
ISSN 2186-6570 

 

A Simple Demonstration of a Fallacy  

in Implementability Arguments on Quantum Computation 

 

Mitsuru Hamada 

 

Quantum Information Science Research Center 

Quantum ICT Research Institute, Tamagawa University 

6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan 

 

 

 

Tamagawa University Quantum ICT Research Institute Bulletin, Vol.4, No.1, 31-32, 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©Tamagawa University Quantum ICT Research Institute 2014 

All rights reserved. No part of this publication may be reproduced in any form or by any means 

electrically, mechanically, by photocopying or otherwise, without prior permission of the copy right 

owner. 



A Simple Demonstration of a Fallacy in
Implementability Arguments on

Quantum Computation
Mitsuru Hamada

Quantum Information Science Research Center
Quantum ICT Research Institute

Tamagawa University
6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan

Abstract—A misleading erroneous claim often found in
the literature on quantum computation is disproved in a
simple manner. The incorrect claim states that for any
non-parallel vectors m̂ and n̂, any 2 × 2 unitary matrix
can be written as a scalar multiple of the product of
some three rotations about either m̂ or n̂. Here, a rotation
means a 2 × 2 unitary matrix of determinant 1 that
corresponds to a 3 × 3 rotation matrix (real orthogo-
nal matrix with determinant 1). This error has already
been pointed out by the present author [M. Hamada,
“Overlooked restrictions on Euler angles in quantum
computation,” APS 2013 March Meeting, Baltimore, USA,
2012, http://meetings.aps.org/link/BAPS.2013.MAR.H1.318
(abstract)], but a streamlined proof is presented in order
to help one recognize the error quickly. While this demon-
stration is a negative result, in a recent constructive result,
the author has clarified what is the best we can do instead
of the wrongly claimed impossible thing quantitatively,
formulating a problem of constructing an arbitrary rotation
mathematically. A brief history on this recent result is
described.

I. INTRODUCTION

The aim of this report is to present a simple demon-
stration of a widespread fallacy regarding universal gates
often found in textbooks on quantum computation. This
has been pointed out by the present author [1], [2] by
means of a lemma found by him. The core of the fallacy
is the following erroneous claim. Writing the ‘rotation’
about a real unit vector v̂ by an angle θ as Rv̂(θ),
they have claimed, without a proof, that any 2 × 2
unitary matrix can be written as eiφRm̂(ψ)Rn̂(θ)Rm̂(ψ�)
for appropriate choices of real numbers φ, ψ, θ, and ψ�

if m̂ and n̂ are non-parallel real unit vectors in three
dimensions. Specific sources of this statement will not
be repeated here but can be found in [2].

In essence, the demonstration below may be viewed
as a streamlined version of the one obtained in [1],
[2]. The author’s view that there ought to be needs for
reading such one is based on the following thought.
While this demonstration is negative, the author has
already obtained an affirmative result on construction
of an arbitrary rotation [3]. Namely, while constructing

an arbitrary rotation with three successive rotations is
impossible, in general, he has clarified what is the best we
can do instead of the wrongly claimed impossible thing
quantitatively, formulating a problem of constructing an
arbitrary rotation mathematically. Naturally, the obtained
result contradicts the above erroneous claim. Then, in
view of the fact that the error has appeared in, at least,
three textbooks on quantum computation, many people
misguided by the error would be confused with this
contradiction. This streamlined version of demonstration
would help such people recognize the error quickly.

II. DEFINITIONS

The following Pauli matrices are used:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The 2 × 2 identity matrix is denoted by I . We put ŷ =
(0, 1, 0)T and ẑ = (0, 0, 1)T. As usual, R and C denote
the set of real numbers and that of complex numbers,
respectively. We put

Rv̂(θ) = (cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ) (1)

for v̂ = (vx, vy, vz)
T ∈ R3 with �v̂� =√

v2x + v2y + v2z = 1 and θ ∈ R. For example,

Rẑ(ψ) =

(
e−iψ2 0

0 ei
ψ
2

)
, ψ ∈ R. (2)

III. DEMONSTRATION OF THE FALLACY

We focus on disproving the above claim in the case
where the two vectors m̂ and n̂ are ẑ = (0, 0, 1)T and
v̂ = (vx, vy, vz)

T with 0 < |vz | < 1 and �v̂� = 1.
Namely, we will show that whenever v̂ = (vx, vy, vz)

T ∈
R3 is a unit vector with 0 < |vz| < 1, there exists
some 2 × 2 unitary matrix that cannot be written in
the form eiφRẑ(ψ)Rv̂(θ)Rẑ(ψ

�) for any real numbers
φ, ψ, θ, and ψ� (while ẑ and v̂ are non-parallel unit vectors
by the assumption |vz | < 1). (The counterexamples below
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generalize to the case of generic non-parallel vectors m̂
and n̂ straightforwardly.)

