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Optomechanical entanglement: How to prepare, verify and ”steer” a macroscopic mechanical
quantum state?
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We consider a generic optomechanical system and investigate quantum entanglement between the outgoing
light fields and the mechanical motion of the mirror. In contract to traditional approach, we do not consider
quantum correlations between the intracavity optical mode and the mechanical motion of a mirror, rather the
correlations between the continuum of optical fields in the outgoing light wave and the mechanical degree of
freedom. This entanglement is shown to be robust to thermal decoherence and depend on the ratio of mea-
surement strength (light power) and decoherence rate ∝ T/Qm. Furthermore, we describe a feasible way to
demonstrate quantum state steering, usinging time-variable homodyne detection scheme that allows to evade
back-action. An intimate connection between optomechanical steerability and quantum state tomography [Phys.
Rev. A 81, 012114 (2010)] is demonstrated.

I. INTRODUCTION

Optomechanics becomes our gate to the macroscopic quan-
tum world [1]. Recently, experimentalists have successfully
cooled the macroscopic oscillator to its ground state using op-
tomechanical interaction [2, 3] and unveiled the hitherto elu-
sive quantum radiation pressure shot noise [4]. These remark-
able successes imply that strong non-local quantum correla-
tions first predicted by Einstein, Podolsky and Rosen [5], will
soon be seen for really macroscopic mechanical objects in the
spirit of original EPR proposal. In fact, the task of demonstra-
tion of robust EPR entanglement in optomechanical systems
has been attended by many authors [6–12]. In this paper, we
focus however on a particular case of correlations arising be-
tween the outgoing light fields and the mechanical motion of
the centre of mass of a movable mirror in the optical Fabry-
Pérot cavity that is not a bipartite entanglement. As the out-
going light comprises a continuum of optical modes, carry-
ing each a tiny bit of information about the mirror’s motion,
the mechanical degree of freedom finds itself entangled with
a continuum of optical degrees of freedom. Following [13],
we introduce a mathematical framework for treating quantum
entanglement that involves infinite degrees of freedom, and
show that this entanglement is suprisingly robust to environ-
mental disturbances and persists for more than one mechan-
ical oscillation period after the optomechanical interaction is
turned off, provided that the characteristic frequency of the
optomechanical interaction is higher than that of the thermal
noise.

We also suggest a way to utilise this entanglement do
demonstrate ”steering” of a mechanical state — the ability
of modifying the quantum state of one party by making dif-
ferent measurements on the other. This is the essence of
the Gedankenexperiment of Einstein, Podolsky, and Rosen
(EPR) [5], and has been rigorously formulated by Wiseman et
al. [14–16] as quantum steerability. More recently, Wiseman
has shown that steerability can be demonstrated by showing
detector-dependent stochastic evolution of a two-level atom
coupled to an optical field which in turn is measured continu-
ously [17].

FIG. 1. A typical optomechanical system and the corresponding
spacetime diagram for the ingoing and outgoing light rays. Here
x̂, âin and âout denote the oscillator position, ingoing and outgoing
fields, ωm, κm stand for oscillator frequency and decay rate, â, κ and
L denote intracavity optical mode, cavity bandwidth and length, re-
spectively. We assume bad cavity limit when κ � ωm and thus the
dynamics of â can be considered following the ingoing light adia-
batically. For clarity, we intentionally place âin and âout on different
sides of the oscillator world line. The inclined lines represent the
light rays. Up to some instant we are concerned with (t = 0), the op-
tical fields entering later are out of causal contact and thus irrelevant.

This paper is organised as follows: in Sec. II, we set our
model of optomechanical system and derive the dynamics
thereof; in Sec. III, we consider a conditional dynamics of
Gaussian mechanical states resulting from continuous moni-
toring of the outgoing light; in Sec. IV an entanglement be-
tween the outgoing light and mechanical oscillations of the
cavity mirror is studied in detail; Sec. V is devoted to the use
of the optomechanical entanglement for experimental demon-
stration of the quantum state steering; Sec. VI contains some
summarising remarks and concludes this paper.
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II. OPTOMECHANICAL SYSTEM AND CONTINUOUS
MEASUREMENT

We start by considering a dynamics of a linear optomechan-
ical device presented in Fig. 1 which has been extensively
studied [12, 18–20]; its linearised Hamiltonian reads:

Ĥ = p̂2/(2m)+mω2
mx̂2/2+Ĥκm + h̄Δâ†â+ h̄gx̂(â† + â)

+ ih̄
√

κ(âextâ† − â†
extâ) . (1)

Here ωm is the mechanical resonant frequency; Δ = ωc −ωl
is cavity detuning, i.e., difference between the cavity reso-
nant frequency ωc and the laser frequency ωl ; Ĥκm sum-
marises the fluctuation-dissipation mechanism for the me-
chanical oscillator; the fifth term is the optomechanical inter-
action term with g≡ āωc/L quantifying the coupling strength,
ā the steady-state amplitude of the cavity mode and L the cav-
ity length; the last term describes the coupling between the
cavity mode and external continuous optical field âext with

[âext(t), â†
ext(t

′)] = δ (t − t ′) in the Makovian limit and κ is the
coupling rate which is also the cavity bandwidth.

