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Abstract—The error probability of 2M -level intensity
modulated coherent state signal with base level offset is
investigated under the assumptions that the signal is trans-
mitted through a noisy channel and directly detected. For
the 2M -level signal, a simple approximation of the error
probability by direct detection against the signal-to-noise
ratio is derived by means of Gaussian approximation.

I. INTRODUCTION

There are various types of signal modulation formats

for current and future optical communication systems

(e.g., [1], [2], [3], [4]). In typical scenarios of optical com-

munications, signal formats are appropriately chosen for

realizing high-capacity, long-distant, and energy-efficient

systems in accordance with system specifications and

requirements. Particularly, the application range of multi-

ary optical signals has become wider with the progress

of digital coherent optical communication systems [5].

In addition, the design of signal modulation formats for

secure optical communications is also important. As for

the quantum stream cipher by Yuen 2000 protocol [6],

[7] (abbreviated called as Y00; also known as αη), its

first experimental demonstration was done by using a

multi-ary phase-shift keying signal [8] (See also [9]).

Soon after the publication of Yuen’s epoch-making work,

Hirota proposed a multi-level intensity modulation-based

implementation scheme of Y00 [10], [11], [12]. With

this implementation scheme, various types of experiments

of Y00 have been reported for investigating not only

fundamental features of it ([12], [13], etc) but also

practical communication performance as a secure optical

communication system ([14], [15], [16], [17], [18], etc).

There are two remarkable discussions for further de-

velopment of the quantum stream cipher; one is about

a randomization technique called the quantum diffusion

mapping (QDM) by Hirota and Kurosawa [19] (See also

[20]), and another the coherent pulse position modulation

(CPPM) (which was originally proposed in the literature

[7] by Yuen and restated in the literature [21]) by Sohma

and Hirota [22], [23], [24], [25]. Based on these discus-

sions, a new concept of physical cipher called Quantum

Enigma Cipher (QEC) was coined by Hirota [26]. Broad

and specific reviews of QEC were made in the literatures

[27](with Futami), [28], [29], [30] by himself. Further,

in line with the progress of such theoretical research, the

experimental research of the quantum stream cipher has

entered a new stage with a newly developed transceiver

named as TU Cipher-0 [31], [32].

In the literature [20], we observe that the error proba-

bilities (or the corresponding correct detection probabil-

ities) of Y00 coherent state signal for an adversary who

attempts to read true message or get a secret key were

investigated by means of the approximation under several

attacking scenarios. For example, the error probabilities

of neighboring signals by heterodyne measurement were

approximately evaluated for the phase, amplitude, and

intensity modulation cases, respectively, and the approxi-

mations of the correct detection probabilities of Y00 co-

herent state signal by the square-root measurement at the

single slot and code-word block cases were respectively

derived under the condition that the absolute value of

the inner product of neighboring signal states is close

to unity. Since these analyses were done for proving the

immunity against correlation and algebraic attacks, the

resulting approximations illustrate the essential aspects

of its cryptographic performance.

Among the signals used in the quantum stream cipher,

we focus on the multi-level intensity modulated coherent

state signal in this article. A notable feature of this signal

is that it has a base level offset. As mentioned above,

the cryptographic and communication performances of

the intensity modulation-based Y00 as a secure optical

communication system have been widely discussed. In

contrast, the communication performance of this signal

in a standard communication scenario where the signal

conveys multi-bit information has not been discussed

yet. Therefore, our question is how much communication

performance can be expected when the multi-level signal

with base level offset is directly utilized for the trans-

mission of multi-bit information, not for cryptographic

use: the purpose of our study is to investigate the error

probability of the multi-level signal with base level offset

in the standard communication scenario above.
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For the analysis of the multi-level signal with base

level offset to be done in this article, we suppose each

signal state that forms the multi-level signal with base

level offset is degraded by additional noise due to the

environment, the optical amplifiers chaining the channel,

and so on. In such cases, the quality of received signals

is commonly measured by the signal-to-noise ratio. As

the first step of our study on the multi-level signal with

base level offset, the case of direct detection will be

considered. That is, the error probability of the multi-level

signal with base level offset by direct detection against

the signal-to-noise ratio will be investigated. In addition,

we will see that the exact form of the error probability

of the multi-level signal is inconvenient for computation.

Hence, we will attempt to find the approximation of the

error probability by means of Gaussian approximation,

and further, the resulting approximation will be compared

with some exact values of the error probability to see the

validity of the approximation.

