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Abstract—The optimal distributions on a channel input
that yield the random coding exponent, the expurgation
exponent, and the zero-rate reliability function for a discrete
classical-quantum channel with M -ary Phase Shift Keying
(PSK) coherent state signal are analytically derived. In
each case, the optimal distributions are given by a uniform
distribution over the channel input alphabet. As a result,
the expressions of the error exponents for M -ary PSK
coherent state signal are simplified. By using this result,
typical behavior of the error exponents is sketched in the
case of M = 16.

I. INTRODUCTION

It is well-known that an elementary proof of the chan-
nel coding theorem in conventional information theory
is given by the lower bounds of the reliability func-
tion [1]. Like in the conventional case, the reliability
function based proof of the channel coding theorem for
a discrete classical-quantum channel with pure states
was established by Burnashev and Holevo [2]. In their
paper, the random coding exponent and the expurgation
exponent for a discrete classical-quantum channel with
pure states have been formulated as the lower bounds of
the associated reliability function. Such error exponents
provide not only the simple proof of the channel coding
theorem but also useful tools for evaluating communica-
tion systems. However, the error exponents which have
been respectively formulated in Refs [1] and [2] involves
an optimization problem of a certain function with respect
to a priori distributions on the input alphabet and with
respect to another single parameter, so that computation
of the error exponents would be complicated in general.

Fundamental features of M -ary Phase Shift Keying
(PSK) coherent state signal have been widely discussed;
For example, the minimum error detection process for a
“homogeneous” set of pure states was analytically derived
by Belavkin [3]. Independently, Ban et al. clarified that
the minimum error detection process for “symmetric”
pure states is the square-root measurement. In both cases,
M -ary PSK coherent state signal becomes a good ex-
ample for their practical applications. Further, the error
performance of the square-root measurement for M -ary
PSK coherent state signal was investigated, together with
the case of quadrature amplitude modulation (QAM) sig-
nal in Ref.[5]. The closed-form expression of the channel

capacity for a discrete classical-quantum channel with M -
ary PSK coherent state signal was given in Ref.[6]. Thus
the communication system with M -ary PSK coherent
state signal is an important model in quantum com-
munication theory. However, the evaluation of quantum
communication systems with M -ary PSK coherent state
signal from the point of view of the reliability function
is still remaining except for some cases [7], [8]. To apply
the theory of the reliability function for evaluating the
quantum communication systems with M -ary coherent
state signal, computation of the error exponents is of
fundamental interest. Therefore the purpose of this paper
is to give simplified expressions of the error exponents
for M -ary coherent state signal in order to reduce com-
putation procedures. The main task is to find the optimal
distributions yielding the error exponents — the random
decoding exponent, the expurgation exponent, and the
zero-rate reliability function — for a discrete classical-
quantum channel with M -ary PSK coherent state signal.

This paper is organized as follows. In section II, we
summarize the general theory of the reliability function
for a discrete classical-quantum channel with pure state
signal, which was formulated by Burnashev and Holevo.
In section III, we investigate quantum communication
system with M -ary PSK coherent state signal. It is shown
that the optimal distributions of the error exponents for
a discrete classical-quantum channel with M -ary PSK
coherent state signal are respectively given by a uniform
distribution on the input alphabet. As a result, the ex-
pressions of the error exponents for a discrete classical-
quantum channel with M -ary PSK coherent state signal
are simplified. To illustrate the typical behavior of the er-
ror exponents we present a numerical example in section
IV. In section V, we summarize our results.

II. RELIABILITY FUNCTION FOR A DISCRETE

CLASSICAL-QUANTUM CHANNEL WITH PURE STATE

SIGNAL

Let A = {1, 2, . . . ,M} be an input alpha-
bet of a classical-quantum channel and B =
{|ψ1⟩, |ψ2⟩, · · · , |ψM ⟩} a set of state vectors in Hilbert
space H. Then, a discrete classical-quantum channel
with pure state signal is characterized by a mapping
k ∈ A �→ |ψk⟩ ∈ B. Since we use the coherent states
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Fig. 1. Communication model

of light for signaling, this channel model is applicable to
practical situation because the coherent state is the only
state that keeps its purity of quantum state after passing
a communication channel with attenuation [9] (Fig. 1).