From Hamiltonian (1), one can obtain the following set of
linear Heisenberg equations of motion

m[ ¨̂x(t)+κm ˙̂x(t)+ω2
mx̂(t)] = F̂rp(t)+ F̂th(t) , (2)

˙̂a(t)+(κ/2+ iΔ)â(t) =−igx̂(t)+
√

κ âin(t) , (3)

and the input-output relation

âout(t) =−âin(t)+
√

κ â(t) , (4)

where âin ≡ âext(t−) (in-going) and âout ≡ âext(t+) (out-going)
are input and output operators in the standard input-output for-
malism [21], and F̂rp ≡ −h̄g(â+ â†) is the quantum radiation

pressure force and F̂th is the thermal fluctuation force associ-
ated with the mechanical damping. Output field âout can be
measured with a homodyne detection scheme, from which we
can infer the mechanical motion and thus the quantum state of
the oscillator. By adjusting the local oscillator phase, one can
measure any θ -quadrature: b̂θ = b̂1 sinθ + b̂2 cosθ , which is
a linear combination of the output amplitude quadrature b̂1 ≡

1√
2
(âout + â†

out) and phase quadrature b̂2 ≡ 1√
2i
(âout − â†

out).

After incorporating non-unity photodetection efficiency η , the
measurement output at time t is given by

ŷθ (t) =
√

η
[
b̂1(t)sinθ + b̂2(t)cosθ

]
+
√

1−η n̂θ (t) , (5)

where n̂θ is the vacuum noise associated with the photode-
tection loss and is uncorrelated with âin. Note that θ can
be a function of time, when the local oscillator phase is ad-
justed during the measurement; in this way a different optical
quadrature (but only one) is measured at each moment of time.

Large cavity bandwidth and strong measurement limit.—
The particular scenario that allows for concise form expres-
sions and at the same time represents all the physics is theone
when the cavity bandwidth is large and the optomechanical
coupling rate is strong — a strong measurement, compared
to the mechanical resonant frequency ωm. In this case, the

FIG. 2. The displacement noise spectrum of an optomechanical de-
vice and the characteristic frequencies of the force noise ΩF , the
quantum noise Ωq, and the sensing noise Ωx referring to the Stan-
dard Quantum Limit (SQL) in the strong measurement, bad-cavity
limit, i.e. when κ � Ωq � ωm.

cavity mode can be adiabatically eliminated, and the mechan-
ical resonant frequency ωm ignored (for general scenarios, the
formalism here still applies but the analytical results become
quite complicated). Correspondingly, equations of motion for
the oscillator read reads [cf. Eqs. (2) and (3)]:

m ¨̂x(t) = F̂rp(t)+ F̂th(t) =−α â1(t)+ F̂th(t) , (6)

with â1 ≡ 1√
2
(âin + â†

in) the amplitude quadrature of the input

field. The output amplitude quadrature ŷ1 and phase quadra-
ture ŷ2 are given by [cf. Eqs. (4) and (5)]:

ŷ1(t) =
√

η â1(t)+
√

1−η n̂1(t) , (7)

ŷ2(t) =
√

η [â2(t)+(α/h̄) x̂(t)]+
√

1−η n̂2(t) , (8)

where â2 ≡ 1√
2i
(âin − â†

in) is the phase quadrature of the input

field, and additionally we have introduced an effective cou-
pling constant (measurement strength) α ≡√

8/κ h̄g.

In this special case, all the noise sources are Markovian and
thus can be characterised by single values of their spectral
densities. However, it is instructive to introduce character-
istic frequencies thereof, where displacement spectrums in-
tersect the standard quantum limit (SQL) as a benchmark:
ΩF ≡ [2mκmkBT/(h̄m)]1/2, Ωq ≡ [α2/(h̄m)]1/2, and Ωx ≡
Ωq[2η/(1−η)]1/2. In Fig. 2, we plot these noise sources in
the strong measurement limit, when quantum fluctuations of
light dominate over all other noise sources in some frequency
band, set by the values of ΩF and Ωx. This is the general re-
quirement one has to satisfy to be able to see quantum correla-
tions, or use them for manipulations with mechanical quantum
states [10, 22].
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III. CONDITIONAL QUANTUM STATE.

Now suppose we perform homodyne detection during −τ ≤
t ≤ 0, obtaining a data string:

yyyθ = {yθ (−τ), yθ (−τ +dt), · · · , yθ (−dt), yθ (0)} (9)

with dt = τ/(N−1) being the time increment and N the num-
ber of data points. We can then infer the quantum state of
mechanical oscillator at t = 0 conditional on these measure-
ment data, obtaining the so-called conditional quantum state.
The standard way to obtain the conditional state is to use data
to drive the stochastic master equation [23–27]. Here we use a
different approach by using the Wigner quasi-probability dis-
tributions, deriving the conditional quantum state in a way
similar to classical Bayesian statistics, in the same spirit as the
approach applied in Ref. [22]; this allows us to more straight-
forwardly treat non-Markovianity, e.g., due to a small cavity
bandwidth and colored classical noises. Our approach takes
the advantage of the following facts:

[ŷθ (t), ŷθ (t ′)] = [x̂(0), ŷθ (t)] = [p̂(0), ŷθ (t)] = 0 (10)

∀ t, t ′ ∈ [−τ,0], which is a consequence of the general fea-
tures of linear continuous quantum measurements [28]. We
can therefore treat ŷθ (t) almost as classical quantities and ig-
nore their time-ordering in deriving the following joint Wigner
function of the oscillator and the continuous optical field:

W (xxx,yyyθ ) = Tr[ρ̂(−τ)δ (2)(x̂xx− xxx)δ (N)(ŷyyθ − yyyθ )] . (11)

Here we have only included the marginal distribution for the
optical quadrature ŷyyθ of interests, instead of the entire opti-
cal phase space; x̂xx ≡ (x̂(0), p̂(0)) and xxx is a c-number vector,
similar for yyyθ ; ρ̂(−τ) is the initial joint density matrix