II. A MODEL OF OUTPUT STATE FROM A NOISY

CHANNEL

Suppose an optical signal in the coherent state |μ′〉
of complex amplitude μ′ is transmitted via a noisy

communication channel, and the output state from the

channel is expressed in the following form.

ρ̂(μ) =
1

πN

∫
exp[−|γ − μ|2

N
]|γ〉〈γ|d2γ, (1)

where |γ〉 is the coherent state, and N is the average of

the photon number of noise. Such a state actually appears

in the discussions of the effect of thermal background

noise and the analysis of phase insensitive amplifiers.

The photon distribution of this state is given [33] by

p(n|μ) = 〈n|ρ̂(μ)|n〉

=
Nn

(1 +N)n+1

× exp

[
− |μ|2
1 +N

]

×Ln

[
− |μ|2
N(N + 1)

]
, (2)

where Ln[x] is the Laguerre polynomial [34] (Appendix
A). This distribution is commonly known as the Laguerre

distribution. The average and variance of the photon

number are respectively given [33] by

〈n̂〉 = Tr ρ̂(μ)â†â = |μ|2 +N, (3)

and

〈Δn̂2〉 = 〈n̂2〉 − 〈n̂〉2

= Tr ρ̂(μ)â†ââ†â−
(
Tr ρ̂(μ)â†â

)2
= |μ|2 + 2|μ|2N +N(N + 1). (4)

The signal-to-noise ratio of direct detection for the state

ρ̂(μ) is given by

SNR =
〈n̂〉2
〈Δn̂2〉 =

(|μ|2 +N)2

|μ|2 + 2|μ|2N +N(N + 1)
. (5)

III. 2M -LEVEL SIGNAL WITH BASE LEVEL OFFSET

Here we give a mathematical description of 2M -

level signal with base level offset in the presence of

additional noise. Suppose the signal intensity levels,

S0, S1, . . . S2M−1, are placed ΔS photons apart, the base

level S0 is nonzero, and each quantum state of the

received signals in front of a detector is given as ρ̂(
√
Si).

Defining the parameters

S̄ =
1

2M

2M−1∑
i=0

Si (6)

and

r =
S2M−1
S0

, (7)

the signal intensity levels are given by

Si =

{
2

r + 1
+ i

2(r − 1)

(r + 1)(2M − 1)

}
S̄. (8)

A schematic of the signal intensity level structure defined

above is illustrated in Fig. 1, where the intensity levels

within the interval from S0 to S2M−1 have been omitted.
The average intensity level of a received signal is given

by

S′i = Si +N, (9)

and the corresponding variance is given by

σ2i = Si + 2SiN +N(N + 1). (10)

When the thresholds for decision are the middle levels

between the closest received signals, the probabilities of

correct decision are given as follows.

P (i|i) =
u(i)∑

n=�(i)

p(n|
√
Si), (11)

where

u[i] =

{

(S′i + S′i+1)/2�, i < 2M − 1,
∞, i = 2M − 1,

(12)

and

	[i] =

{
0, i = 0,
u[i− 1] + 1, i > 0.

(13)

Assuming that the element signals are equiprobable, the

average probability of error is given by

P̄e = 1− 1

2M

2M−1∑
i=0

P (i|i). (14)

To characterize the multi-level signal by one param-

eter, the averaged state over all the element signals is

introduced as follows.

ρ̂ =
1

2M

2M−1∑
i=0

ρ̂(
√
Si). (15)
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The average and variance of the photon number for the

state ρ̂ are respectively given as follows.

〈n̂〉|ρ̂ = Tr ρ̂â†â = S̄ +N (16)

and

〈Δn̂2〉
∣∣
ρ̂
= S̄ + 2S̄N +N(N + 1). (17)

From these quantities, the signal-to-noise ratio for the

state ρ̂ is given by

SNR|ρ̂ =
(S̄ +N)2

S̄ + 2S̄N +N(N + 1)
. (18)

IV. APPROXIMATION OF THE ERROR PROBABILITY

A. Gaussian approximation
The exact value of the error probability for a multi-

level signal is obtained from Eqs.(11)-(14) and Eq.(18).

However, this formula is inconvenient for computation

because a number of p(n|Si) must be evaluated when S̄
is large. This motivates us to find an approximation of

Eq.(14) for large S̄.
To find the approximation, we first assume that each

p(n|Si) can be approximated as the normal distribution

with mean S′i and variance σ2i . Then the probabilities of

correct decision of Eq.(11) are approximately expressed

as follows.

