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Abstract—In the 1980s, the present author discussed
that a reduction of inner product between nonorthogonal
states may be possible by means of quantum state control
processes which are described by non unitary process. To
discuss such processes, the author introduced an idea of
conditional isometric operator as representation theory in
1994. Recently, Childs and Young have discovered a physical
model for reduction of inner product of nonorthogonal
states by nonlinear dynamics under the Gross-Pitaevskii
and related nonlinearities. This paper clarifies a relation
between conditional isometric operators and Childs-Young
model, and discusses some limitations of their model in its
application to general dynamic processes.

I. INTRODUCTION

A reduction of quantum noise effect in quantum mea-
surement process is a fundamental problem in quantum
sciences. However, the present quantum theory imposes
several fundamental limitations on the accuracy of the
quantum measurement process. Such limitations come
from nonorthogonality of quantum states. Almost all of
the important theorems in quantum sciences based on the
conventional quantum mechanics are related with such a
nonorthogonality, which was formulated from 1960s to
1980s [1,2,3,4]. It is reviewed in my previous paper [5].
In contrast with such a development of quantum science,
the author gave a prediction as follows [6]:
{Prediction}
There exists a dynamic process to reduce the inner
product between two quantum states which is described
by non unitary process.

Under this prediction, we challenged to discover phys-
ical model phenomenologically. However, almost all of
such trials were failure or incomplete [7,8,9]. In gen-
eral, the dynamics of quantum state in the conventional
quantum mechanics obeys linear Schrödinger equation
or evolution described by unitary operator. In other
words, Schrödinger equation preserving inner product is
in principle linear. In what follows, Morikawa-Takahara-
Hirota [7] tried to verify the prediction by means of
nonlinear quantum mechanics which was proposed by
Weinberg [10,11], in which we employed an analysis
based on nonlinear Schrödinger equation from quantum

field theoretical point of view such as

i
∂φ

∂t
+

∂2φ

∂x2
− 2κ|φ|2φ = 0 (1)

where

[φ(x, t), φ†(y, t)] = δ(x− y) (2)
[φ(x, t), φ(y, t)] = [φ†(x, t), φ†(y, t)] = 0 (3)

However, the flow of the analysis included many as-
sumptions and difficulties for calculus, and we could
not obtain any clear result, except for the necessity of
nonlinear quantum mechanics. To provide guidance for
future work, the author gave mathematical concept for
conditional quantum channel in 1994 [12].

Recently, Childs and Young have discovered a physical
model for reduction of inner product between two non-
orthogonal states by nonlinear dynamics under the Gross-
Pitaevskii and related nonlinearities [13]. The author
believes that their results will provide tremendously great
progress in quantum science. Thus, the author reproduces
the theory of conditional isometric operator in Section 2,
and introduces Childs-Young theory on phenomenologi-
cal process of nonlinear quantum mechanics in Section
3. In Section 4, a relation between conditional isometric
operators and Childs-Young model is clarified. A uni-
versality of nonlinear quantum mechanic is discussed in
Section 5, showing certain limitations of the applications
of the nonlinear quantum mechanics to general problems.

II. THEORY OF CONDITIONAL ISOMETRIC OPERATOR

Physical process of a reduction of the inner product
between two initial quantum states may correspond to
a transformation of quantum state by some control pro-
cesses, but it is not simply a unitary transformation. It
was very difficult to discover a physical phenomenon to
verify the hypothesis. So the author intended to give a
description of such a model by operator theory and gave
a mathematical definition so-called conditional isometric
operator in 1994 [12]. Let us here describe the summary
of the theory.
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A. Mathematical definition

The nonlinear operator A on a subset S ⊂ H of a
Hilbert space H is isometric if

‖A|ψ > ‖ = ‖|ψ > ‖ (4)

When the range of an isometric operator is equal to
its domain S , it is called a nonlinear unitary operator.
Linear isometric and unitary operators preserve the inner
product for different elements of H. Here I would like to
eliminate, under certain conditions, the invariance of inner
products. In order to do so, we must accept certain new
ideas. In what follows, I present a conceptual definition.
{Definition}
Let S : |ψj >, j ∈ J be a family of state vectors in H,
and let to each vector |ψj > on this family correspond a
linear operator Tj = T (Kj) such that for j ∈ J

‖Tj |ψj > ‖ = ‖|ψj > ‖ (5)

Then the nonlinear isometry |ψj > �→ Tj |ψj > is called
a conditional linear isometric operator on S . Kj is initial
state dependent Hamiltonian for the dynamics and the
index j ∈ J is called susceptor for the initial state. So
it corresponds to initial state dependent dynamics.