ρ̂(−τ) = ρ̂ th
m ⊗|000〉〈000| (12)

with ρ̂ th
m the thermal state of the oscillator and |000〉 the vacuum

state for the optical field—the coherent amplitude of the laser
has been absorbed into the optomechanical coupling constant
g. Since x̂(0) and p̂(0) do not commute we have to explic-

itly define δ (2)(x̂xx− xxx) =
∫

d2ξξξ e−iξξξ ·(x̂xx−xxx). Similar to classical
Bayesian statistics, the Wigner function for the conditional
quantum state of the mechanical oscillator at t = 0 reads:

Wm(xxx|yyyθ ) =W (xxx,yyyθ )/W (yyyθ ) . (13)

Since we consider only Gaussian quantum states, the joint
Wigner function can thus be formally written as:

W (xxx,yyyθ ) = c0 exp

[
−1

2
(xxx,yyyθ )V

−1
θ (xxx,yyyθ )

T

]
, (14)

where c0 is the normalization factor and superscript T denotes
transpose. Elements of the covariance matrix Vθ are given by

V jk
θ = 〈X̂XX jX̂XXk〉sym ≡ Tr[ρ̂(−τ)(X̂XX jX̂XXk + X̂XXkX̂XX j)]/2 (15)

with X̂XX ≡ (x̂xx, ŷyyθ ). We separate components of the oscillator
and the optical field, and rewrite the covariance matrix V as:

Vθ =

[
A CT

θ
Cθ Bθ

]
≡
[

A CTuuuT
θ

uuuθ C uuuθ BuuuT
θ

]
. (16)

Here A is a 2×2 covariance matrix for the mechanical oscilla-
tor position x̂(0) and momentum p̂(0); B is a 2N×2N covari-
ance matrix for two quadratures ŷyy1 ≡ ŷyyθ=π/2 and ŷyy2 ≡ ŷyyθ=0

of the optical field; uuuθ = (sinθθθ , cosθθθ) is a N × 2N matrix
and sinθθθ ≡ diag[sinθ(−τ), · · · ,sinθ(0)]—a diagonal matrix
with elements being quadrature angle at different times; C is a
2N ×2 matrix describing the correlation between (ŷyy1, ŷyy2) and
(x̂(0), p̂(0)). Combining Eqs. (13) and (16), we obtain:

Wm(xxx|yyyθ ) =
1

π h̄
exp

[
−1

2
(xxx− xxx|θ )V|θ

m
−1
(xxx− xxx|θ )T

]
, (17)

where the conditional mean xxx|θ and covariance matrix V|θ
m are

xxx|θ = CT
θ B−1

θ yyyT
θ , V|θ

m = A−CT
θ B−1

θ Cθ . (18)

Note that the two rows of the 2N × 2 matrix, CT
θ B−1

θ , which
we shall refer to as KKKx (the first row) and KKK p (the second
row), are also the optimal filters that predict x̂(0) and p̂(0)
with minimum errors, 〈[x̂(0)−KKKx ŷyyT

θ ]
2〉 and 〈[ p̂(0)−KKK p ŷyyT

θ ]
2〉,

respectively. The above results for the conditional mean and
variance are formally identical to those obtained by classical
optimal filtering.

Continuous-time limit.—To properly describe the actual
continuous measurement process, we take the continuous-
time limit with dt → 0, and we have N → ∞. The matrices
indexed by time become functions of time, while matrix prod-
ucts involving summing over time become integrals. In partic-
ular, the central problem of calculating KKK = CTB−1 becomes
solving an integral equation for KKK:

∫ 0

−τ
dt ′ B(t, t ′)KKK(t ′) = CT(t) . (19)

More specifically, B(t, t ′) now becomes a 2× 2 matrix with
elements being the two-time correlation functions between
optical quadratures ŷ1(t) and ŷ2(t ′); C(t)’s elements are cor-
relation functions between (ŷ1(t), ŷ2(t ′)) and (x̂(0), p̂(0)).
These correlation functions can in turn be obtained by solv-
ing Heisenberg equations of motion [cf. Eqs. (2-5)] and ex-
pressing x̂(0), p̂(0), ŷ1(t), and ŷ2(t) in terms of âin(t), n̂(t)
and F̂th(t), for which we have 〈âin(t)â

†
in(t

′)〉sym = δ (t −
t ′)/2, 〈n̂(t)n̂(t ′)〉sym = δ (t − t ′)/2 and 〈F̂th(t)F̂th(t ′)〉sym =
2mκmkBT δ (t − t ′) given the initial state ρ̂(−τ) shown in
Eq. (12). The above integral equation is generally difficult to
solve analytically if τ is finite. Since usually we are not in-
terested in the transient dynamics, we can extend −τ to −∞,
which physically corresponds to waiting long enough till the
mechanical oscillator approaches a steady state, and then start
state preparation. In this case, Eq. (19) can be solved ana-
lytical using the Wiener-Hopf method of which the detail is
shown in the Appendix A.
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IV. OPTOMECHANICAL UNIVERSAL ENTANGLEMENT

Now we can consider a problem of entanglement between
the mechanical oscillator and the outgoing light fields. Ef-
fectively, it is equivalent to bipartite enatanglement of a
single particle with N → ∞ other particles. According to
Refs. [29, 30], in order for one particle and a joint system of
arbitrarily large N particles to be separable, a necessary and
sufficient condition is that partially transposed density ma-

trix ρT1
1|N (with respect to the first particle) should be positive

semidefinite, i.e. ρT1
1|N ≥ 0. In the phase space of continuous

Gaussian variables, this reduces to the Uncertainty Principle

Vpt + iΣΣΣ ≥ 0, ΣΣΣ =
N+1⊕
k=1

σk where σk =

[
0 1
−1 0

]
(20)

Here we introduced a complete covariance matrix of the op-
tomechanical system V ∈ R

(2N+2,2N+2) as:

V ≡
[

A CT

C B

]
(21)

and its partial transpose Vpt = T1VT1, where transformation

T1 = Diag[1,−1]⊕ I2N , with I2N ∈ R
(2N,2N) identity matrix,

performs a time inversion operation for a mechanical part of
the system: Vpt = V|p̂(0)→−p̂(0) which is equivalent to trans-
pose of mechanical sub-matrix in joint optomechanical den-
sity matrix ρ1|N[30].