P (i|i) ≈

⎧⎨
⎩

1− Q[ΔS/2σ0], i = 0;
1− 2Q[ΔS/2σi], 0 < i < 2M − 1;
1− Q[ΔS/2σ2M−1], i = 2M − 1,

(19)

where Q[x] is the Q-function (Appendix C). Therefore,

the error probability is rewritten as

P̄e ≈ 1

2M
Q[ΔS/2σ0]

+
1

M

2M−2∑
i=1

Q[ΔS/2σi]

+
1

2M
Q[ΔS/2σ2M−1]. (20)

(a) (b) (c)

S2M−1

S0

S2M−1

S0

S2M−1

S0

S̄ S̄ S̄

Fig. 1. (a) r = 1.5 , (b) r = 2 , (c) r = 3

Each variance σ2i depends on the signal intensity level

Si, and Si is obtained by the average intensity level S̄
and th index i as shown in Eq.(8). Hence, when S̄ � N ,

we observe
ΔS

2σi
≈ Ki

√
SNR|ρ̂, (21)

where

Ki =
r − 1√

2(2M − 1)(r + 1){(2M − 1) + i(r − 1)}
.

(22)

Substituting this into Eq.(20), we obtain

P̄e,approx =
1

2M
Q[K0

√
SNR|ρ̂]

+
1

M

2M−2∑
i=1

Q[Ki

√
SNR|ρ̂]

+
1

2M
Q[K2M−1

√
SNR|ρ̂]. (23)

B. Validity of the approximation

Numerical evaluation of P̄e and P̄e,approx is done in

the following conditions:

• M : 2 and 4 (4-level and 8-level)

• S̄ : 10 000 photons

• r : 1.5, 2.0, and 3.0
• SNRdB: 20 ∼ 35 dB for P̄e, and 20 ∼ 40 dB for

P̄e,approx

The results of numerical simulations for 4-level and 8-

level signals at r = 1.5, 2, 3 are shown in Fig.2 and

Fig.3, respectively. In each case, the dots stand for the ex-

act error probability P̄e, and the solid lines are P̄e,approx.

In addition, the difference and relative difference between

P̄e and P̄e,approx are shown in Fig. 4. Recall that the error

probability is usually plotted in log or double-log scale.

Taking account of this fact, the difference between P̄e and

P̄e,approx is small enough. Thus, we see that P̄e,approx
gives a good approximation to P̄e.

C. An application of the approximation

For the demonstration of the usefulness of the approxi-

mation, let us use the formula (23) to estimate the signal-

to-noise ratio SNR required to achieve the designed error

probability P̄e at a given parameter r. To do so, we first

set P̄e = 10−9 for 4-level signal (M = 2), and P̄e = 10−5

for 8-level signal (M = 4). By using the formula (23)

the relations between the signal-to-noise ratio and the

parameter r for these two cases are easily obtained as

shown in Fig.5 and Fig.6, respectively.

V. SUMMARY

The error probability of 2M -level intensity modulated

coherent state signal with base level offset was investi-

gated under the assumptions that the signal is transmitted

through a noisy channel and directly detected. Based on

a model of the received element signals of the 2M -

level signal in the presence of additional noise, the error
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probability for the 2M -level signal by direct detection

was formally obtained. However, the exact formula of the

error probability we obtained is inconvenient for compu-

tation due to its computational load when the average

signal level is large, so that a simple approximation of

the error probability was derived by means of Gaussian

approximation. To see the validity of the approximation, it

was numerically compared with some exact values of the

error probability in the case of 4-level and 8-level signals.

From this simulation, it was shown that the difference

between the exact value and the approximation is small

enough.
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APPENDIX

A. The Laguerre polynomials ([34])

Ln[x] =
n∑

k=0

(
n

k

)
(−1)k

k!
xk.

For instance, L0[x] = 1, L1[x] = −x + 1, and

L2[x] =
1
2 (x

2 − 4x+ 2).

B. The complementary error function ([34])

erfc[x] =
2√
π

∫ ∞

x

e−τ2

dτ.

C. The Q-function ([35])

Q[x] =
1√
2π

∫ ∞

x

exp[−τ2

2
]dτ =

1

2
erfc[

x√
2
].
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