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Abstract—Based on a turbulence model described in
the literature by Semenov and Vogel [1], we analyzed
the classical capacity of turbulent channels for quantum
communication systems with M -ary phase shift keying
(PSK) coherent state signal and computed the classical
capacity of the turbulent channel for M = 2, 4, 8 and 16.

I. INTRODUCTION

Quantum communication theory is one of the funda-

mental theories of quantum information science and plays

an essential role in exploring the future possibilities of

optical communication systems. If we trace the origin of

quantum communication theory to the pioneering work

on quantum detection theory by Helstrom, Holevo, Yuen,

and others beginning in the late 1960s ([2], [3]), one of

the topics that remain unresolved, even though discus-

sions began in the early days of quantum communication

theory, is the application of quantum communication the-

ory to free-space optical (FSO) communication applica-

tions. In particular, the performance analysis of quantum

communication systems using turbulent communication

channels and the discussion toward its realization are very

challenging issues.

In this article, we explore this challenge using a simple

turbulence model described in Ref. [1]. We focus on how

well quantum communication systems works in a turbu-

lent atmosphere using an M -ary PSK signal format. The

purpose of this study is to seek the possibility of quantum

communication systems in a turbulent atmosphere. As the

first step, we will use the classical information capacity

for quantum communication systems established in the

Holevo-Schumacher-Westmoreland theorem to evaluate

the performance.

II. TURBULENT CHANNELS

This article concerns the classical capacity of turbulent

channels used in a M -ary PSK signal format with coher-

ent state light. To begin with, we summarize a turbulence

model presented in Ref. [1] in this section.

Let us denote the transmission coefficient for optical

signals in a turbulent atmosphere by T and the corre-

sponding transmittance by η = |T |2 (0 < η ≤ 1). The

transmission coefficient T can be expressed in the form

T = t exp(jϕ) = t cosϕ+ j t sinϕ,

where t = |T | (0 < t ≤ 1), ϕ = arg T (−π < ϕ ≤ π),

and j =
√−1.

Let us denote the P -function of a quantum state

corresponding to channel input light by Pin(α). Suppose

the communication channel only acts as an attenuation

process with a fixed transmission coefficient T . Then,

the P -function of the output state is expressed as follows

[1]:

PT (α) =
1

|T |2Pin

(α

T

)
.

The P -function of the coherent state |β0〉coh of com-

plex amplitude β0 is P(α) = δ(α − β0) [4]. When

coherent light |β0〉coh is passing through the attenuation

channel with a fixed transmission coefficient T , the

quantum state of the output light is given by

ρ̂T =

∫
PT (α)|α〉coh〈α| d2α

∣∣∣∣
Pin(α)=δ(α−β0)

= |Tβ0〉coh〈Tβ0|. (1)

Namely, the input coherent state |β0〉coh changes to a

coherent state |Tβ0〉coh after passing through a stable

attenuation channel.

In the case of a turbulent atmosphere, the transmission

coefficient T varies stochastically. To describe such a

probabilistic nature of a turbulent atmosphere, one can

use a probability distribution P(T ) of T , which is called

the probability distribution of transmission coefficient

(PDTC) [1]. Then, the P -function of the quantum state

after passing through a turbulent chanel that is character-

ized by P(T ) is given by

Pout(α) =

∫
|T |2≤1

P(T )PT (α)d
2T

=

∫
|T |2≤1

P(T ) 1

|T |2Pin

(α

T

)
d2T,

where d2T ≡ dtdϕ.

Based on the formula above, the output state for the

coherent state input |β0〉coh is expressed as

ρ̂out(β0) =

∫
Pout(α)|α〉coh〈α|d2α

∣∣∣∣
Pin(α)=δ(α−β0)

=

∫
|T |2≤1

P(T )|Tβ0〉coh〈Tβ0|d2T, (2)
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which is the statistical mixture of coherent states

|Tβ0〉coh with a PDTC P(T ).
Suppose a situation where a turbulent atmosphere con-

sists of many small eddies. Let Tk be a random variable

associated with the transmission coefficient of a small

eddy. Then, the total effect is obtained by T =
∏

k Tk.

Letting Tk = tk exp(jϕk) = exp(ln tk) exp(jϕk), the

overall transmission coefficient is given by

T = exp

(∑
k

ln tk

)
exp

(
j
∑
k

ϕk

)
.

By applying the central limit theorem to random variables

ln t and ϕ with the assumption that these random vari-

ables are correlated with a correlation coefficient s, one

can obtain a probability density function f(ln t, ϕ) such

that t is lognormal (that is, ln t is normally distributed)

and ϕ is normal. By changing the random variable ln t
to t in f(ln t, ϕ), we obtaine [1]

P(t, ϕ) ≈ 1

2πtσθσϕ

√
1− s2

× exp
(
− 1

2(1− s2)

×
[( ln t+ θ̄

σθ

)2

+

(
ϕ

σϕ

)2

+2s

(
ln t+ θ̄

σθ

)(
ϕ

σϕ

)])
, (3)

where θ̄ and σθ are the expectation and the standard

deviation of the random variable − ln t, respectively, and

σϕ is the standard deviation of the random variable ϕ,

and where the expectation of the random variable ϕ is

assumed to be zero, and σθ � θ̄, σϕ � π. A concrete

example of P(t, ϕ) is shown in Fig. 1.