According to the Williamson theorem, there exists a sym-
plectic transformation S ∈ Sp(2N+2,R) such that STVptS =⊕N+1

k=1 Diag[λk, λk]. Using the fact that STΣΣΣS = ΣΣΣ, the above
Uncertainty Principle reads λk ≥ 1. If this fails to be the case,
i.e. ∃λk < 1, the states are entangled. The amount of entan-
glement can be quantified by the logarithmic negativity EN

[31] and

EN ≡ max[−∑k lnλk, 0] fork : λk < 1. (22)

Going for continuous time limit N → ∞, one can find λk by
solving eigenvalue problem [31]:

Vptv = iλ ΣΣΣv, (23)

where v ≡ [α0, β0, |α), |β )]T with | f ) denoting function of
time which belongs to L 2[−∞, 0]. Due to uniqueness of |α)
and |β ) in terms of α0 and β0 for any λ < 1 (non-singular), Eq.
(23) leads to the following characteristic polynomial equation

det[A+ iλ σk −CT(iλ σk +B)−1C] = 0 (24)

Inversion of matrix iλ σk + B in continuous limit can be
done using the same Wiener-Hopf method discussed above
and presented in Appendix A. Solution shows, there is al-
ways one eigenvalue λ that is smaller than one and it only
depends on the ratio between Ωq and ΩF , which clearly in-
dicates the universality of the quantum entanglement. In Fig.
3, the corresponding logarithmic negativity (c.f. Eq. (22))
is shown as a function of Ωq/ΩF . For a high-Q oscillator

FIG. 3. Logarithmic negativity EN as a function of the ratio Ωq/ΩF .

A mechanical quality factor Qm = 103 is chosen.

Qm ≡ ωm/(2κm)� 1, up to the leading order of 1/Qm, a very
elegant expression for EN is derived and it is

EN = (1/2) ln[1+(25/8)Ω2
q/Ω2

F ]. (25)

This expression clearly demonstrates that optomechanical en-
tanglement persists at any temperature, as its measuer, the log-
arithmic negativity, depends only on the ratio of measurement
strength Ωq and thermal decoherence rate ΩF . In the previous
works on optomechanical entanglement [6, 8, 11], it depends
solely on decoherence rate ΩF . However, as we showed in
[12, 13], this is a consequence of disregarding the informa-
tion that was carried out by the outgoing light and considering
only the entanglement between the intracavity optical mode
and the oscillator. When the continuum of the modes leaving
the cavity is properly accounted for, optomechanical entangle-
ment turns out to be universal.

Let us now consider how long can this entanglement sur-
vive. After turning off the optomechanical coupling at t = 0,
the mechanical oscillator freely evolves for a finite duration
τ , driven only by thermal noise. Due to thermal decoher-
ence, entanglement will gradually vanish. Mathematically, the
symplectic eigenvalue will become larger than unity when τ
is larger than the survival time τs. By replacing [x̂(0), p̂(0)]
with [x̂(τ), p̂(τ)] and making similar analysis, up to the lead-
ing order of 1/Qm, τs satisfies a transcendental equation:
4Ω4

F θ 2
s − (2Ω2

F +Ω2
q)

2 sin2 θs − 25ω4
m = 0, with θs ≡ ωmτs.

In the case of Ωq > ΩF � ωm, the oscillating term can be
neglected, leading to

θs = (5/2)(ωm/ΩF)
2 = 5Qm/(2 n̄th +1), (26)

where we have defined the thermal occupation number n̄th

through kBT/(h̄ωm) = n̄th +(1/2). Therefore, in this case if
Qm is larger than nth, the entanglement will be able to survive
longer than one oscillation period. Since Qm > nth is also the
requirement that the thermal noise induces a momentum dif-
fusion smaller than its zero-point uncertainty [28], this condi-
tion is what we intuitively expect. In the strong measurement
case with Ωq �ΩF , the transcendental equation can be solved
numerically, showing that θs > 1 is always valid and the en-
tanglement can survive at least up to one oscillation period.

It is evident from the above that optomechanical entangle-
ment is a powerful resource for recovering macroscopic quan-
tum correlations. In the next section we consider how it can be
used to demonstrate ”steering” of mechanical quantum state
by a different choice of measured quadrature of light.
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V. QUANTUM-STATE STEERING.

