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Abstract—We review studies about Gallager functions
and related quantities for quantum Gaussian channels. In
addition we compute a Gallager function to evaluate error
probability at transmission rates above channel capacity.

I. INTRODUCTION

This paper discusses bounds on error probability of
quantum Gaussian channels, where classical information
is conveyed by quantum Gaussian states and a posi-
tive operator valued measure is used in the decoding
procedure. Let R be the information rate defined by
log M/n1 when we transmit M messages with n use of
the channel, that is, a block code of length n. Then the
reliability function E(R) shows the speed of exponential
decay of the error probabilities Pe at rates below the
capacity: Pe ≈ exp[−nE(R)]. Quantum coding theorems
for the reliability function were established by Holevo
and Burnashev [7], [3]. On the analogy from the classical
case, they defined the random coding bound Er(R) and
the expurgated bound Eex(R) and proved that these
give lower bounds for reliability function E(R) truly in
the pure state case. Then Holevo proved the expurgated
bound also holds in the mixed state case [4]. Moreover
he extended these results to continuous channels with
constrained inputs [5]. On the other hand Ogawa and
Nagaoka derived a lower bound on the error probability
at rates above capacity for a general classical-quantum
channel [12].

In this paper, we summarize results about Gallager
functions of one-mode quantum Gaussian channels. We
introduce a quantum Gaussian channel and show formulas
of Gallager functions for it. In addition we compute a
lower bound on error probability at rates above capacity
for one-mode quantum Gaussian channels with energy
constraint on the basis of [12].

II. QUANTUM GAUSSIAN CHANNEL

We consider quantum system, such as cavity field
with a finite number of modes, described by operators
q1, p1, . . . , qr, pr satisfying the Heisenberg CCR

[qj , pk] = iδjk�I, [qj , qk] = 0, [pj , pk] = 0.

Let H be the Hilbert space of irreducible represen-
tation of CCR. For a real column 2r-vector z =

1We use the natural logarithm throughout the paper.

(x1, y1, . . . , xr, yr)T , we introduce a unitary operators in
H as

V (z) = exp i
r∑

j=1

(xjqj + yjpj).

Then the operators V (z) satisfy the Weyl-Segal relation

V (z)V (z′) = ei∆(z,z′)/2V (z + z′), (1)

where the skew symmetric form ∆ is given by

∆(z, z′) = �
r∑

j=1

(x′
jyj − xjy

′
j) = −zT ∆rz

′,

with the skew symmetric matrix ∆r. Here V (z) gives
the representation of the CCR on the symplectic space
(R2r, ∆).

The density operator ρ is called Gaussian, if its quan-
tum characteristic function has the form

TrρV (z) = exp
[
imT z − 1

2
zT Az

]
, (2)

where m is a 2r-dimensional column vector and A is
a correlation matrix, which is a real symmetric matrix
satisfying

A − i

2
∆r ≥ 0. (3)

In the following our concern is devoted to a single mode
Gaussian state (r = 1) with a mean m = (mq,mp)T and
a correlation matrix

A(λ, γ) = λ

[
γ2 0
0 γ−2

]
, λ ≥ �

2
, γ > 0. (4)

Let us consider a classical-quantum one-mode Gaussian
channel defined by a mapping Θ : R2 � m → ρm,
where ρm is a Gaussian state with a mean m and a
correlation matrix (4). Note that ρ0 describes background
noise, comprising quantum noise and ρm is obtained
by applying the displacement operator to ρ0. We relate
codewords w = (m1, ....,mn) of length n to the density
operators ρw = ρm1 ⊗ · · · ⊗ ρmn and assume the energy
constraint as

n∑
i=1

f(mj) ≤ nE, j = 1, ..., M, (5)

with a energy function

f(mj) = ((mq
j)

2 + (mp
j )

2)/2.
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We call by code of size M a sequence
(w1, X1), ..., (wM , XM ). Here wk are codewords
of length n, satisfying the additive constraint (5) and
{Xk} is a family of positive operators in H⊗n, satisfying∑M

k=1 Xk ≤ I . The average error probability for such a
code is give by

P ({(wj , Xj)}) = 1 − 1
M

M∑
k=1

TrρwkXk. (6)

We denote p(n,M) the infimum of this error probability
with respect to all codes of size M .