Fig. 1. (Example) P(t, ϕ) vs. t-ϕ．θ̄ = 0.8, σθ = 0.2, and σϕ = 0.3,
s = 0.0.

The above derivation process of PDTCs allows t and

ϕ to exceed their normal ranges. That is, the integral

of the right-hand side of Eq. (3) over the ranges (0, 1]
for t and (−π, π] for ϕ may not be one. Therefore,

when Eq.(3) is used in actual computer calculations,

appropriate normalization is performed in advance. In

addition, the discretization of P(t, ϕ) is also performed

for computation. A concrete procedure of normalization

and discretization has been presented in Ref. [5].

III. CLASSICAL CAPACITY OF TURBULENT

CHANNELS

According to the Holevo-Schumacher-Westmoreland

theorem [6], [7], [8], the capacity of a discrete classical-

quantum channel m 	→ ρ̂′m with the input alphabet

A = {1, 2, . . . ,M} and the output alphabet B =
{ρ̂′1, ρ̂′2, . . . , ρ̂′M : ρ̂′m ≥ 0, trρ̂′m = 1} is given by

C = max
ξ

[
H(

M∑
m=1

ξmρ̂′m)−
M∑

m=1

ξmH(ρ̂′m)
]
, (4)

where H(ρ̂′) = −trρ̂′ log2 ρ̂′ is the von Neumann entropy

of ρ̂′ and ξ = (ξ1, ξ2, . . . , ξM ) is a distribution of the

letters (ξm ≥ 0,
∑

m ξm = 1) .

M -PSK

&

encoding
decoding

eddies
quantum

PDTC P(t, ϕ)

message

classical

classical

message

(turbulent atmosphere)

Fig. 2. Communication Model

Suppose turbulent channels are used in the M -ary PSK

signal format (Fig. 2). The signal set of M -ary PSK

coherent state signal is given by

S =
{
ρ̂m = |αm〉coh〈αm| : m = 1, 2, . . . ,M

}
,

(5)

where the mth complex amplitude of the coherent state

signal is defined as

αm = α exp[j
2π

M
(m− 1)], α > 0. (6)

Each PSK coherent state signal ρ̂m is transmitted

via a turbulent channel with P(T ). The output state

is ρ̂′m = ρ̂out(αm). Since the PSK signals in S are

symmetric, in the sense of ρ̂m = Û†m−1ρ̂1Û
m−1 by a

unitary operator Û , and the PDTC P(T ) is independent

of any signal parameters of S , the received signal states

ρ̂′m are also symmetric. Applying the result in [9] to

these symmetric signal states, the uniform distribution,

ξ = (1/M, 1/M, . . . , 1/M), is optimal for achieving the

classical capacity. Therefore, the classical capacity of the

turbulent channel m 	→ ρ̂′m is given by

C = H(ρ̂′)−H(ρ̂′1), (7)
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where

ρ̂′ =
1

M

M∑
m=1

ρ̂′m. (8)

Here let us consider a non-turbulent case for reference.

Suppose the communication channel only acts as an

attenuation process from |β0〉coh to |Tβ0〉coh with a

stable T . Then, the classical capacity of the channel

m 	→ |Tβ0〉coh is given by [9]

C = −
M∑
k=1

λ′k log2 λ
′
k, (9)

where

λ′k =
1

M

M∑
�=1

A′(1,�) cos
[
Θ ′(1,�) −

2π

M
k(�− 1)

]
; (10)

A′(k,�) = exp
[
−2|Tα|2 sin2

[ π

M
(�− k)

]]
; (11)

Θ ′(k,�) = |Tα|2 sin
[2π
M

(�− k)
]
. (12)

To investigate the performance of quantum communi-

cation systems using the PSK signal format, we calculated

the channel capacity and displayed the results in figures

3 to 12. Figs. 3 and 4 represent the cases when M = 2,

Figs. 5 and 6 for M = 4, Figs. 7 and 8 for M = 8, Figs.

9 and 10 for M = 16, and Figs. 11 and 12 combine all

the cases.

In each figure, we used several parameters, such as

θ̄ (the expectation value of − ln t), σθ (the standard

deviation of − ln t: a measure of channel classical noise

in amplitude direction), and σϕ (the standard deviation of

ϕ;a measure of channel classical noise in phase direction).

For reference, we included a non-turbulent case calculated

from Eq.(7) with the condition T = t exp[j·0] = t (shown

as black dotted lines). In the small grids of each figure,

the top-left represents the least noisy cases, while the

bottom-right shows the most noisy ones. The vertical axis

shows the classical capacity in bits per transmitted signal,

and the horizontal axis represents the average number of

received signal photons (n̄rx = trρ̂′n̂, where n̂ is the

number operator).