Optomechanical steering concept. — According to quan-
tum mechanics, position and momentum of a mechanical os-
cillator satisfy the Heisenberg uncertainty principle, which
reads:

ΔXφ1
ΔXφ2

≥ |sin(φ1 −φ2)| , ∀φ1,φ2 (27)

where X̂φ ≡ (x̂/Δxq)sinφ + (p̂/Δpq)cosφ , with Δxq and
Δpq zero-point uncertainties in position and momentum, are
quadratures of the mechanical oscillator. Since the mechani-
cal oscillator is interacting and establishing entanglement with
a continuous optical field, one can collapse it into desired
quantum state simply measuring continuously the outgoing
light with time-dependent homodyne angle θ(t) that defines
which optical quadrature is measured at time t. Suppose the
measurement lasts from −τ up to 0, the final conditional state

of the oscillator, written as |ψ |θ
m (0)〉, will depend on how we

make the homodyne detection due to entanglement. For two
different measurement strategies with θ1(t) and θ2(t), respec-
tively, in general we have two different final conditional states:

|ψ |θ1
m (0)〉 �= |ψ |θ2

m (0)〉. If the quadratures are properly chosen,
we may have, as illustrated in Fig. 4:

ΔX |θ1
φ1

ΔX |θ2
φ2

< |sin(φ1 −φ2)| , (28)

where ΔX |θk
φk

≡ 〈(X̂φk −〈X̂φk〉)2〉1/2 with 〈·〉 ≡ 〈ψ |θk
m | · |ψ |θk

m 〉.
In other words, if in the first strategy, the observer tries

to predict quadrature Xφ1
of the mechanical oscillator, while

in the second strategy, the observer tries to predict Xφ2
, then

the two predictions have an error product that is lower than
Heisenberg Uncertainty. The possible way to do it is sum-
marised in Fig. 5.

In ideal linear quantum measurement processes, both con-
ditional states will be pure, and for any pairs of distinctive
θ1 and θ2, inequality (28) will almost always exist for some
set of φ1 and φ2—although this idealised steerability may be
influenced by practical imperfections, such as thermal noise.

FIG. 4. (color online) Two different quantum states (projection
of their Wigner functions on phase space) of a mechanical oscilla-
tor, conditional on two different strategies for measuring the optical
quadrature: one at θ1(t) (left) and the other at θ2(t) (right).

FIG. 5. Scheme of possible experimental setup (upper panel) and the
time chart of the experiment demonstrating optomechanical steer-
ing (lower panel). Here Alice, using two different measurement
strategies θ1,2(t) (two time-dependent homodyne angles), prepares
many copies of two conditional states of the mechanical oscillator,

|ψ |θ1
m (0)〉 and |ψ |θ2

m (0)〉, and passes the prepared states to Bob, also
providing him with sets of conditional estimates of position (xcnd(0))
and momentum (pcnd(0)) of the oscillator at time t = 0, which she de-
rives at each instance of state preparation. Bob, using the same setup,
measures from t = 0 onwards, two different mechanical quadratures
of the oscillator, Xφ1

and Xφ2
, and reconstructs marginal probabil-

ity distributions for these two quadratures. By calculating variances

ΔX |θ1

φ1
and ΔX |θ2

φ2
, he tests if Alice has succeeded in steering the me-

chanical state of the oscillator.

In view of Eq.(28), we introduce a figure of merit to quantify
steerability,

S ≡− min
φ1,φ2,θ1,θ2

⎧⎨
⎩ln

ΔX |θ1
φ1

ΔX |θ2
φ2

|sin(φ1 −φ2)|

⎫⎬
⎭ . (29)

with minimum obtained by comparing all possible sets
of {φ1,θ1(t),φ2,θ2(t)} (t ∈ [−τ, 0])—an optimal time-
dependent homodyne detection is needed to achieve the lower
bound. The quantum state is steerable when S > 0, which
will be proved to be equivalent to the formal criterion obtained
by Wiseman for Gaussian entangled states [14].

As we will show in the discussion that follows, for linear
optomechanical devices, when the quantum radiation pressure
dominates strongly over thermal fluctuations, steerability only
depends on the photodetector efficiency η of time-dependent
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homodyne detections:

S ≈ 1

2
[lnη − ln(1−η)] , (30)

which will be positive as long as η > 50%, which coincides
with the ideal limit shown by Wiseman and Gambetta [14].
Interestingly, such quantum steerability is intimately related
to the state tomography accuracy in the protocol suggested by
Miao et al. [32], in which an optimal time-dependent homo-
dyne detection scheme is used to probe the quantum state of a
mechanical oscillator with Gaussian-distributed joint position
and momentum error less than Heisenberg uncertainty. More
explicitly, we will show, for the same optomechanical device,

S =− ln
[
2
√

detVv/h̄
]
, (31)

where Vv is the covariance matrix for the tomography error.
Theory of optomechanical steering. — We can now un-

derstand the quantum-state steering from a more quantitative
way. From Eq. (18), we learned that the conditional vari-

ance of the oscillator state V|θ
m directly depends on the opti-

cal quadrature θ that we choose to measure. To calculate the
steerability figure of merit S [cf. Eq. (29)], we need to find
the time-dependent quadrature phase θ(t) that minimise the

conditional variance ΔX |θ
φ of a given mechanical quadrature

X̂φ = vvvφ x̂xxT with vector vvvφ ≡ (sinφ/Δxq, cosφ/Δpq). Using
the fact that

min
θ

(ΔX |θ
φ )2 = min

θ ,KKK
〈vvvφ x̂xxT −KKKŷyyT

θ 〉2

= min
KKK1,KKK2

〈vvvφ x̂xxT −KKK1ŷyyT
1 −KKK2ŷyyT

2 〉2 (32)

with KKK1 ≡ KKK sinθθθ and KKK2 ≡ KKK cosθθθ , we obtain the minimum

(ΔX |θ
φ )2

min = vvvφ (A−CTB−1C)vvvT
φ , (33)

and θ(tk) at t =−τ + k dt is given by:

θ(tk) = arctan
[
(vvvφ CTB−1)k/(vvvφ CTB−1)N+k

]
. (34)

Since (ΔX |θ
φ )2

min is in a quadratic form of vvvφ , we obtain:

S =− ln
[
2
√

detVs/h̄
]
, Vs ≡ A−CTB−1C . (35)

This means quantum state of the oscillator is not steerable—
S < 0, if Vs is Heisenberg limited—

√
detVs > h̄/2.