An input for this discrete classical-quantum channel
is described by a priori probability distribution p =
(p1, p2, . . . , pM ) on the input alphabet A. According
to the channel coding theorem for a discrete classical-
quantum channel with pure state signal [2], [10] (See also
the general description [11], [12], [13], [14]), the channel
capacity for this classical-quantum channel is given by

C = max
p

[
H(

M∑
k=1

pk|ψk⟩⟨ψk|)

]
, (1)

where H(ρ̂) ≡ −Trρ̂ ln ρ̂ is the von Neumann entropy for
a density operator ρ̂. This quantity means the quantum
limit of error-free transmission rate for the classical-
quantum channel above. That is, if the transmission rate
is less than the channel capacity C, then there exists
a zero-error code for this channel. Alternatively, the
channel coding theorem for a discrete classical-quantum
channel with pure state signal can be represented with
the so-called reliability function. The reliability function
is defined by

E(R) ≡ lim sup
N→∞

[
− lnPe(N,R)

N

]
(2)

for 0 < R < C, where N is the length of a codeword,
R is the transmission rate, and Pe(N,R) is the minimum
probability of decoding error. For a discrete classical-
quantum channel with pure state signal, the minimum
probability of decoding error is written as

Pe(N,R) = inf
W,X

[
1

M ′

M ′∑
i=1

(1− ⟨W̃i|X̂i|W̃i⟩)

]
, (3)

where W is a codebook defined by

W =
{
|W̃i⟩ = |ψ(1)

i ⟩ ⊗ |ψ(2)
i ⟩ ⊗ · · · ⊗ |ψ(N)

i ⟩

: i = 1, 2, . . . ,M ′, |ψ(n)
i ⟩ ∈ B

}
, (4)

and M ′ is the size of the codebook, and where the
decoding process X is represented by a positive operator-
valued measure (POVM)

X =
{
X̂j : X̂j ≥ 0 ∀j,

∑
all j

X̂j = 1̂(N)
}
, (5)

and 1̂(N) is the identity operator on the N -th tensor of
the signal Hilbert space H⊗N . Although it is difficult to
derive the exact form of the reliability function E(R) for
all rate, the zero-rate reliability function has been given
as follows [2]: if |⟨ψk|ψl⟩| > 0 for any pair (k, l), then
the zero-rate reliability function becomes

E(+0) = −min
p

M∑
k=1

M∑
l=1

pkpl ln |⟨ψk|ψl⟩|2, (6)

and if |⟨ψk|ψl⟩| = 0 for some pair (k, l), then

E(+0) = +∞. (7)

Thus, the exact form of the reliability function E(R) for a
discrete classical-quantum channel with pure state signal
is still open except for the case of R = +0. However, the
lower bounds of the reliability function of this channel
have been well formulated for all rate. From this point,
we mention the basic results on the lower bounds [2]. By
using the random coding technique, the relation

Pe(N,R) ≤ 2 exp[−N(E0(p; s)− sR)] (8)

holds for 0 ≤ s ≤ 1, where

E0(p; s) ≡ − lnTr

[
M∑
k=1

pk|ψk⟩⟨ψk|

]1+s

. (9)
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holds for 0 ≤ s ≤ 1, where
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pk|ψk⟩⟨ψk|

]1+s
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Then the random coding exponent of a discrete classical-
quantum channel with pure state signal is defined by

Er(R) ≡ max
0≤s≤1

max
p

[
E0(p; s)− sR

]
(10)

for 0 < R < C. This function satisfies the relation
E(R) ≥ Er(R). Furthermore, by expurgating poor code-
words from the codes in an ensemble, we have

Pe(N,R) ≤ exp
[
sN(R+

ln 4

N
)
]

×

(
M∑
k=1

M∑
l=1

pkpl|⟨ψk|ψl⟩|2/s
)sN

(11)

for s ≥ 1. Then the expurgation exponent for a discrete
classical-quantum channel with pure state signal is de-
fined by

Eex(R) ≡ max
s≥1

max
p

[
Ex(p; s)− sR

]
(12)

for 0 < R ≤ Rc, and

Eex(R) ≡ 0 (13)

for Rc ≤ R < C, where

Ex(p, s) ≡ −s ln

M∑
k=1

M∑
l=1

pkpl|⟨ψk|ψl⟩|2/s, (14)

and the cutoff rate

Rc ≡ max
p

Ex(p, 1). (15)

In this case, it satisfies E(R) ≥ Eex(R+ (ln 4)/N).

