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Examples of deriving sequential measurements
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Abstract—A sequential measurement (SM) for distin-
guishing between bipartite quantum states shared by
Alice and Bob is considered. We provide two new
examples in which SMs maximizing the average suc-
cess probabilities can be obtained using techniques de-
scribed in Refs. [arXiv quant-ph/1706.02125v2],[arXiv
quant-ph/1707.04736v1]. The first example demonstrates
that there exists a set of product states that can be exactly
distinguished by an SM from Bob to Alice, while the average
success probability of any SM from Alice to Bob is almost
zero. The second one shows a set of product states that can
be exactly distinguished by local operations and classical
communication, while the average success probability of
any SM is almost zero, regardless of the direction of
communication. These examples might be useful to provide a
new method for secure data communication and/or storage.

I. Introduction

Local discrimination of quantum states has been in-

tensively investigated in quantum information theory in

recent years. A measurement realized by local operations

and one-way classical communication (one-way LOCC),

also called a sequential measurement (SM), is one of the

most interesting measurements. SMs are relatively easy

to implement in a wide range of physical systems, but,

in general, the ability of the best SM to discriminate

between quantum states is strictly less than that of the best

global measurement. In the 1990s, several works have

been reported to analyze the performance of an SM in

the Bayes criterion and the mutual information criterion

[1]–[8]. After that, many studies have been carried out

to evaluate the discrimination performance of SMs in

various quantum state sets (e.g., [9]–[20]). However, they

have not been investigated systematically; for example,

either the dual problem of the problem of finding an

SM maximizing the average success probability, which

we call an optimal SM in this paper, or necessary and

sufficient conditions for an SM to be optimal have not

been addressed, whereas those for an optimal global

measurement have already been derived in the 1970s

[21]–[23].
More recently, a necessary and sufficient condition for

an SM to be optimal has been provided by Croke et al.
[24]. Also, the authors and their co-worker have derived

the dual problem for an optimal SM and other necessary

and sufficient conditions for an optimal SM [25], [26].

This paper deals only with the problem of finding an

SM maximizing the average success probability, while

Ref. [26] deals with a more general problem applicable

to various criteria (e.g., the Bayes criterion, the Neyman

Pearson criterion, and the minimax criterion).

In this paper, we provide two new examples in which

optimal SMs can be obtained using methods of Refs. [25],

[26]. These examples involve two sets of bipartite product

states shared by Alice and Bob. The first one can be

exactly distinguished by an SM from Bob to Alice,

while the average success probability of any SM from

Alice to Bob is almost zero. The second one can also

be exactly distinguished by LOCC, while the average

success probability of any SM, regardless of the direction

of communication, is almost zero. Note that Ref. [27]

shows that there can be nonignorable gaps in performance

between such measurements. Hence, in the first example,

the gap between the average success probabilities of

an optimal SM and an optimal LOCC measurement

is almost one, while, in the second example, the gap

between the average success probabilities of an optimal

LOCC measurement and an optimal global measurement

is almost one. These extremely large gaps might be useful

to provide a new method for secure data communication

and/or storage.

In Sections II and III, we first briefly recall the primal

and dual problems of obtaining an optimal SM and some

its properties, which is described in Refs. [25], [26]. Then,

in Section IV, we provide two examples in which optimal

SMs can be obtained.

II. Optimal sequential measurement

A. Sequential measurement

We begin with some definitions and notation. We

consider a composite system, HAB = HA ⊗ HB, where

A and B respectively refer to the subsystems of Alice

and Bob. For each k ∈ {A,B,AB}, let Sk and S+k be,

respectively, the entire sets of Hermitian operators and

positive semidefinite operators on Hk, and 1̂k be the

identity operators on Hk. x̂ ≥ 0 with a Hermitian operator

x̂ denotes that x̂ is positive semidefinite. Similarly, x̂ ≥ ŷ
means x̂ − ŷ ≥ 0. Let IN � {0, 1, · · · ,N − 1}.

In an SM from Alice to Bob, Alice first performs a

measurement, which is represented by a positive operator

Tamagawa University Quantum ICT Research Institute Bulletin
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valued measure (POVM) {Â j} j with Â j ∈ S+A, and sends

the measurement result j to Bob. Then, Bob performs a

measurement {B̂( j)
m }m∈IM with B̂( j)

m ∈ S+B, which depends on

j. The outcome of his measurement, m ∈ IM , represents

the result of the SM.