Such a definition of steerability is in accord with the crite-
rion by Wiseman et al. [14], more specifically, shown in their
Eq. (17), which says that quantum state of the oscillator can-
not be steered by the optical field, if we have[

A CT

C B

]
+ iΣΣΣm ⊕000o > 0 , (36)

where ΣΣΣm ≡σk is the 2×2 symplectic matrix for the oscillator,
and 000o is a null 2N×2N matrix for the optical field. Since the

covariance matrix B for the optical field is positive definite,
namely, B > 0, the above condition requires that the Schur’s
complement of A be positive definite:

A−CT B−1C+ iΣΣΣm = Vs + iΣΣΣm > 0 , (37)

which is equivalent to requiring that Vs is Heisenberg limited,
i.e.,

S =− ln
[
2
√

detVs/h̄
]
< 0 . (38)

Large cavity bandwidth and strong measurement limit. —
Using the equations (7) and (8) and the definitions of Ωq,
Ωx and ΩF thereafter, we can easily obtain those correlation
functions in the integral equation shown in Eq. (19). Using
Wiener-Hopf method of Appendix A, one can easily solve it
and get the following expression for Vs:

Vs =
h̄ζF√

2η

[
2

1
4

√
α2/(ζF h̄m) 1

1 2
3
4

√
ζF h̄m/α2

]
, (39)

where the characteristic constant ζF is defined as:

ζF ≡
[

η
2

(
1−η +

4mκmkBT
α2

)]1/2

. (40)

Correspondingly, we obtain the steerability [cf. Eq. (35)]:

S =− ln
(√

2ζF/η
)
. (41)

For a strong measurement, the quantum radiation pressure
dominates over the thermal fluctuation force, and we have
Srp

F = α2 � Sth
F = 4mκmkBT , with Srp

F and Sth
F being the single-

sided spectra density—twice the Fourier transform of two-
time correlation function. This leads to ζF ≈ √

η(1−η)/2

and S ≈ 1
2 ln[η/(1−η)], as shown in Eq. (30).

Connection between steering and quantum tomography.—
Interestingly, such quantum-state steering is closely related
to the quantum tomography protocol discussed in Ref. [32],
where an optimal time-dependent homodyne detection is pro-
posed to minimise the error in obtaining marginal distribu-
tions of different mechanical quadratures, from which we re-
construct the Wigner function of the quantum state in phase
space. More specifically, for the same optomechanical device
discussed above, the tomography error—quantifying the dif-
ference between the reconstructed Wigner function and the
actual one—is given by the following covariance matrix:

Vv =
h̄ζF√

2η

[
2

1
4

√
α2/(ζF h̄m) −1

−1 2
3
4

√
ζF h̄m/α2

]
. (42)

Notice that it is almost identical to the conditional covariance
matrix Vs shown in Eq. (39), apart from that the off-diagonal
terms have the opposite sign. The state steering can there-
fore be viewed as the time-reversal counterpart for state to-
mography, as the off-diagonal term flips sign when the oscil-
lator momentum p̂ → −p̂ under t → −t, and the condition
for achieving a sub-Heisenberg error for state tomography—√

detVv < h̄/2, is also identical to that for steerability.
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FIG. 6. Steerability Sv as a function of ratio Ωx/ΩF while keeping
Ωq =

√
ΩxΩF . Only the ratio between these frequencies determines

the steerability, and the absolute values can vary depending on the
chosen device.

Such a connection can be understood from the fact that for
steering, one tries to prepare states with minimal uncertainty
in certain quadratures X̂φ (0) with data from (−∞, 0]—a filter-
ing process, while for tomography, one tries to minimise the
error in estimating quadratures X̂φ (0) with data from (0, ∞)—
a retrodiction process. Due to linearity, both the minimal un-
certainty and the tomography error for a given quadrature X̂φ
all takes the quadratic form—vvvφ Vs,v vvvT

φ and

Vs = A−CTB−1C t →−t−−−−−→ Vv . (43)

These two covariance matrixes Vs,v describe the remaining
uncertainty in oscillator position x̂(0) and momentum p̂(0)
conditional on both the amplitude ŷ1 and phase quadrature ŷ2

of optical field, for t < 0 and t > 0, respectively. Note that the
above relation shown in Eq. (43) is exact only when the noise
during the state preparation and the one during tomography
are uncorrelated, as the correlation between them will break
down the time-reversal symmetry, which happens if the cavity
bandwidth is small and has noneligible memory time.

Verifiable steering and the experimental requirements. —
Not only are the steering and tomography intimately related
to each other, but also the tomography is necessary in order to
verify the steering in the experiment. For Gaussian states, the
tomography error simply adds on top of the covariance matrix
for every conditional state. We therefore define the following
figure of merit for verifiable quantum-state steering:

Sv =− ln
[
2
√

det[Vs +Vv]/h̄
]
=− ln(2ζF/η). (44)

We therefore require ζF < η/2 for verifing quantum-state
steering. It can be seen from comparing Fig. 2 and Fig. 6
that thermal noise from thermal fluctuation, and sensing noise
from optical loss and quantum inefficiency, need to be at least

below the SQL in order to prepare and verify quantum-state
steering. Noteworthy is the fact that steerability does not de-
pend on the absolute value of the noise spectrum; one can
therefore have the flexibility to choose the appropriate fre-
quency range to carry out the experiment, depending on the
specific setup.