III. OPTIMAL DISTRIBUTION OF THE ERROR

EXPONENTS FOR M -ARY PSK COHERENT STATE

SIGNAL

In this section we consider the case of an M -ary PSK
coherent state signal. The signal set is given by

B =
{
|ψk⟩ = |α exp[i

2π(k − 1)

M
]⟩

: k = 1, 2, . . . ,M
}
, (16)

where |α⟩ stands for a coherent state of light having
complex amplitude α. (See Fig. 2). Then each signal can
be rewritten as

|ψk⟩ = V̂ k−1|α⟩, ∀k, (17)

where the unitary operator V̂ ≡ exp[i(2π/M)â†â],
i ≡

√
−1, and â, â† are the bosonic annihilation and

creation operators, respectively. The average number of
photons per signal for M -ary PSK is given by |α|2, which
is depending not on the a priori distribution. The inner
product between two signals is given by

⟨ψk|ψl⟩ = A(k,l) exp[iΘ(k,l)], ∀(k, l), (18)

Fig. 2. Signal constellation of 16-PSK in (xc, xs)-plane (α > 0)

with

A(k,l) = exp

[
−2|α|2 sin2

[ π

M
(l − k)

]]
, (19)

Θ(k,l) = |α|2 sin
[2π
M

(l − k)
]
. (20)

Here we derive the optimal distribution yielding the
random coding exponent for the M -ary PSK coherent
state signal. First we let

ρ̂(p) ≡
M∑
k=1

pk|ψk⟩⟨ψk|. (21)

Consider an arbitrary a priori distribution p =
(p1, p2, . . . , pM ) ≡ p(1) and its permutations




p(2) = (p2, p3, . . . , p1),
p(3) = (p3, p4, . . . , p2),

...
p(M) = (pM , p1, . . . , pM−1).

(22)

Then we have ρ̂(p(k)) = V̂ k−1ρ̂(p)V̂ †k−1, k =
1, 2, . . . ,M . From this, E0(p

(k); s) = E0(p; s), k =
1, 2, . . . ,M . Since E0(p; s) is a concave function of p
for fixed s, we obtain

E0(p; s) =
1

M

M∑
k=1

E0(p
(k); s)

≤ E0(
M∑
k=1

1

M
p(k); s)

= E0(
1

M
,
1

M
, . . . ,

1

M
; s). (23)

Observe that this inequality holds for any s. Therefore
the optimal distribution of the random coding exponent
is given by a uniform distribution on the input. Now
let us consider the maximization with respect to the
parameter s. As stated in Ref.[2], the function E0(p; s)
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is nondecreasing and concave function of s in general.
Moreover, by defining

Er(p;R) ≡ max
0≤s≤1

[E0(p; s)− sR], (24)

it becomes

Er(p;R) = E0(p; 1)−R (25)

for 0 ≤ R ≤ Rcr(p), where the critical rate Rcr(p) is
defined as

Rcr(p) ≡
∂E0(p; s)

∂s

����
s=1

. (26)

Therefore, the exact expression of the random coding
exponent for the region 0 ≤ R ≤ Rcr(p) is given by

Er(R) =

(
− ln

M∑
k=1

λ2
k

)
−R, (27)

where λk, k = 1, 2, . . . ,M , are the eigenvalues of the
density operator ρ̂(1/M, 1/M, . . . , 1/M) and the corre-
sponding critical rate is given by

Rcr = −
∑M

k=1 λ
2
k lnλk∑M

k=1 λ
2
k

. (28)

Hence we have the next proposition.
Proposition 1: The optimal distribution of the random

coding exponent for M -ary PSK coherent state signal is
given by a uniform distribution over the input alphabet.
Then the random coding exponent for M -ary PSK co-
herent state signal is given by Eq.(27) for 0 < R < Rcr,
and

Er(R) = max
0≤s≤1

[(
− ln

M∑
k=1

λ1+s
k

)
− sR

]
, (29)

for Rcr ≤ R < C, where the critical rate Rcr has been
given in Eq.(28) and the channel capacity is given by

