composite of morphisms fω : (A, ω)→ (B, f ◦ω) and

g f◦ω : (B, f ◦ ω)→ (C, g ◦ f ◦ ω) is

g f◦ω ◦ fω = (g ◦ f )ω : (A, ω)→ (C, g ◦ f ◦ ω). (3)

A channel f from a system A to a system B is called

left-invertible (or split mono) if there exists a channel g
from B to A such that g ◦ f is the identity channel.

As in the case of classical systems, for any two systems

A and B, their direct sum A⊕ B can be considered. Each

state σ of A ⊕ B can be expressed in the form

σ = λω ⊕ (1 − λ)ξ
using some ω ∈ StA, ξ ∈ StB, and λ ∈ [0, 1]. The states

ω⊕ 0 and 0⊕ ξ with zero operators 0 are orthogonal. For

any two channels f ∈ Chn(A, A′) and g ∈ Chn(B, B′), we

write the channel defined by the map

StA⊕B � λω ⊕ (1 − λ)ξ
�→ λ( f ◦ ω) ⊕ (1 − λ)(g ◦ ξ) ∈ StA′⊕B′

as f ⊕g ∈ Chn(A⊕B, A′ ⊕B′). If f and g are pure-to-pure,

then so is f ⊕ g.

A functor H from FinState to BR is said to be

continuous if, for any two systems A and B and any

sequence N � n �→ f (n)

ω(n) : (A, ω(n)) → (B, f (n) ◦ ω(n))

converging to fω : (A, ω) → (B, f ◦ ω), the sequence

N � n �→ H( f (n)

ω(n) ) converges to H( fω).

For a given functor H from FinState to BR, let

S (ω) � H(TrA
ω), (4)

where TrA
ω : (A, ω) → (C,Trω = 1) is the morphism

corresponding to the unique channel TrA from A to C.

In this paper, we claim that the following theorem holds

as an extension of BFL’s theorem to quantum systems:

Theorem 3 (main): Assume that a functor H from

FinState to BR satisfies the following conditions:

1) Continuity: H is continuous.

2) Convex linearity: For any two pure-to-pure chan-

nels f ∈ Chn(A, A′) and g ∈ Chn(B, B′) and any

ω ∈ StA, ξ ∈ StB, and λ ∈ [0, 1], H(( f ⊕g)λω⊕(1−λ)ξ) =
λH( fω) + (1 − λ)H(gξ) holds.

3) Positivity for pure-to-pure channels: H( fω) ≥ 0

3



holds for any pure-to-pure channel f ∈ Chn(A, B)

and any ω ∈ StA (in which case, fω is a morphism

from (A, ω) to (B, f ◦ ω)), with equality for a left-

invertible channel f .

Then, there exists a non-negative real number c such that

H( fω) = c(SSe(ω) − SSe( f ◦ ω)), (5)

where fω is any morphism from (A, ω) to (B, f ◦ ω) in

FinState.

Note that Conditions 2) and 3) can be weakened as

follows:

2’) Convex linearity: For any two pure-to-pure chan-

nels f ∈ Chn(CX ,CX′ ) and g ∈ Chn(CY ,CY ′ ) from

classical systems to classical systems and any p ∈
StCX , q ∈ StCY , and λ ∈ [0, 1], H(( f ⊕ g)λp⊕(1−λ)q) =

λH( fp) + (1 − λ)H(gq) holds.

3’) Positivity for pure-to-pure channels: H( fp) ≥ 0

holds for any pure-to-pure channel f ∈ Chn(CX , B)

from a classical system CX and any p ∈ StCX (in

which case, fp is a morphism from (CX , p) to (B, f ◦
p)), with equality for a left-invertible channel f .

We discuss the relationship between this theorem and

BFL’s theorem (Theorem 1). Let I be the inclusion func-

tor from subcategory FinProb of FinState to FinState;

then, we can say that the functor HBFL in BFL’s theorem

is the composite HI : FinProb → BR. In this case, from

Conditions 1) and 2’) of the main theorem, Conditions 1)

and 2) of BFL’s theorem can be obtained. Conditions 1)

and 2’) rephrase the corresponding conditions of BFL’s

theorem in the terms of the functor H instead of HBFL =

HI. Also, Condition 3’) of the main theorem corresponds

to the condition in BFL’s theorem that HBFL is a func-

tor from FinProb to BR+, and the former condition is

stronger than the latter. In fact, from Condition 3’) of

the main theorem, it is clear that HBFL = HI maps any

morphism of FinProb to a non-negative real number, so

HBFL can be regarded as a functor from FinProb to BR+.

Roughly speaking, the main theorem can be said to claim

that Segal entropy can be derived by adding Condition 3’)

to BFL’s theorem.

Let us supplement on Condition 3) (or Condition 3’))

of the main theorem. A pure-to-pure channel f maps pure

states to pure states. Furthermore, it is easily seen that if

f is also left-invertible, then it maps mutually orthogonal

pure states to mutually orthogonal pure states. The latter

half of Condition 3) claims that for such fω, the value

of H is zero. As shown immediately below (see Eq. (6)),

since H is a functor, we have H( fω) = S (ω) − S ( f ◦ ω).

Here, if we regard S (ω) as the ambiguity possessed by the

state ω, then H( fω) is the value obtained by subtracting

the ambiguity possessed by the state f ◦ ω from the

ambiguity possessed by the state ω, i.e., it can be said to

be a value representing how much ambiguity is reduced

by the channel f . If ambiguity increases, then H( fω) < 0

holds. Condition 3) claims that any pure-to-pure channel

does not increase such ambiguity, and that f preserves

ambiguity if it is also left-invertible. Equation (5) means

that S (ω) is expressed in the form of cSSe(ω).