We can also understand this SM in a different way [25].

Each of Bob’s POVM is uniquely labeled by an index ω;

let {B̂(ω)
m }m∈IM be his POVM indexed by ω. Let Ω be the

entire set of all possible values of ω. Alice first performs a

continuous measurement Â = {Â(ω)}ω∈Ω with Â(ω) ∈ S+A
to determine which measurement Bob performs, and then

sends the measurement result ω to him. Bob performs the

corresponding measurement {B̂(ω)
m }m∈IM with B̂(ω)

m ∈ S+B
and obtains the final result m. Let MA be the entire set

of all Alice’s POVMs. Any SM is expressed by a function

of Â ∈ MA, which is denoted as {Π̂(Â)
m }m∈IM with

Π̂(Â)
m �

∫
Ω

Â(dω) ⊗ B̂(ω)
m . (1)

B. Discrimination problem

Let us consider the problem of discriminating a set

of M quantum states, {ρ̃m}m∈IM . Each density operator

ρ̃m ≥ 0 has unit trace, i.e., Tr ρ̃m = 1. We refer to {ρ̂m =

ξmρ̃m}m∈IM as a quantum state set, which denotes {ρ̃m}m∈IM

with prior probabilities {ξm}m∈IM , We can easily verify

that ρ̂m ≥ 0, Tr ρ̂m > 0 for any m, and
∑

m Tr ρ̂m = 1

hold.

The average success probability with an SM {Π̂(Â)
m }m∈IM

is defined as

PS(Â) �
∑

m∈IM

Tr
[
ρ̂mΠ̂

(Â)
m

]
. (2)

The problem of obtaining an optimal SM is formulated

as

P : maximize PS(Â)

subject to Â ∈ MA
(3)

with variable Â. Let P�
S

and Â� be respectively the

optimal value and an optimal solution to Problem P. There

may be more than one optimal solution. PS(Â�) = P�
S

obviously holds. We can easily see that Problem P is a

convex programming problem.

C. Dual problem

We will get the dual problem of Problem P. Let

X �
{
X̂ ∈ SA : X̂ ≥ σ̂ω, ∀ω ∈ Ω

}
,

σ̂ω � TrB

∑
m∈IM

ρ̂mB̂(ω)
m . (4)

Then, we have that for any Â ∈ MA and X̂ ∈ X,

PS(Â) =
∑

m∈IM

Tr
[
ρ̂mΠ̂

(Â)
m

]

= Tr

∫
Ω

σ̂ωÂ(dω)

≤ Tr X̂
∫
Ω

Â(dω) = Tr X̂, (5)

where the second line follows from Eqs. (1) and (4). This

implies that we can consider the following dual problem:

DP : minimize Tr X̂
subject to X̂ ∈ X

with variable X̂. From Eq. (5), Tr X̂ ≥ P�
S

holds for any

X̂ ∈ X. Let X̂� be an optimal solution to Problem DP;

then, we can derive that Tr X̂� = P�
S

holds [25].

Problem DP is also a convex programming problem.

Unfortunately, Problems P and DP are much more

difficult to solve than the well-known primal and dual

problems for finding an optimal global measurement (e.g.,

[21]), which is not limited to an SM. The reason is that,

in the former problems, since Ω is not countable (e.g., it

is difficult to decide whether X̂ is in X or not). However,

we can obtain an analytical (or numerical) solution to

Problems P and DP in some cases.

III. Properties of optimal sequential measurements

A. Conditions for optimal sequential measurements

We first show necessary and sufficient conditions for

an optimal SM.

Theorem 1 (Theorem 2 of Ref. [26]) For any Â ∈
MA, the following statements are all equivalent.

(1) Â is an optimal solution to Problem P.

(2) The following holds with an optimal solution, X̂�, to

Problem DP:

(X̂� − σ̂ω)Â(ω) = 0, ∀ω ∈ Ω. (6)

(3) There exists X̂� ∈ X satisfying Eq. (6).