C = −
M∑
k=1

λk lnλk, (30)

and where the eigenvalues λk are given by

λk =
1

M

M∑
l=1

A(1,l) cos
[
Θ(1,l) −

2π

M
k(l − 1)

]
, (31)

where A(1,l) and Θ(1,l) have been given in Eqs.(19) and
(20), respectively. □

Second, we consider the optimal distribution yielding
the expurgation exponent. Since the function Ex(p; s) is
not a concave function of p for fixed s (APPENDIX A),
we cannot apply the optimization technique used in the
above. So, we define a new function F1(p) to find the
optimal distribution of the function Ex(p, s) in Eq.(12)
as follows:

F1(p) ≡ exp[−Ex(p; s)/s]

=
M∑
k=1

M∑
l=1

pkpl exp
[
−4|α|2

s
z̃(k,l)

]
, (32)

where we have set

z̃(k,l) ≡ sin2
[ π

M
(l − k)

]
. (33)

If the optimal distribution that minimizes F1(p) is inde-
pendent from the parameter s, then the maximization of
the function Ex(p; s) with respect to a priori distributions
will be replaced to the minimization of the function
F1(p). To see this, we examine the convexity of the
function with respect to a priori distributions by using
some useful results stated by Jelinek.

Definition (APPENDIX of Ref.[15]): Let c =
(c1, c2, · · · , cM ) be a zero-sum complex number pair
such that

∑M
k=1 ck = 0. An M × M matrix

X̃ = [x̃(k,l)] is said to be negative almost-definite if∑M
k=1

∑M
l=1 c

∗
kx̃(k,l)cl ≤ 0 for any zero-sum complex

number pair c, where ∗ stands for the complex conjugate
of a complex number.

Lemma (Lemma 1a of Ref.[15]): An M × M matrix
X̃ = [x̃(k,l)] is negative almost-definite if and only if the
matrix X = [x(k,l)] with entries

x(k,l) ≡ −x̃(k,l) +
1

M

M∑
i=1

x̃(i,l)

+
1

M

M∑
j=1

x̃(k,j) −
1

M2

M∑
i=1

M∑
j=1

x̃(i,j) (34)

is non-negative definite.
Theorem (Theorem 2a of Ref.[15]): For any positive

number δ > 0, a hermitian matrix X ′ = [exp[−δx̃(k,l)]]

is non-negative definite if and only if the matrix X̃ =
[x̃(k,l)] is negative almost-definite.

Using these results, the convexity of F1(p) is shown
as follows: First we define

∆F1
≡ tF1(p) + (1− t)F1(p

′)− F1(tp+ (1− t)p′)

= (1− t)t
M∑
k=1

M∑
l=1

qkql exp

[
−4|α|2

s
z̃(k,l)

]
, (35)

where 0 ≤ t ≤ 1 and we have defined q ≡ p − p′. Let
us examine whether ∆F1 ≥ 0 or not. From Eqs.(33) and
(34), we compute a new matrix Z ≡ [z(k,l)] with

z(k,l) ≡ −z̃(k,l) +
1

M

M∑
i=1

z̃(i,l)

+
1

M

M∑
j=1

z̃(k,j) −
1

M2

M∑
i=1

M∑
j=1

z̃(i,j)

=
1

2
cos[

2π

M
(l − k)], (36)

where we have used
∑M

i=1 z̃(i,l) =
∑M

j=1 z̃(k,j) = M/2.
Since the matrix Z is a circular matrix, the eigenvalues
of Z are given as

ηk =





M/4, if k = 1,
M/4, if k = M − 1,
0, elsewhere.

(37)
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kx̃(k,l)cl ≤ 0 for any zero-sum complex

number pair c, where ∗ stands for the complex conjugate
of a complex number.

Lemma (Lemma 1a of Ref.[15]): An M × M matrix
X̃ = [x̃(k,l)] is negative almost-definite if and only if the
matrix X = [x(k,l)] with entries

x(k,l) ≡ −x̃(k,l) +
1

M

M∑
i=1

x̃(i,l)

+
1

M

M∑
j=1

x̃(k,j) −
1

M2

M∑
i=1

M∑
j=1

x̃(i,j) (34)

is non-negative definite.
Theorem (Theorem 2a of Ref.[15]): For any positive

number δ > 0, a hermitian matrix X ′ = [exp[−δx̃(k,l)]]

is non-negative definite if and only if the matrix X̃ =
[x̃(k,l)] is negative almost-definite.