The specific conditions for experimental demonstration of
steering that we formulated here are scalable to any experi-
mental setup. As Fig. 6 clearly demonstrates, the experimen-
talist should have a system where quantum noise dominates
both thermal and sensing noise in a substantial frequency
range. The ratio of Ωx/ΩF � 10 should be provided to see
steering in the experiment. Another important condition re-
lates to measurement strength that has to be of the order of
Ωq =

√
ΩxΩF . In terms of quantum noise it means that radia-

tion pressure noise should dominate over thermal fluctuations.

VI. CONCLUSION

We see that quantum entanglement exists universally in sys-
tem with a mechanical oscillator coupled to the continuum of
outgoing optical fields. The entanglement measure — loga-
rithmic negativity displays an elegant scaling which depends
on the ratio between characteristic interaction and thermal-
noise frequency. Such scaling should also apply in electrome-
chanical systems whose dynamics are similar to what we have
considered. We also considered the possibility to use en-
tanglement between light and mechanical motion for testing
such a fundamental concept of quantum mechanic as steering.
A close relation between steering and quantum state tomog-
raphy procedure proposed in [32] is revealed. Our analysis
once again confirms a well-known condition that experimen-
tal demonstration of macroscopic quantum effects in optome-
chanical systems, including EPR-type entanglement, requires
the measurement apparatus to be quantum noise limited in
some frequency band of interest. Furthermore, the measure-
ment has to be strong enough to effectively extract informa-
tion about the mechanical motion at a rate higher than that
of a thermal decoherence which stipulates radiation pressure
noise to dominate over the thermal and sensing noise in this
frequency band. which is reflected in the relation between the
characteristic frequencies we introduced: ΩF < Ωq < Ωx.
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Appendix A: Wiener-Hopf method

In this appendix, we show how to derive CT B−1C in
Eq. (35), which is equivalent to solving an integral equation
shown in Eq. (19), with the Wiener-Hopf method. We first
show the general formalism and then specialise to the large-
bandwidth and strong-measurement limit that we have consid-
ered.

1. General formalism

Here we first discuss the general formalism. In the
continuous-time limit, C is a 2×2 matrix with elements given
by Ci j(t) and, similarly, the elements of B are Bi j(t−t ′)(i, j =
1,2) and they only depend on time difference due to station-
arity). We define K = B−1C or equivalently, BK = C, and
K is a 2×2 matrix with the elements satisfying the following
integral equations:

2

∑
k=1

∫ 0

−∞
dt ′Bik(t − t ′)Kk j(t ′) =Ci j(t) , (A1)

and therefore, inverting B is equivalent to solving the above
integral equation. Note that the upper limit of the integration
is 0, instead of +∞ in which case it can be solved simply by
using Fourier transform. This arises naturally in the classical
filtering problem with only past data that is available. The
procedure for using Wiener-Hopf method to solve this set of
integral equations goes as follows.

Firstly, we extend the definition of Ki j(t) and Ci j(t) to t > 0
but requiring Ki j(t) =Ci j(t) = 0 if t > 0, namely

Ki j(t)→ Ki j(t)Θ(t), Ci j(t)→Ci j(t)Θ(t) , (A2)

This allows to extend the upper limit of the integral to be +∞
without changing the result.

Secondly, we apply the Fourier transform

f̃ (ω)≡ F [ f (t)] =
∫ +∞

−∞
dt eiωt f (t) , (A3)

of the above equation and obtain[
2

∑
k=1

B̃ik(ω)K̃k j(ω)−C̃i j(ω)

]
−
= 0 , (A4)

where [ f (ω)]− means the part of f̃ (ω) that is analytical (no
poles) in the upper-half complex plane by using the following
decomposition:

f̃ (ω)≡ [ f̃ (ω)]+ + [ f̃ (ω)]− , (A5)

and [ f (ω)]+ is the part that is analytical in the lower-half
complex plane. From the definition of Fourier transform in
Eq. (A3), the inverse Fourier transform of [ f̃ (ω)]− vanishes
for t > 0 from the residue theorem, namely

F−1
[
[ f̃ (ω)]−

]
= f (t)Θ(t) = 0 , ∀ t > 0 . (A6)

Let us focus on the equations associated with the first col-
umn of C̃, i.e., j = 1 (the situation for j = 2 will be similar),
and we rewrite Eq. (A4) explicitly in terms of their compo-
nents:[

B̃11(ω)K̃11(ω)+ B̃12(ω)K̃21(ω)−C̃11(ω)
]
− = 0 , (A7)[

B̃21(ω)K̃11(ω)+ B̃22(ω)K̃21(ω)−C̃21(ω)
]
− = 0 . (A8)

Thirdly, if B11(t) = B11(−t), we can factorise B̃11(ω) as

B̃11(ω) = ϕ̃+(ω)ϕ̃−(ω) (A9)

which is the Fourier counterpart of the Cholesky decomposi-
tion in time domain. We now can express K̃11(ω) in terms of
K̃21(ω) in Eq. (A7). We use the fact that

[ f̃ (ω)]− = 0 =⇒ [ f̃ (ω)g̃+(ω)]− = 0 , ∀g̃ (A10)

Multiplying Eq. (A7) by ϕ−1
+ (ω), we get

K̃11 =
1

ϕ̃−

[
C̃11

ϕ̃+
− B̃12K̃21

ϕ̃+

]
−
. (A11)