III. GALLAGER FUNCTIONS

A. Bounds for Error Probability

We introduce some bounds for the error probability
p(n,M). According to [5], we have the following bounds:
for ε > 0 and sufficiently large n

P (enR, n) ≤ exp[−n(Er(R) − ε)], R < C, (7)

P (enR, n) ≤ exp[−n(Eex(R) − ε)], R < C. (8)

Here C is the capacity of the channel, and

Er(R) = max
0≤s≤1

(max
0≤p

max
π∈P1

µ(π, s, p) − sR), (9)

Eex(R) = max
1≤s

(max
0≤p

max
π∈P1

µ̃(π, s, p) − sR), (10)

where µ and µ̃ are quantum Gallager functions given by

µ(π, s, p) = − log Tr
(∫

ep[f(m)−E]ρ
1

1+s
m π(dm)

)1+s

(11)

µ̃(π, s, p) = − s log
∫ ∫

ep[f(m)+f(m′)−2E]

· (Tr
√

ρm
√

ρm′)
1
s π(dm)π(dm′),

(12)

and P1 is the set of Gaussian probability distributions π
satisfying ∫

f(m)π(dm) < E. (13)

In addition, applying the Ogawa-Nagaoka lower bound
[12] to the continuous case, we obtain for all n [9]

P (enR, n) ≥ 1 − exp(−nEon(R)), R > C. (14)

where

Eon(R) = max
−1<s≤0

(min
π∈P1

µ(π, s, 0) − sR). (15)

B. Gallager Functions for Quantum Gaussian Channels

The Gallager functions µ(π, s, p) and µ̃(π, s, p) with
the a priori Gaussian distribution

π(dm) =
1

2π
√

det B
exp

[
−1

2
mT B−1m

]
dm, (16)

takes the following forms

µ(π, s, p) =

− (1 + s) log
[√

det(I2 − pB)
−1

N 1
1+s

(A)e−pE
]

− log
[
N1+s

(
G 1

1+s
(A)A + (B−1 − pI2)−1

)]
,

(17)

µ̃(π, s, p) = 2psE

+
s

2
log det

[
(I2 − pB)(I2 − pB + 2(2sG 1

s
(A)A)−1B)

]
.

(18)

Here I2 is a 2 × 2−identity matrix and the functions
Ns,Gs are given as

Ns(A) = fs

(√
det A/�

)−1

, (19)

Gs(A) = gs

(√
det A/�

)
I2, (20)

where

fs(d) = (d + 1/2)s − (d − 1/2)s, (21)

gs(d) =
1
2d

· (d + 1/2)s + (d − 1/2)s

(d + 1/2)s − (d − 1/2)s
, (22)

and abs(·) is defined as follows: for a diagonaliz-
able matrix M = Tdiag(mj)T−1, we put absM =
Tdiag(|mj |)T−1.

We compute the Gallager function µ(π, s, p) in the
single mode case; the computation of µ̃(π, s, p) is sum-
marized in [10]. First we consider the case where ρ0 is
a Gaussian state with a correlation matrix

A = A(λ, 1) = λI2, λ ≥ �/2. (23)

Here the optimum a priori Gaussian distribution has the
correlation matrix B = diag[E, E]. Then the Gallager
function is simplified as follows. In the present case, we
have

N 1
1+s

(A) = f 1
1+s

(λ/�)−1 (24)

1/N1+s(G 1
1+s

(A)A + (B−1 − pI2)−1)

=
{

(λ/�)g 1
1+s

(λ/�) +
E

�(1 − pE)
+

1
2

}1+s

−
{

(λ/�)g 1
1+s

(λ/�) +
E

�(1 − pE)
− 1

2

}1+s

.

(25)

Substituting these into (17), we obtain

µ(π, s, p) =(1 + s) log f 1
1+s

(λ/�) + p(1 + s)E

+ log
[
X1+s(s, p) − Y 1+s(s, p)

]
,

(26)
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where

X(s, p) = ((λ/�)g 1
1+s

(λ/�) + 1/2)(1 − pE) + E/�,

Y (s, p) = ((λ/�)g 1
1+s

(λ/�) − 1/2)(1 − pE) + E/�.