Using these results, the convexity of F1(p) is shown
as follows: First we define

∆F1
≡ tF1(p) + (1− t)F1(p

′)− F1(tp+ (1− t)p′)

= (1− t)t
M∑
k=1

M∑
l=1

qkql exp

[
−4|α|2

s
z̃(k,l)

]
, (35)

where 0 ≤ t ≤ 1 and we have defined q ≡ p − p′. Let
us examine whether ∆F1 ≥ 0 or not. From Eqs.(33) and
(34), we compute a new matrix Z ≡ [z(k,l)] with

z(k,l) ≡ −z̃(k,l) +
1

M

M∑
i=1

z̃(i,l)

+
1

M

M∑
j=1

z̃(k,j) −
1

M2

M∑
i=1

M∑
j=1

z̃(i,j)

=
1

2
cos[

2π

M
(l − k)], (36)

where we have used
∑M

i=1 z̃(i,l) =
∑M

j=1 z̃(k,j) = M/2.
Since the matrix Z is a circular matrix, the eigenvalues
of Z are given as

ηk =





M/4, if k = 1,
M/4, if k = M − 1,
0, elsewhere.

(37)

Thus the matrix Z = [z(k,l)] is non-negative definite.
From Lemma 1a, Z ≥ 0 implies that the matrix
Z̃ = [z̃(k,l)] is negative almost-definite. Furthermore, this
implies that the matrix Z ′ = [exp[−(4|α|2/s)z̃(k,l)]] is
non-negative definite. Therefore we have ∆F1 ≥ 0, that
is, the function F1(p) is a convex function of p.

From the convexity of the function F1(p), we can
easily find the optimal distribution of the function F1(p)
with the same manner as the case of the random coding
exponent. Actually, it is given by a uniform distribution
pk = 1/M for any s. So, the remaining task is the
maximization with respect to the parameter s. In general,
it is difficult to obtain the optimal s analytically over
all the rates below the cutoff rate. However, it has been
proved in Ref.[2] that Eex(R) = Er(R) if the rate R is
lying in the range from the rate R′

cr given by

R′
cr = − ln

M∑
k=1

(λk(p
◦))2 (38)

+

∑M
k=1

∑M
l=1 p

◦
kp

◦
l |⟨ψk|ψl⟩|2 ln |⟨ψk|ψk⟩|2∑M

k=1(λk(p◦))2

to the rate Rcr given in Eq.(28), where p◦ is the optimal
distribution of the expurgation exponent at the rate R′

cr,
and λk(p

◦) is the eigenvalue of the density operator
ρ̂(p◦). Moreover, it has been also proved [2] that, if
the rate R is lying in the range form the rate R′

cr to
the cutoff rate Rc, the expurgation exponent is given by
Eex(R) = maxp [Ex(p; 1)−R]. In our case, since the
optimal distribution is given by a uniform distribution
over all the rates, the rate R′

cr becomes

R′
cr = − ln

M∑
k=1

λ2
k (39)

− 4|α|2

M
·
∑M

l=1 z̃(1,l) exp[−4|α|2z̃(1,l)]∑M
k=1 λ

2
k

and we can conclude that Eex(R) is a linear function
of R in the range [R′

cr, Rc). Hence we have the next
proposition.

Proposition 2: The optimal distribution of the expur-
gation exponent for M -ary PSK coherent state signal is
given by a uniform distribution. Then the expurgation
exponent is given by

Eex(R) = max
s≥1

[
−sR (40)

− s ln
1

M

M∑
l=1

exp

[
−4|α|2

s
z̃(1,l)

] ]

for 0 < R ≤ R′
cr, and

Eex(R) = − ln
1

M

M∑
l=1

exp
[
−4|α|2z̃(1,l)

]
−R (41)

for R′
cr < R < Rc, and Eex(R) = 0 for Rc ≤ R < C,

where the critical rate R′
cr has been given in Eq.(39) and

the cutoff rate is given by

Rc = − ln
1

M

M∑
l=1

exp[−4|α|2z̃(1,l)], (42)

and z̃(k,l) is given in Eq.(33). □
Note that Eqs.(27) and (41) are identical, because
M∑
k=1

λ2
k = Tr

(
ρ̂(

1

M
, . . . ,

1

M
)

)2

= Sp


 1

M




⟨ψ1|ψ1⟩ · · · ⟨ψ1|ψM ⟩
...