(4) The following holds:∫
Ω

σ̂ω′ Â(dω′) ≥ σ̂ω, ∀ω ∈ Ω. (7)

Equation (6) implies that, for any ω ∈ Ω, supp Â(ω)

is in the kernel of X̂� − σ̂ω. If Â is discrete-valued (i.e.,

Â(ω) � 0 holds for ω ∈ Ω only if ω is in at most countable

set {ωn}n), then Eq. (7) can be rewritten as∑
n

σ̂ωn Â(ωn) ≥ σ̂ω, ∀ω ∈ Ω, (8)

which is equivalent to Eq. (19) of Ref. [24] 1.

B. Symmetric property

We next show that if a given state set has a certain sym-

metry, then there exist optimal solutions to Problems P

and DP with the same type of symmetry. This fact is

useful to obtain an analytical (or numerical) expression

of an optimal solution.

We use group theory to exploit the symmetric proper-

ties of quantum states. Let G be a group with at least two

1Although a continuous-valued POVM might be optimal, there al-
ways exists an optimal solution to Problem P with a finite number of
outcomes [25] if HA is finite dimensional.
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elements and e ∈ G be its identity element. Suppose that

the following statements hold:

(1) There exists a map πg : IM → IM , for each m ∈ IM ,

such that πgh(m) = πg[πh(m)] (g, h ∈ G) and πe(m) =

m hold.

(2) For any g ∈ G, there exists a unitary (or anti-unitary)

operator Ûg on HAB written by Ûg = V̂g ⊗ Ŵg with

unitary (or anti-unitary) operators V̂g on HA and Ŵg

on HB. Moreover, V̂gh = V̂gV̂h and Ŵgh = ŴgŴh hold

for any g, h ∈ G. (Note that this gives V̂e = 1̂A and

Ŵe = 1̂B.)

For any g ∈ G, let ηg : Ω→ Ω be a map satisfying

B̂[ηg(ω)]
m = ŴgB̂(ω)

π−1
g (m)

Ŵ†
g , ∀g ∈ G,m ∈ IM , ω ∈ Ω,

(9)

where π−1
g is the inverse map of πg.

Note that all of the following maps can be regarded as

group actions: m 
→ πg(m), Q̂(A) 
→ V̂gQ̂(A)V̂†
g (Q̂(A) ∈

SA), Q̂(B) 
→ ŴgQ̂(B)Ŵ†
g (Q̂(B) ∈ SB), Q̂ 
→ ÛgQ̂Û†

g
(Q̂ ∈ SAB), and ω 
→ ηg(ω) 2.

The following theorem holds.

Theorem 2 (Theorem 4 of Ref. [26]) Suppose that a

state set {ρ̂m}m∈IM satisfies

Ûgρ̂mÛ†
g = ρ̂πg(m), ∀g ∈ G,m ∈ IM . (10)

Then, there exists an optimal solution Â� to Problem P

such that

V̂gÂ�(ω)V̂†
g = Â�[ηg(ω)], ∀g ∈ G, ω ∈ Ω. (11)

Moreover, there exists an optimal solution X̂� to Prob-

lem DP such that

V̂gX̂�V̂†
g = X̂�, ∀g ∈ G. (12)

It follows that if Eq. (11) holds, then Π̂(Â�) has the

following symmetry:

ÛgΠ̂
(Â�)
m Û†

g = Π̂
(Â�)
πg(m)
. (13)

Problems P and DP clearly remain in convex program-

ming problems even if we restrict the solution domains

from MA to {Â ∈ MA : V̂gÂ(ω)V̂†
g = Â[ηg(ω)], ∀g ∈ G}

and from X to {X̂ ∈ X : V̂gX̂V̂†
g = X̂, ∀g ∈ G},

respectively.

IV. Examples

Now, we provide two examples of deriving closed-form

analytical expressions for optimal SMs.

2In Ref. [26], these maps are denoted as the same symbol, i.e., “g◦”.

A. Example 1

Our first example demonstrates that there exists a set

of product states that can be exactly distinguished by

an SM from Bob to Alice, while the average success

probability of any SM from Alice to Bob is almost zero.