In addition, when Tj is decomposed into linear com-
bination: Tj =

∑
m T j

m, Tj is defined as a conditional
linear isometric operator such that

|ψj > �→ (
∑
m

T j
m)|ψj >= |ψj >∈ SQ (6)

where SQ is quasi quantum state space in which the inner
product is defined as follows:

< ψj |ψk >=
{< ψj |(

∑
m T †j

m )(
∑

n T
k
n )|ψk >}δm,n

Wj ×Wk
(7)

where

Wj ×Wk = {< ψj |(
∑
m

T †j
m )(

∑
n

T k
n )|ψj >}

δm,n × {< ψk|(
∑
m

T †j
m )(

∑
n

T k
n )|ψk >} (8)

and the projection form for the space in this state becomes

|ψj >< ψj | = (
∑
m

T j
m)|ψj >< ψj |(

∑
n

T †j
n )δm,n (9)

T j
m will be derived from a modification of mixed opera-

tion.

According to the above definition, one can represent
transformation channels from pure state to pure state
and also from pure state to mixed state as conditional
isometric process.

Thus, one has a description method for quantum chan-
nel or dynamics with the following property:

< ψj |T †
j Tk|ψk > 	=< ψj |ψk > j 	= k (10)

Here one can classify such a nonlinear quantum control
channel as follows:

(a) Positive conditional isometric channel=The absolute
value of inner product increases.
(b) Negative conditional isometric channel=The absolute
value of inner product decreases.

Of course the negative case is our goal. From the
definition, Tj has susceptor j for initial state. So it
corresponds to a reduction process of inner product by
initial state dependent dynamics.

III. CHILDS-YOUNG THEORY

Let us give a brief review of Childs-Young theory
[13]. They employed the following nonlinear Schrödinger
equation:

i
d|ψ(t) >

dt
= H(t)|ψ(t) > +K|ψ(t) > (11)

where H(t) is a time dependent Hermitian operator and
K is a nonlinearity of the form

< x|(K|ψ >) = κ(| < x|ψ > |) < x|ψ > (12)

and where κ : [0, 1]→R is a function characterizing the
nonlinearity. In the Gross-Pitaevskii model, κ(x) = gx2.

The Hermitian operator H(t) gives the conventional
time evolution. The main problem is to verify a reduction
of inner product decreases on Bloch sphere.

They consider the pure state with Bloch sphere coor-
dinate (x, y, z):

ρ =
1

2

[
1 + z x− iy
x+ iy 1− z

]
(13)

Since | < 0|ψ > |2 = 1+z
2 and | < 1|ψ > |2 = 1−z

2 , the
nonlinear term is clearly the state dependent Hamiltonian[

κ(( 1+z
2 )1/2) 0
0 κ(( 1−z

2 )1/2)

]
(14)

Then they found

d

dt
(x, y, z) = κ̄(z)(−y, x, 0) (15)

where

κ̄ = κ((
1 + z

2
)1/2)− κ((

1− z

2
)1/2) (16)

Under these dynamics, states rotate around lines of lati-
tude on the Bloch sphere.

Finally, Childs and Young give that the rate of change
of the inner product of Bloch vectors (x+, y+, z+) and
(x−, y−, z−), which are described by parameters α, φ, θ
on Bloch sphere, is

d

dt
(x+x−, y+y−, z+z−)

= (x+y− − y+x−)(κ̄(z+)− κ̄(z−)) (17)
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When the angle of two states at the initial point is
α0 on the Bloch sphere, the rate of change of the inner
product cosα is given as follows:

d

dt
cosα(t) = sinα(t) sinφ sin θ(κ̄(z+)− κ̄(z−)) (18)

They showed that the above equation may provide the
reduction of the inner product. So the author would like to
interpret their result by the conditional isometric operator
of the section 2 in the following.

IV. RELATION WITH CONDITIONAL ISOMETRIC
OPERATOR

In the Childs-Young theory, K plays an essential
role, and it is equivalent to the initial state dependent
Hamiltonian. Let us discuss how to connect the relation
between differential equation representation and operator
representation in the following.
K is related with susceptor = {j, k} as the initial state

dependency of the conditional isometric operator. That is,
we have

i
d|ψj(t) >

dt
= (H(t) +Kj)|ψj(t) > (19)

This equation provides dynamics with initial state depen-
dency. In the operator representation, the solution of the
differential equation corresponds to

|ψ̄j(t) > = T (H(t) +Kj)|ψj >

≡ Tj(t)|ψj > (20)

where |ψj > is the initial state with index j which means
initial state dependency. And also one has

i
d|ψk(t) >

dt
= (H(t) +Kk)|ψk(t) > (21)

|ψ̄k(t) > = T (H(t) +Kk)|ψk >

≡ Tk(t)|ψk > (22)

where k is initial state index. If one has

d =< ψj |T †
j Tk|ψk > < d0 =< ψj |ψk > j 	= k

(23)
this is, in fact, the negative conditional isometric process.