. . .
...

⟨ψM |ψ1⟩ · · · ⟨ψM |ψM ⟩







2

=
1

M2

M∑
k=1

M∑
l=1

|⟨ψk|ψl⟩|2

=
1

M2

M∑
k=1

M∑
l=1

A2
(k,l)

=
1

M2

M∑
k=1

M∑
l=1

exp[−4|α|2z̃(k,l)], (43)

where Sp is the trace operation for a matrix.
Finally we consider the optimal distribution yielding

the zero-rate reliability function for M -ary PSK coherent
state signal. In this case, the function to be maximized is
written as

F2(p) ≡ −
M∑
k=1

M∑
l=1

pkpl ln |⟨ψk|ψl⟩|2

= 4|α|2
M∑
k=1

M∑
l=1

pkplz̃(k,l). (44)

Then, for any t such that 0 ≤ t ≤ 1, we define

∆F2 ≡ tF2(p) + (1− t)F2(p
′)− F2(tp+ (1− t)p′)

= 4|α|2t(1− t)
M∑
k=1

M∑
l=1

qkqlz̃(k,l), (45)

where q = p − p′. Since the matrix Z̃ = [z̃(k,l)] is
negative almost-definite, we have ∆F2 ≤ 0. Hence F2(p)
is a concave function of p. Therefore, like in the cases
treated above, the optimal distribution of the zero-rate
reliability function is given by a uniform distribution.
Indeed, since the zero-rate reliability function is the limit
of the expurgation exponent as R → +0, this result is
natural. Consequently we obtain the third proposition.

Proposition 3: The optimal distribution of the zero-
rate reliability function for M -ary PSK coherent state
signal is given by a uniform distribution on the input
alphabet, and the closed-form expression of the zero-rate
reliability function is given by E(+0) = 2|α|2. Notice
that this expression does not include the size M of the
input alphabet. □
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IV. EXAMPLE

The aim of this subsection is to illustrate the typical
behavior of the error exponents, Er(R) and Eex(R). With
this aim, we take M = 16 and |α|2 = 0.5 photons.
As shown in Fig. 3, the channel capacity for 16-PSK
is C = 1.3383 bits (0.92764 nats) per signal. Fig. 4-
(a) shows Er(R) and Eex(R), Fig. 4-(b) shows the
optimal value of s for Er(R), and Fig. 4-(c) shows the
optimal value of s for Eex(R). In this case, we obtain
the following quantities: the cutoff rate Rc = 1.1023 bits
(0.76409 nats), the critical rate for the random coding
exponent Rcr = 0.95780 bits (0.66389 nats), and the
critical rate for the expurgation exponent R′

cr = 0.30365
bits (0.21048 nats). The straight line portion of Er(R) in
Fig. 4-(a) is drawn by using Eq.(27). For 0 < R < Rcr,
the optimal values of s for Er(R) are shown as the
straight line in Fig. 4-(b) because it always takes s = 1 in
this region. The curve line portion of Er(R) in Fig. 4-(a)
is drawn by using Eq.(29). At that time, we have carried
out numerical computation to find the optimal value of
s for Er(R). The curve line portion in Fig. 4-(b) shows
the result of this numerical computation. In the region
0 < R ≤ R′

cr, Eex(R) is shown as the curve line in Fig.
4-(a), which is drown by using Eq.(40). In particular, the
beginning of the curve line corresponds to E(+0) = 1.0
and the end of the curve line touches the straight line
portion of Er(R) at the rate R′

cr. The optimal values of
s for Eex(R) in the region 0 < R ≤ R′

cr are shown as

the curve line in Fig. 4-(c). For R′
cr < R < Rc, Eex(R)

is shown as the straight line in Fig. 4-(a), which passes
through the three points (R′

cr, Er(R
′
cr)), (Rcr, Er(Rcr)),

and (Rc, 0). In this region, the optimal value of s for
Eex(R) is constant, s = 1, which is shown as the straight
line in Fig. 4-(c). As mentioned in Section III, Er(R) and
Eex(R) overlap in the region R′

cr ≤ R ≤ Rcr.