Let us consider an SM from Alice to Bob for K2 states

{ρ̂m,k}m,k∈IK , where

ρ̂m,k �
1

K2
|ψm,k〉 〈ψm,k | ,

|ψm,k〉 � |a(m)
k 〉 ⊗ |m〉 , (14)

and K is prime. {|m〉}m∈IK is an orthonormal basis (ONB)

in HB with dim HB = K. For each m ∈ IK , {|a(m)
k 〉}k∈IK

is also an ONB in HA with dim HA = K. A set of

ONBs {|a(m)
k 〉}m,k∈IK constitutes so-called mutually unbi-

ased bases (MUB) [28], which satisfy | 〈a(m)
k |a(m′)

k′ 〉 | =
1/
√

K (∀k, k′ ∈ IK) for any distinct m,m′ ∈ IK . In the

case of K = 2, an analytical expression for an optimal

SM has been derived in Ref. [10]. In what follows, we

will provide an analytical solution for K ≥ 3.

The MUB basis vectors {|a(m)
k 〉}m,k∈IK can be chosen to

be eigenstates of generalized Pauli operators. Generalized

Pauli operators Ŝ X and Ŝ Z are expressed by

Ŝ X �
∑
n∈IK

|n ⊕ 1〉 〈n| ,

Ŝ Z �
∑
n∈IK

τn |n〉 〈n| , (15)

where τ � exp(2π
√−1/K), {|n〉}n∈IK is an ONB in HA,

and ⊕ is the addition modulo K. We choose |a(m)
k 〉, without

loss of generality, such that the ONB {|a(m)
k 〉}k∈IK is the

eigenbasis of the operator Ŝ XŜ m
Z

for each m ∈ IK (see,

e.g., [29]).

First, we obtain an optimal solution X̂� to Problem DP.

Let G be the group generated by Ŝ X and Ŝ Z (i.e., the

entire set of unitary operators expressed as the multipli-

cation of finite number of elements in {Ŝ X, Ŝ Z, Ŝ
†
X
, Ŝ †

Z
}).

For each g ∈ G, the unitary operators V̂g and Ŵg is set to

V̂g � g and Ŵg � 1̂B, and Ûg � V̂g ⊗ Ŵg = g ⊗ 1̂B. We

can easily verify that {ρ̂m,k}m,k∈IK satisfies Eq. (10) with

appropriate maps {πg}g∈G. Therefore, from Theorem 2,

there exists an optimal solution X̂� to Problem DP such

that Ŝ XX̂�Ŝ †
X
= X̂� = Ŝ ZX̂�Ŝ †

Z
, i.e., X̂� commutes with

Ŝ X and Ŝ Z. On the other hand, since Ŝ X and Ŝ Z do not

share any eigenvector, any operator commuting with Ŝ X

and Ŝ Z is proportional to 1̂A. Thus, we have X̂� = c�1̂A

with a constant c�. Substituting this into Problem DP, we

obtain the following problem

minimize c
subject to c1̂A ≥ σ̂ω, ∀ω ∈ Ω (16)

with variable c, whose optimal value is c�. Thus, it

follows that c� equals the maximum of the largest eigen-
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values of σ̂ω, which gives

c� = max {〈φ|σ̂ω|φ〉 : |φ〉 ∈ HA, 〈φ|φ〉 = 1, ω ∈ Ω} .
(17)

c� can be derived from this equation as follows. Substi-

tuting Eq. (14) into Eq. (4), we have

σ̂ω =
1

K2

∑
m,k∈IK

p(ω)
m,k |a(m)

k 〉 〈a(m)
k | , (18)

where

p(ω)
m,k � 〈m|B̂(ω)

m,k |m〉 (19)

and {B̂(ω)
m,k}m,k∈IK is the POVM on HB corresponding to

ω ∈ Ω. From Eq. (18), we have that for any normal

vector |φ〉 ∈ HA,

〈φ|σ̂ω|φ〉 = 1

K2

∑
m,k∈IK

p(ω)
m,k

∣∣∣〈φ|a(m)
k 〉∣∣∣2

≤ 1

K2

∑
m,k∈IK

p(ω)
m,k

∣∣∣∣〈φ|a(m)
κ(m)

〉
∣∣∣∣2

≤ 1

K2

∑
m∈IK

∣∣∣∣〈φ|a(m)
κ(m)

〉
∣∣∣∣2

=
1

K2
〈φ|Γ̂|φ〉 , (20)

where κ(m) is a function of m such that

κ(m) ∈ argmax
k∈IK

| 〈φ|a(m)
k 〉 |, ∀m ∈ IK (21)

and

Γ̂ �
∑

m∈IK

|a(m)
κ(m)

〉 〈a(m)
κ(m)

| . (22)

The third line of Eq. (20) follows from
∑

k∈IK
p(ω)

m,k ≤
〈m|1̂B|m〉 = 1, which is given by

∑
k∈IK

B̂(ω)
m,k ≤ 1̂B.