For M = 2 and 4, the maximum capacities (C = 1
or 2) can be achieved by increasing the signal power in

our setup, as shown in Figs. 3 to 6 and parts of Figs.

11 and 12. However, for M = 8 and 16, we observed

cases where the maximum capacity (C = 3 or 4) could

not be achieved, especially when σϕ (phase noise) was

0.2 and 0.3. This phenomenon may be explained by the

phase fluctuation margins between signals in 8-PSK and

16-PSK signal formats. Roughly speaking, these margins

are (2π/8)/2 ∼ 0.4 for M = 8 and (2π/16)/2 ∼ 0.2
for M = 16. Compared to these margins, σϕ = 0.2
and 0.3 represent significant phase fluctuations, leading

to nonachievability to the maximum capacities in those

cases.

As menthioned above, we observed the degradation

effect for communication performance due to classical

noise in a turbulent atmosphere for M = 8 and 16. What

is the critical amount of classical noise for each PSK

signal format? The determination of the critical amount

of classical noise for each PSK signal format is a subject

for future research.

In our computation, we used θ̄ = 0.8, 1.0, 1.2, σθ =
0.1, 0.2, 0.3, σϕ = 0.1, 0.2, 0.3, and s = 0.0. It is unclear

whether the values used in this study are realistic and

appropriate. Therefore, cooperation with experimental

researchers is essential to find a realistic and reasonable

setting.

IV. SUMMARY

The classical capacity of turbulent channels using

coherent state signals in the phase shift keying (PSK)

format was investigated. Based on the turbulence model

of Ref. [1], the classical capacity for M -ary PSK coherent

state signal in a turbulent atmosphere was analyzed and

computed for M = 2, 4, 8, and 16. We observed the

degradation effect for communication performance due

to classical noise in a turbulent atmosphere for M = 8
and 16. We pointed out that determining the critical

amount of classical noise, which significantly degrades

communication performance, and the consistency of the

modeling parameters with real-world situations remains

for future study. These will be discussed elsewhere.
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Fig. 3. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σϕ at M = 2 (Case A, M = 2). Left column:
σϕ = 0.1; Center column: σϕ = 0.2; Right column: σϕ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σθ = 0.1;
Orange: σθ = 0.2; Red: σθ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 4. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σθ at M = 2 (Case B, M = 2). Left column: σθ = 0.1;
Center column: σθ = 0.2; Right column: σθ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σϕ = 0.1; Orange:
σϕ = 0.2; Red: σϕ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 5. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σϕ at M = 4 (Case A, M = 4). Left column:
σϕ = 0.1; Center column: σϕ = 0.2; Right column: σϕ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σθ = 0.1;
Orange: σθ = 0.2; Red: σθ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 6. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σθ at M = 4 (Case B, M = 4). Left column: σθ = 0.1;
Center column: σθ = 0.2; Right column: σθ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σϕ = 0.1; Orange:
σϕ = 0.2; Red: σϕ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 7. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σϕ at M = 8 (Case A, M = 8). Left column:
σϕ = 0.1; Center column: σϕ = 0.2; Right column: σϕ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σθ = 0.1;
Orange: σθ = 0.2; Red: σθ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 8. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σθ at M = 8 (Case B, M = 8). Left column: σθ = 0.1;
Center column: σθ = 0.2; Right column: σθ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σϕ = 0.1; Orange:
σϕ = 0.2; Red: σϕ = 0.3; Black dotted: non-turbulent (reference).

32



0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
( b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

0.5 1 5 10 50

1

2

3

4

Avg. Num. Rcv. Photons

C
a
p
a
c
it
y
(b
it
s
)

Fig. 9. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σϕ at M = 16 (Case A, M = 16). Left column:
σϕ = 0.1; Center column: σϕ = 0.2; Right column: σϕ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σθ = 0.1;
Orange: σθ = 0.2; Red: σθ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 10. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σθ at M = 16 (Case B, M = 16). Left column:
σθ = 0.1; Center column: σθ = 0.2; Right column: σθ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σϕ = 0.1;
Orange: σϕ = 0.2; Red: σϕ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 11. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σϕ (Case A, M = 2, 4, 8, 16). Left column: σϕ = 0.1;
Center column: σϕ = 0.2; Right column: σϕ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σθ = 0.1; Orange:
σθ = 0.2; Red: σθ = 0.3; Black dotted: non-turbulent (reference).
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Fig. 12. Classical Capacity C vs. Average Number of Received Signal Photons n̄rx for Fixed σθ (Case B, M = 2, 4, 8, 16). Left column: σθ = 0.1;
Center column: σθ = 0.2; Right column: σθ = 0.3. Top row: θ̄ = 0.8; Middle row: θ̄ = 1.0; Bottom row: θ̄ = 1.2. Blue: σϕ = 0.1; Orange:
σϕ = 0.2; Red: σϕ = 0.3; Black dotted: non-turbulent (reference).
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