V. CONCLUSION

We have considered the error exponents for a discrete
classical-quantum channel with M -ary PSK coherent
state signal. The optimal distributions of the random
coding exponent, the expurgation exponent, and the zero-
rate reliability function for M -ary PSK coherent state
signal have been analytically derived, in which every
optimal distribution is given by a uniform distribution
on the input alphabet. This result provides the simpli-
fied expressions of the error exponents for M -ary PSK
coherent state signal. By using our results, we have
sketched the error exponents in the case of M = 16
to illustrate typical behavior of the error exponents. Our
results will be useful for finding good error-correcting
codes for quantum communication systems with M -ary
PSK coherent state signal.

APPENDIX

A. Ex(p; s) IS NOT A CONCAVE FUNCTION OF p

Let M = 3, |α|2 = 1 and s = 0.7 in our system.
Taking

p = (0.080808, 0.050505, 0.868687),

p′ = (0.564356, 0.366336, 0.069308),

and p′′ ≡ (p+ p′)/2, we have

Ex(p
′′; s)− 1

2
(Ex(p; s) + Ex(p

′; s)) = 0.323522

> 0. (46)

On the other hand, taking

p = (0.134453, 0.126050, 0.739497),

p′ = (0.012820, 0.012820, 0.974360),

we have

Ex(p
′′; s)− 1

2
(Ex(p; s) + Ex(p

′; s)) = −0.00133881

< 0. (47)

Thus, the function Ex(p; s) is not a concave function of
p for arbitrarily fixed s in general.

B. OPTIMAL DISTRIBUTION OF THE CUTOFF RATE

FOR M -ARY SYMMETRIC SIGNAL

In this paper we have treated the cutoff rate for a
discrete classical-quantum channel with pure state signal,
mentioned in Eq.(15). The basic properties of the cutoff
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IV. EXAMPLE

The aim of this subsection is to illustrate the typical
behavior of the error exponents, Er(R) and Eex(R). With
this aim, we take M = 16 and |α|2 = 0.5 photons.
As shown in Fig. 3, the channel capacity for 16-PSK
is C = 1.3383 bits (0.92764 nats) per signal. Fig. 4-
(a) shows Er(R) and Eex(R), Fig. 4-(b) shows the
optimal value of s for Er(R), and Fig. 4-(c) shows the
optimal value of s for Eex(R). In this case, we obtain
the following quantities: the cutoff rate Rc = 1.1023 bits
(0.76409 nats), the critical rate for the random coding
exponent Rcr = 0.95780 bits (0.66389 nats), and the
critical rate for the expurgation exponent R′

cr = 0.30365
bits (0.21048 nats). The straight line portion of Er(R) in
Fig. 4-(a) is drawn by using Eq.(27). For 0 < R < Rcr,
the optimal values of s for Er(R) are shown as the
straight line in Fig. 4-(b) because it always takes s = 1 in
this region. The curve line portion of Er(R) in Fig. 4-(a)
is drawn by using Eq.(29). At that time, we have carried
out numerical computation to find the optimal value of
s for Er(R). The curve line portion in Fig. 4-(b) shows
the result of this numerical computation. In the region
0 < R ≤ R′

cr, Eex(R) is shown as the curve line in Fig.
4-(a), which is drown by using Eq.(40). In particular, the
beginning of the curve line corresponds to E(+0) = 1.0
and the end of the curve line touches the straight line
portion of Er(R) at the rate R′

cr. The optimal values of
s for Eex(R) in the region 0 < R ≤ R′

cr are shown as

the curve line in Fig. 4-(c). For R′
cr < R < Rc, Eex(R)

is shown as the straight line in Fig. 4-(a), which passes
through the three points (R′

cr, Er(R
′
cr)), (Rcr, Er(Rcr)),

and (Rc, 0). In this region, the optimal value of s for
Eex(R) is constant, s = 1, which is shown as the straight
line in Fig. 4-(c). As mentioned in Section III, Er(R) and
Eex(R) overlap in the region R′

cr ≤ R ≤ Rcr.