IV. Proof of the main theorem

We will now prove the main theorem. Instead of

Conditions 2) and 3), we will use Conditions 2’) and

3’). In the proof, we will use BFL’s theorem [1]. Note

that BFL’s theorem is based on the result of Ref. [8].

Since any channel f ∈ Chn(A, B) satisfies TrB ◦ f =
TrA, we have that for any ω ∈ StA,

H(TrB
f◦ω) + H( fω) = H(TrB

f◦ω ◦ fω) = H(TrA
ω),

where the first equality follows from the functoriality

of H, and the second equality follows from the fact

that TrB
f◦ω ◦ fω = TrA

ω, which is obtained from Eq. (3).

Therefore, from Eq. (4), we have

H( fω) = S (ω) − S ( f ◦ ω). (6)

Let HBFL � HI, where I : FinProb → FinState is

the inclusion functor. Then, as already mentioned, from

Conditions 1) and 2’) of Theorem 3, Conditions 1) and 2)

of BFL’s theorem are obtained. Also, from condition 3’)

of Theorem 3, it is understood that HBFL is a functor

from FinProb to BR+. Therefore, from BFL’s theorem,

we obtain Eq. (2). That is, there exists a non-negative

real number c such that, for any pure-to-pure channel

f ∈ Chn(CX ,CY ) and p ∈ StCX ,

H( fp) = c(SSh(p) − SSh( f ◦ p))

holds. In particular, considering the case of f = TrC
X
, we

obtain

S (p) = cSSh(p), ∀p ∈ StCX , (7)

where we use S (p) = H(TrC
X

p ) and SSh(TrC
X ◦p) =

SSh(1) = 0.

Let us arbitrarily choose a system A and its state ω ∈
StA and express A in the form of Eq. (1). Then, there

exists a set of orthogonal pure states {ψi ∈ StA}ni=1
with

n �
∑k

i=1 ni such that ω is represented by

ω =

n∑
i=1

γiψi, γi ≥ 0,

n∑
i=1

γi = 1. (8)

In this case, we have

SSe(ω) = −
n∑

i=1

γi log γi. (9)

Consider the channel

f : StCZ � p �→
n∑

i=1

Tr(φZ
i p) · ψi ∈ StA

4



from the classical system CZ with Z � {1, 2, . . . , n} to A.

Since f maps each pure state φZ
i (i ∈ {1, . . . , n}) of CZ to

ψi, it is pure-to-pure. Also, consider the channel

g : StA � ω �→
n∑

i=1

Tr(ψiω) · φZ
i ∈ StCZ

from A to CZ . Then, it can be seen that g ◦ f is the

identity channel on CZ . Therefore, f is left-invertible. For

ω expressed by Eq. (8), let γ � g ◦ω = ∑n
i=1 γiφ

Z
i . Since

f ◦ γ = ω, we obtain

H( fγ) = S (γ) − S (ω) = cSSh(γ) − S (ω),

where the first and second equalities follow from Eqs. (6)

and (7), respectively. On the other hand, since H( fγ) = 0

holds from Condition 3’), we have

S (ω) = cSSh(γ) = −c
n∑

i=1

γi log γi = cSSe(ω),

where the last equality follows from Eq. (9). Substituting

this into Eq. (6), we obtain Eq. (5), which completes the

proof of the main theorem.

V. Conclusion

We have proposed a method to extend BFL’s theorem

to quantum systems and characterize Segal entropy (or

von Neumann entropy). Specifically, we showed that if a

functor from FinState to BR satisfies certain properties, it

can be expressed as a constant multiple of the difference

in Segal entropy.

Acknowledgment

I am grateful to O. Hirota, M. Sohma, and K. Kato for

support. This work was supported by the Air Force Office

of Scientific Research under award number FA2386-22-

1-4056.

References

[1] J. C. Baez, T. Fritz, and T. Leinster, “A characterization of entropy
in terms of information loss,” Entropy, vol. 13, no. 11, pp. 1945–
1957, 2011.

[2] A. J. Parzygnat, “A functorial characterization of von neumann
entropy,” arXiv preprint arXiv:2009.07125, 2020.

[3] W. Ochs, “A new axiomatic characterization of the von neumann
entropy,” Rep. Math. Phys., vol. 8, no. 1, pp. 109–120, 1975.

[4] A. Wehrl, “General properties of entropy,” Rev. Mod. Phys., vol. 50,
no. 2, 221, 1978.

[5] P. Baudot and D. Bennequin, “The homological nature of entropy,”
Entropy, vol. 17, no. 5, pp. 3253–3318, 2015.

[6] C.-M. Constantin and A. Doering, “A topos theoretic notion of
entropy,” arXiv preprint arXiv:2006.03139, 2020.

[7] R. Doran, Characterizations of C* algebras: the Gelfand-Naimark
theorems. CRC press, 2018.

[8] D. K. Faddeev, “On the concept of entropy of a finite probabilistic
scheme,” Uspekhi Mat. Nauk, vol. 11, no. 1, pp. 227–231, 1956.
The English translation by Arina Zinovyeva can be obtained at
https://arrowtheory.com/pub/notes/025-faddeev-entropy.html.

5


	1-5
	10_2023_1-5