Finally, the rate equation (Eq-18) of changing of the
inner product by Childs-Young means cosα(t) = d(t).
Since they employ the Gross-Pitaevskii nonlinearity, they
have κ(x) = gx2, and κ̄(z) = gz. Thus the test of the
negative conditional isometric process is given by their
equation:

d

dt
d(t) =

d

dt
cosα(t)

= g sin(α) sin(α/2) sin2(θ) sin(2θ) (24)

Here one can see that the condition for the negative
conditional isometric process d < d0 in the above
equation is

sin2 φ sin 2θ < 0 (25)

This means that one has to choose the initial states
to obtain the negative conditional isometric process by
Gross-Pitaevskii nonlinearity. Thus, this model does not
satisfy the initial state universality of the conditional
isometric process. Initial state universality means that the
process does not have requirement on special selection for
the initial states, which is very important for applications.
However, it should be praised that they succeeded in
demonstrating the reduction of inner product for two
nonorthogonal states by the above equation, and provided
a positive answer to the author’s prediction in the 1980s.
Consequently the results of Childs-Young may provide a
great progress in quantum communication theory, because
two nonorthogonal states can be distinguished by such
a real physical process. However, for applying this to
optical quantum communications and others, the issues
in the next section should be clarified.

V. UNIVERSALITY OF NONLINEAR QUANTUM
MECHANICS

A. Formulation

Here I go back to the 1980s. At that time, I wanted
to consider the quantum mechanics for which there
is a non unitary evolution, for instance, Schrödinger
equation with nonlinear terms. The possibility of reality
of nonlinear quantum mechanics was pointed out by
S.Weinberg [10,11] and others. Weinberg proposed the
following equation from the standpoint testing the linear-
ity of quantum mechanics, which is the general nonlinear
Schrödinger equation keeping the homogeneity condition
and without keeping the superposition condition [10].

i
dψk

dt
=

∂h(ψ, ψ∗)
∂ψ∗

k

(26)

In this system, if ψ1 and ψ2 are solutions, then λψ1 is
also solution for complex number λ, but ψ1 + ψ2 is not.
This equation reduces to the ordinary linear Schrodinger
equation when the real function h(ψ, ψ∗) has a bilinear
form h = ψ∗

kHklψl. Some groups carried out the tests
of the linearity of quantum mechanics experimentally
by means of Ramsey’s resonance methods or hydrogen
maser. The results revealed to us a very small upper
bound for the strength of the nonlinearity. On one hand,
Kamesberger and Zeilinger investigated the effect of
nonlinearity on Fresnel pattern by numerical simulation
[14]. Thus, Morikaw-Takahara-Hirota [7] did not have
sufficient knowledge on the nonlinearity in quantum
mechanics in the 1980s except for the above. So we
tried to employ nonlinear Schrödinger equation from a
quantum field theoretic point of view to clarify quantum
nonlinear effect in optical process as mentioned in the
introduction.

In 2013, Meyer and Wong introduced the nonlinearity
by Gross [15] and Pitaevskii[16] to consider quantum
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search problem [17]. This is an epoch-making for re-
ality of nonlinear quantum mechanics, because Gross-
Pitaevskii nonlinear equation is indeed initial state de-
pendent dynamics which corresponds to conditional iso-
metric process. Thus, it may be reasonable in view
of conditional isometric process that Childs and Young
reached their idea such as application of Gross-Pitaevskii
nonlinear equation to discrimination issue of quantum
states. Of course, this discovery is attributed to their
achievement. The remaining problem is how much Gross-
Pitaevskii model is universal. Basically, the nonlinear
term (Eq-12) is related with Bose-Einstein condensates
such as

h2as
πm

N0|ψ(r, t)|2 (27)

where m is the mass of the condensate atom, N0 is
the number of condensate atom, and as is boson-boson
scattering length, respectively. At present nobody knows
whether one can apply such a nonlinearity to optical
process which is essential in optical quantum commu-
nication.

B. Time constant limitation

Let us here consider the practical quantum communi-
cation. The received quantum state control system in our
sense is that received states are transformed by the condi-
tional isometric process [6]. In communication theory, a
time constant performance is the most important param-
eter. Information conveyed by quantum state is evaluated
by bits per second. In general, the bit rate is more than
109 bits per second in the conventional communication.
For the real time processing of the conditional isometric
process, one requires the processing time less than 10−9

second.
In the conditional isometric process based on Gross-

Pitaevskii model, the process time to distinguish the states
is [13]

t⊥(1) ∼= 1

2g
log

1 + cos(α0/2)

1− cos(α0/2)
(28)

where g means the strength of the nonlinearity. In general
nonlinearity model, one has [13]

t⊥(2) ∼= 1

g
log

1

ε
(29)

when ε << 1 and cosα0
∼= 1 − ε. So to satisfy the

requirement t⊥ < 10−9 in communication system is
difficult. That is, when ε << 1, one needs huge nonlin-
earity to provide t⊥ < 10−9. This time constant property
and the initial state universality property discussed in the
section 4 may give a physical limitation of applications
of nonlinear quantum mechanics to real communication
problem. Thus, at present, one cannot confirm whether
the nonlinear quantum mechanics gives serious impact
on quantum communication theory or not.

VI. CONCLUDING REMARK

In this paper, the importance of the results of Childs-
Young theory in quantum sciences has been discussed.
Their work is a milestone for a fundamental problem of
quantum mechanics. Although the universality of non-
linear quantum mechanics is not yet clear at present,
it is worth to investigating as a fundamental problem.
The author expects that researchers will try to clarify
the general theory on conditional isometric process based
on nonlinear quantum mechanics including initial state
dependent dynamics in the optical process.
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