V. CONCLUSION

We have considered the error exponents for a discrete
classical-quantum channel with M -ary PSK coherent
state signal. The optimal distributions of the random
coding exponent, the expurgation exponent, and the zero-
rate reliability function for M -ary PSK coherent state
signal have been analytically derived, in which every
optimal distribution is given by a uniform distribution
on the input alphabet. This result provides the simpli-
fied expressions of the error exponents for M -ary PSK
coherent state signal. By using our results, we have
sketched the error exponents in the case of M = 16
to illustrate typical behavior of the error exponents. Our
results will be useful for finding good error-correcting
codes for quantum communication systems with M -ary
PSK coherent state signal.

APPENDIX

A. Ex(p; s) IS NOT A CONCAVE FUNCTION OF p

Let M = 3, |α|2 = 1 and s = 0.7 in our system.
Taking

p = (0.080808, 0.050505, 0.868687),

p′ = (0.564356, 0.366336, 0.069308),

and p′′ ≡ (p+ p′)/2, we have

Ex(p
′′; s)− 1

2
(Ex(p; s) + Ex(p

′; s)) = 0.323522

> 0. (46)

On the other hand, taking

p = (0.134453, 0.126050, 0.739497),

p′ = (0.012820, 0.012820, 0.974360),

we have

Ex(p
′′; s)− 1

2
(Ex(p; s) + Ex(p

′; s)) = −0.00133881

< 0. (47)

Thus, the function Ex(p; s) is not a concave function of
p for arbitrarily fixed s in general.

B. OPTIMAL DISTRIBUTION OF THE CUTOFF RATE

FOR M -ARY SYMMETRIC SIGNAL

In this paper we have treated the cutoff rate for a
discrete classical-quantum channel with pure state signal,
mentioned in Eq.(15). The basic properties of the cutoff
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Fig. 4. (a) The random coding exponent, the expurgation exponent, and the zero-rate reliability function for 16-PSK coherent state signal; (b) The
optimal s for the random coding exponent; (c) The optimal s for the expurgation exponent.

rate for a discrete classical-quantum channel with sym-
metric pure state signal have been investigated in detail
by Ban et al. in Ref.[16]. In particular, they analytically
derived the optimal distributions of the cutoff rate and
showed its exact expressions in various cases. The result
of Eq.(42) is identical to a part of their results, Eq.(52)
in Ref.[16].

The cutoff rate is defined not only for a discrete
classical-quantum channel with pure state signal but also

for a general classical-quantum channel [14]: Let

B =
{
ρ̂1, ρ̂2, · · · , ρ̂M : ρ̂i ≥ 0, Trρ̂i = 1

}
. (48)

Then, the cutoff rate for a general classical-quantum
channel k �→ ρ̂k is defined by

Rc,general = − ln

[
min
p

Λ(p)

]
, (49)



40

where

Λ(p) = Tr

(
M∑
k=1

pk
√

ρ̂k

)2

. (50)

Let us consider the case that the signal satisfies the
relation

ρ̂k = V̂ k−1ρ̂1V̂
†k−1, k = 1, 2, · · · ,M, (51)

with an appropriate unitary operator V̂ such that

V̂ †V̂ = V̂ V̂ † = 1̂, V̂ M = 1̂. (52)

Here we let

Υ̂ (p) =
M∑
k=1

pk
√

ρ̂k. (53)

Taking an arbitrary distribution p = (p1, p2, · · · , pM ) ≡
p(1) and its permutations




p(2) = (p2, p3, · · · , p1),
p(3) = (p3, p4, · · · , p2),

...
p(M) = (pM , p1, · · · , pM−1),

(54)

we have √
ρ̂k = V̂ k−1

√
ρ̂1V̂

†k−1. (55)

Therefore,

Υ̂ (p(k)) = V̂ −(k−1)Υ̂ (p)V̂ †−(k−1). (56)

From the convexity of the function Tr(Â)2,

Tr
(
Υ̂ (p)

)2

=
1

M

M∑
k=1

Tr
(
Υ̂ (p(k))

)2

≥ Tr

(
M∑
k=1

1

M
Υ̂ (p(k))

)2

= Tr

(
Υ̂ (

1

M
,
1

M
, · · · , 1

M
)

)2

. (57)

Thus the optimal distribution of the cutoff rate for a
symmetric signal defined by Eq.(51) and (52) is given
by a uniform distribution.
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