(27)

For a more general correlation matrix (4), the optimum a
priori Gaussian distribution has the correlation matrix of
the form B = diag[E1, E2]. Then the function µ(π, s, p)
has a complicated form but it is simplified when p = 0
as

µ(π, s, 0) =(1 + s) log f 1
1+s

(λ/�)

+ log f1+s(
√

D/�),
(28)

where

D = det(G 1
1+s

(A)A + B)

= λ2g 1
1+s

(λ/�)2 + (γ2E2 + γ−2E1)λg 1
1+s

(λ/�)

+ E1E2.
(29)

C. Optimizations

Firstly we review results about the random coding
bound in the case where ρ0 is a Gaussian state with
correlation matrix (23) [5]. Trying to maximize µ(π, s, p)
with respect to p we obtain the equation

2(1/� − (pλ/�)g 1
1+s

(λ/�))(X(s, p)s − Y (s, p)s)

= p(X(s, p)s + Y (s, p)s).
(30)

Explicit solutions for this equation are only known for
s = 0, 1. Thus, contrary to the classical case [11], the
maximum in (9) in general has not been found only
numerically.

Next we compute Eon(R) in the case where ρ0 is a
Gaussian state with a correlation matrix (4). Let us find
the optimum a priori distribution π. Putting E1 = x and
E2 = 2E − x (0 ≤ x ≤ 2E), we rewrite D in Eq. (28)
as

D = −
[
x −

(
γ−2 − γ2

2
λg 1

1+s
(λ/�) + E

)]2

+
[
γ−2 + γ2

2
λg 1

1+s
(λ/�) + E

]2

.

(31)

Since f1+s(d) (−1 < s < 0) is a monotonously de-
creasing function, the optimum a priori distribution πopt

is given by putting x = (γ−2 − γ2)λg1/1+s(λ/�) + E.

Then we have

µ(πopt, s, 0) = log

[(
λ

�
+

1
2

) 1
1+s

−
(

λ

�
− 1

2

) 1
1+s

]1+s

+ log



(

E

�
+

γ2 + γ−2

2

λg 1
1+s

(λ/�)

�
+

1
2

)1+s

−

(
E

�
+

γ2 + γ−2

2

λg 1
1+s

(λ/�)

�
− 1

2

)1+s

 .

(32)

Restricting ourselves to the pure state case (λ = �/2),
we can simplify this equation as

µ(πopt, s, 0) = log(µ1+s
1 − µ1+s

2 ) (33)

with

µ1 =
E

�
+

γ2 + γ−2

4
+

1
2
,

µ2 =
E

�
+

γ2 + γ−2

4
− 1

2
,

(34)

and hence we have

µ(πopt, s, 0) − sR = R + log(L(s)), (35)

with

L(s) =
(µ1

eR

)1+s

−
(µ2

eR

)1+s

. (36)

Differentiating L(s) with respect to s,

L′(s) =
(µ1

eR

)1+s

log
(µ1

eR

)
−

(µ2

eR

)1+s

log
(µ2

eR

)
.

(37)
Putting L′(s) = 0, we get the optimum value of s as

s =
1

log µ1 − log µ2
log

log µ2 − R

log µ1 − R
− 1 =: sopt(R).

(38)
Thus we obtain

Eon(R) = µ(πopt, sopt(R), 0) − sopt(R)R,

for a one-mode quantum Gaussian channel with corre-
lation matrix (4). Fig. 1 shows graphs of sopt(R) with
respect to R for squeezing parameters γ = 1, 3, 5, 10.
Fig. 2 gives graphs of Eon(R) with respect to R for
γ = 1, 3, 5, 10.

IV. CONCLUSION

We have reviewed results about random coding bound
for quantum Gaussian channels and computed a lower
bound on error probability at transmission rates above
capacity on the basis of [12].
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Fig. 1. Dependence of optimum values of s on the transmission rates
R [ebits/symbol] for squeezing parameters γ = 1, 3, 5, 10.

Fig. 2. Error exponents Eon(R), which gives a lower bound of
error probability as P (enR, n) ≥ 1−exp(−nEon(R)), for squeezing
parameters γ = 1, 3, 5, 10.
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