Due to the symmetry of the states, we can here assume

κ(m) = 0 for each m ∈ IK without loss of generality. It is

known that, in the case when K ≥ 3 is prime, |a(m)
k 〉 can

be expressed as (e.g., [29])

|a(m)
k 〉 = 1√

K

∑
n∈IK

τ−kn+mn(n−1)/2 |n〉 . (23)

Substituting Eq. (23) into Eq. (22), and with some alge-

bra, we can obtain

Γ̂ =

∣∣∣∣∣K + 1

2

〉 〈
K + 1

2

∣∣∣∣∣ + 2
∑

m∈I(K−1)/2

|νm〉 〈νm| , (24)

where |νm〉 is the normal vector defined by

|νm〉 �
{

(|0〉 + |1〉)/√2, m = 0,

(|m + 1〉 + |K − m〉)/√2, m > 0.
(25)

Equation (24) indicates that the largest eigenvalue of Γ̂

is 2, and thus, from Eq. (20), the maximum value of

〈φ|σ̂ω|φ〉 is 2
K2 , which gives c� = 2

K2 (i.e., X̂� = 2
K2 1̂A).

Therefore, we obtain 3

P�S = TrX̂� =
2

K
. (26)

Next, we obtain an optimal SM. From Eq. (6), if

Â(ω) � 0, then at least one of the eigenvalues of

X̂� − σ̂ω ≥ 0 is zero; i.e., σ̂ω has the eigenvalue 2
K2 . This

implies that the equality in Eq. (20) holds when |φ〉 = |u〉,
where |u〉 is a normalized eigenvector corresponding

to the largest eigenvalue of σ̂ω. We consider the case

p(ω)
m,k = δk,κ(m) (δm,n is the Kronecker delta), where κ(m)

satisfies Eq. (21) with |φ〉 = |u〉, which is sufficient for

the equality in Eq. (20) with |φ〉 = |u〉. In this case, B̂(ω)
m,k

can be expressed as

B̂(ω)
m,k = δk,κ(m) |m〉 〈m| . (27)

We can easily verify that Â(ω) written by the following

form:

Â(ω) = γ |u〉 〈u| (28)

with γ > 0 satisfies Eq. (6). These conditions help us to

find an optimal SM.

Let κ(m) = t ⊕ ms (s, t ∈ IK) and ωs,t ∈ Ω be the

corresponding index; then, Eq. (27) gives

B̂(ωs,t)

m,k = δk,t⊕ms |m〉 〈m| . (29)

From Eq. (18), we have

σ̂ωs,t =
1

K2

∑
m∈IK

|a(m)
t⊕ms〉 〈a(m)

t⊕ms| . (30)

The following is a normalized eigenvector corresponding

to the largest eigenvalue, 2
K2 , of σ̂ωs,t :

|us,t〉 � 1√
2K

∑
j∈IK

τ js(s+1)/2 |a( j)
t⊕ js〉 . (31)

In this case, we can see that Eq. (21) holds with |φ〉 = |u〉.
We choose Â� such that

Â�(ωs,t) �
1

K
|us,t〉 〈us,t | (32)

and Â�(ω) � 0 when ω ∈ Ω is not in {ωs,t : s, t ∈ IK}. We

can easily verify
∑

s,t∈IK
Â�(ωs,t) = 1̂A, and thus, Â� is a

POVM on HA with K2 outcomes {ωs,t}s,t∈IK . Since Eq. (6)

with Â = Â� holds, from Theorem 1, Â� is an optimal

solution to Problem P. Substituting Eqs. (29) and (32)

into Eq. (1), the corresponding optimal SM {Π̂(Â�)
m,k }m,k∈IK

can be expressed by

Π̂
(Â�)
m,k =

∑
s,t∈IK

(
1

K
|us,t〉 〈us,t |

)
⊗ (δk,t⊕ms |m〉 〈m|)

=
1

K

∑
s∈IK

|us,k�ms〉 〈us,k�ms| ⊗ |m〉 〈m| , (33)

3If K = 2, then Eq. (23) does not hold. However, we can apply the
same technique to this case and obtain X̂� = ( 1

4 +
1

4
√

2
)1̂A. This yields

P�
S
= 1

2 +
1

2
√

2
, which is consistent with the result in Ref. [10].
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where � denotes the subtraction modulo K.