Plugging it into Eq. (A8), we obtain{[
B̃22 − B̃21B̃12

B̃11

]
K̃21 +

B̃21

ϕ̃−

[
C̃11

ϕ̃+

]
−

+
B̃21

ϕ̃−

[
B̃12K̃21

ϕ+

]
+

−C̃21

}
−
= 0

(A12)

where we have used the fact that:

B̃12K̃21

ϕ̃+
=

[
B̃12K̃21

ϕ̃+

]
+

+

[
B̃12K̃21

ϕ̃+

]
−
. (A13)

Again, if B̃22 − B̃21B̃12/B̃11 is an even function of time—
due to stationarity and time-reversal symmetry. We can make
a similar factorization to the one shown in Eq. (A9):

B̃22(ω)− B̃21(ω)B̃12(ω)

B̃11(ω)
= ψ̃+(ω)ψ̃−(ω) . (A14)

The same as the approach for deriving Eq. (A11) by using the
fact shown in Eq. (A10), we obtain

K̃21 =
1

ψ̃−

[
1

ψ̃+

(
C̃21 − B̃21

ϕ̃−

[
C̃11

ϕ̃+

]
−
− B̃21

ϕ̃−

[
B̃12K̃21

ϕ̃+

]
+

)]
−
.

(A15)
Note that in the above equation, K̃21 appears in both sides of
the equation, which might seems to be difficult to solve. Ac-
tually, since K̃21 is analytical in the upper half complex plane,
[B̃12K̃21/ϕ̃+]+ only depends on the value of K̃21 at the poles
of B̃12/ϕ̃+ in the upper-half complex plane. One only need
to solve a set of simple algebra equations by evaluating the
above equation on these poles.
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2. Large-bandwidth and strong-measurement limit

In this section, we consider the case of the large-bandwidth
and strong-measurement limit, and, for the oscillator, we have

x̂(t) =
∫ t

−∞
dt ′ Gx(t − t ′)[−α â1(t ′)+ F̂th(t ′)] , (A16)

p̂(t) = m
∫ t

−∞
dt ′ Ġx(t − t ′)[−α â1(t ′)+ F̂th(t ′)] , (A17)

and, for the output optical field, we have

ŷ1(t) =
√

η â1(t)+
√

1−η n̂1(t) , (A18)

ŷ2(t) =
√

η [â2(t)+(α/h̄) x̂(t)]+
√

1−η n̂2(t) . (A19)

Here

Gx(t) =
1

mωm
e−κmt/2 sinωmt (A20)

is the Green’s function of the mechanical oscillator, and in the
strong-measurement limit—the frequency at which we carry
out the measurement is much higher than that of the mechan-
ical frequency, the oscillator can be treated as a free mass and
Gx(t)|free mass = t/m.

By using the fact that

〈â j(t)âk(t ′)〉sym = 〈n̂ j(t)n̂k(t ′)〉sym =
1

2
δ jkδ (t − t ′) (A21)

for j,k = 1,2, and

〈F̂th(t)F̂th(t ′)〉sym = 2mκmkBT δ (t − t ′) , (A22)

we obtains the elements for covariance matrix B of (ŷ1, ŷ2) in
the frequency domain (spectral density):

B̃11(ω) = 1 , (A23)

B̃12(ω) =−η
α2

h̄
G̃∗

x(ω) , (A24)

B̃21(ω) =−η
α2

h̄
G̃x(ω) , (A25)

B̃22(ω) = 1+η
α2

h̄2
S̃xx(ω) , (A26)

and the correlation between (ŷ1, ŷ2) and (x̂(0) , p̂(0)):

C̃11(ω) =−√
η αG̃∗

x(ω) , (A27)

C̃12(ω) =−imΩ
√

ηαG̃∗
x(ω) , (A28)

C̃21(ω) =
√

η
α
h̄

S̃xx(ω) , (A29)

C̃22(ω) = imΩ
√

η
α
h̄

S̃xx(ω) , (A30)

where

S̃xx(ω)≡ |G̃x(ω)|2(α2 +4mκmkBT ) , (A31)
and the Fourier transform for the mechanical Green’s func-
tion is given by [strong-measurement limit is taken by setting
κm, ωm → 0]:

G̃x(ω) =
−1

m(ω2 −ω2
m + iκmω)

. (A32)

In this case, we can easily carry out the factorization. For
ϕ̃±(ω) [cf. Eq. (A9)], we have

ϕ̃+(ω) = ϕ̃−(ω) = 1 , (A33)

For ψ̃±(ω) [cf. Eq. (A14)], we have

ψ̃+(ω)ψ̃−(ω) = 1+η
α2

h̄2
|G̃2

x(ω)|2 [(1−η)α2 +4mκmkBT
]

=
ω4 +(κ2

m −2ω2
m)ω2 +ω4

m +2(α2/h̄m)2ζ 2
F

ω4 +(κ2
m −2ω2

m)ω2 +ω4
m

.

(A34)

This leads to

ψ̃+(ω) = ψ̃∗
−(ω) =

(ω −ω1)(ω −ω2)

(ω −ω ′
1)(ω −ω ′

2)
, (A35)

where ω j and ω ′
j ( j = 1,2) are the roots of the numerator and

denominator of Eq. (A34) in the upper-half complex plane, re-
spectively. Given the expression for ϕ̃± and ψ̃±, we can solve
K̃i j by using Eqs (A11), and Eq. (A15). This in turn allows us

to obtain Vs = A−CTK and in the time domain, it reads:

(Vs)i j = Ai j −∑
k

∫ 0

−∞
dt ′Cki(t ′)Kk j(t ′) , (A36)

from which we obtain Eq. (39).
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