Proposition 1: Let arbitrary numbers a, b, c, d ∈ C and
an arbitrary unit vector v̂ = (vx, vy, vz)

T ∈ R3 be given.
If |a| < |vz |, then

(
a b
c d

)
�= eiφRẑ(ψ)Rv̂(θ)Rẑ(ψ

�) (3)

for any φ, ψ, θ, ψ� ∈ R.
Proof. The absolute value of the (1, 1)-entry of

eiφRẑ(ψ)Rv̂(θ)Rẑ(ψ
�) [or of Rv̂(θ), see (2)] is

√
cos2 θ

2 + v2z sin
2 θ

2 = A(θ).

Note minθ∈RA(θ) = |vz |. Hence, comparing the (1, 1)-
entries of both sides of (3), we obtain the proposition. �

This proposition demonstrates the fallacy mentioned
above. Specifically, for any number a ∈ C with |a| < |vz |,
any unitary matrix whose (1, 1)-entry equals a, such as

(
a −√

1− |a|2√
1− |a|2 a∗

)
, (4)

cannot be written in the form eiφRm̂(ψ)Rn̂(θ)Rm̂(ψ�)
for any φ, ψ, θ, ψ� ∈ R by the proposition. This is a
counterexample to the claim in question in the case where
m̂ = ẑ, n̂ = v̂, and 0 < |vz | < 1. (There exist infinitely
many numbers a ∈ C with |a| < |vz | since 0 < |vz |.)

IV. CONCLUDING REMARKS

As already mentioned, the demonstration in this article
may be viewed as a streamlined version of the original
one based on the following lemma.

Lemma 1: [1], [2]. Let arbitrary numbers α, γ, θ ∈ R
and a unit vector v̂ = (vx, vy, vz)

T ∈ R3 be given;
then, there exist some β, δ ∈ R satisfying Rv̂(θ) =
eiαRẑ(β)Rŷ(γ)Rẑ(δ) if and only if eiα ∈ {1,−1} and√
1− v2z | sin(θ/2)| = | sin(γ/2)|.
In particular, the above counterexamples were found

through this lemma. Then, the following question may
be asked. Now that the demonstration of the fallacy is
streamlined, is Lemma 1 obsolete? The answer is ‘no.’
This is because while the ‘only if’ part of this lemma
has been used in the above negative result, the lemma
also asserts its converse, i.e., the ‘if’ part. The ‘if’ part
says primarily that the condition

√
1− v2z | sin(θ/2)| =

| sin(γ/2)| is sufficient for Rv̂(θ) = Rẑ(β)Rŷ(γ)Rẑ(δ)
to hold for some β, δ ∈ R. Using this part, the author
has obtained an affirmative result on construction, i.e., a
method for constructing an arbitrary rotation with a finite
number of successive rotations about two non-parallel
axes.

Specifically, Lemma 1 soon led to the following con-
structive result (unpublished). The least value, L(m̂, n̂),
of a positive integer k such that any rotation in SU(2) can
be decomposed into a product of k rotations about either

m̂ or n̂ is upper-bounded by 2�π/(2 arccos |m̂Tn̂|)�+ 1
for any pair of unit vectors m̂, n̂ ∈ R3 with |m̂Tn̂| < 1.
In other words, 2�π/(2 arccos |m̂Tn̂|)� + 1 is an upper
bound on L(m̂, n̂) = maxU MinimumNumber(m̂, n̂, U),
where MinimumNumber(m̂, n̂, U) denotes the minimum
number of factors needed in decomposing a rotation U ,
and U runs through SU(2) in the maximization.

After the author noticed this, he investigated whether
this bound was tight or not and since he found it im-
provable, struggled to find the tightest bound. Finally,
the present author determined MinimumNumber(m̂, n̂, U)
for an arbitrary rotation U , and also presented decom-
positions achieving MinimumNumber(m̂, n̂, U) explicitly;
he also gave L(m̂, n̂) in terms of a simple func-
tion of arccos |m̂Tn̂| as a consequence of determining
MinimumNumber(m̂, n̂, U). After obtaining these results,
he learned that in the mathematics literature, the same
result on L(m̂, n̂), in a less concise expression, had
already existed. But this result on L(m̂, n̂) is weaker than
the present author’s other results relevant to L(m̂, n̂). For
the details of these results, the reader is referred to [3].

In particular, the most distinctive feature of [3]
would be its presenting (an algorithm for obtaining)
an optimal decomposition of an arbitrary rotation U
explicitly, where the optimality refers to achieving
MinimumNumber(m̂, n̂, U). This would be significant for
quantum computation, and probably, also in other fields.
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