We now compare the performances of SMs from Alice

to Bob and the other way around. From Eq. (26), the

average success probability, P�
S

, of an optimal SM from

Alice to Bob converges to zero if K goes to infinity. This

behavior is substantially different from that in the case of

an SM from Bob to Alice, of which the maximum average

success probability is exactly one regardless of K. Indeed,

in this case, Bob first measures in the {|m〉}m∈IK basis,

and sends the result m to Alice. She then measures in

the corresponding {|a(m)
k 〉}k∈IK basis. We can regard |a(m)

k 〉
as a quantum state in which the classical message k is

encrypted with the classical key m. If the communication

from Bob to Alice is allowed, then Bob can completely

specify the key m and sends it to Alice. In this case,

she can correctly decrypt the message k. However, if not

allowed, Alice cannot fully decrypt k.

B. Example 2

In our second example, we show a set of product states

that can be exactly distinguished by two-way LOCC,

while the average success probability of any SM, regard-

less of the direction of communication, is almost zero.

Let us consider the following K3 states {ρ̂′m,k,l}m,k,l∈IK :

ρ̂′m,k,l �
1

K3
|ψ′m,k,l〉 〈ψ′m,k,l| ,

|ψ′m,k,l〉 � |a(m)
k 〉 ⊗ [|m〉 ⊗ |a(k)

l 〉], (34)

where |a(m)
k 〉 ∈ HA and |m〉⊗|a(k)

l 〉 ∈ HB,1⊗HB,2 = HB are

respectively states in Alice’s and Bob’s subsystems. HA,

HB,1, and HB,2 are all K-dimensional. |a(m)
k 〉 and |m〉 are

the same as the above-mentioned one; i.e., {|m〉}m∈IK is

an ONB in a Hilbert space HB,1, and a set of {|a(m)
k 〉}k∈IK

constitutes MUB in HA or HB,2. In this example, it can

be interpreted that the classical message k is encrypted

with the classical key m, and the message l is encrypted

with the key k. Thus, if LOCC with two rounds of

communication (i.e., Bob → Alice → Bob) is allowed,

then these states are perfectly distinguishable, while they

cannot be perfectly distinguished if restricted to an SM.

We consider an SM from Alice to Bob and another

from Bob to Alice. In the former case (i.e., Alice →
Bob), to determine m and k as accurately as possible,

they perform an optimal SM on the state |a(m)
k 〉 ⊗ |m〉 ∈

HA ⊗ HB,1 in the same way as the first example. If

they correctly identify k, then Bob can perfectly get l by

subsequently measuring in the {|a(k)
l 〉}l∈IK basis in HB,2.

In the latter case (i.e., Bob → Alice), Bob can get m
without disturbing the global state |a(m)

k 〉 ⊗ |m〉 ⊗ |a(k)
l 〉

by simply measuring in the {|m〉}m∈IK basis in HB,1.

After that, they must discriminate between the pure states

{|a(m)
k 〉 ⊗ |a(k)

l 〉]}k,l∈IK with fixed m, which can be regarded

as the same states as those given by {|ψm,k〉}m,k∈IK of

Eq. (14). Thus, an optimal SM for these states can be

obtained in the same way as the first example. In the

both cases, it follows that the maximum average success

probability is 2
K (i.e., identical to P�

S
of Eq. (26)), which

converges to zero if K goes to infinity. The analytical

expressions of optimal SMs are also obtained in the same

way as the first example.

V. Conclusion

Two examples were provided in which optimal SMs

can be obtained using the methods of Refs. [25], [26].

These examples demonstrate that the dual problem for an

optimal SM and its properties derived in these references

are useful for obtaining an analytical expression of an op-

timal SM. We showed that there is a quantum state set in

which the gap between the average success probabilities

of an optimal SM and an optimal LOCC measurement is

almost one, and that there is another quantum state set in

which the gap between the average success probabilities

of an optimal LOCC measurement and an optimal global

measurement is almost one.
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