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Protecting quantum correlation from decoherence is one of the focused issues in quantum infor-
mation processing. It was commonly recognized that any initial quantum correlation of a composite
systems decreases asymptotically or abruptly to zero due to the interactions of the subsystems with
their local Markovian dissipative reservoirs. Here we show that this is not the case anymore for the
continuous-variable bipartite system when the non-Markovian effect is taken in account. We find
that a noticeable non-zero Gaussian quantum discord can be trapped in the steady state if each
of the subsystems forms a localized mode with its local reservoir. The condition for this quantum
discord frozen is given explicitly. The possible observation of our results in coupled cavity array
system formed by photonic crystal is also investigated.

PACS numbers: 03.67.Hk, 05.40.Ca

Introduction.—Quantum correlation plays an essential
role in quantum information science. In the early days
of quantum information, quantum correlation is charac-
terized by entanglement, which is viewed as the main re-
source for quantum information processing [1]. It causes
the dramatic speedup of quantum computer over its clas-
sical counterpart. Recently, it was found that entangle-
ment is not the only reason to cause such speedup and the
similar speedup can also be achieved in the so-called de-
terministic one-qubit quantum computation by use of the
zero-entanglement states [2, 3]. It has been attributed to
another measure of quantum correlation [4], i.e. quantum
discord (QD) [5, 6]. QD is also proved playing necessary
role in assisted optimal nonorthogonal state discrimina-
tion [7]. These results indicate that entanglement cannot
exhaust quantum correlation and QD characterizes the
quantumness of correlations more generally than entan-
glement.

QD is defined as the difference between the quantum
versions of two classically equivalent expressions for mu-
tual information, which denote, respectively, the total
and classical correlations [5]. Reflecting physically the in-
formation one can extracts on one subsystem by the local
measurement to the other one, the classical correlation
depends on the eigenbasis of the performed measurement.
Then it is quantified by the maximal information over all
possible measurement basis. Due to this optimization,
the classical correlation as well as the QD can only be
evaluated analytically for very limited cases. It has been
proved that only for the two-qubit Bell-diagonal state
[8, 9] and for the bipartite continuous-variable Gaussian
state [10, 11], the QD can be evaluated analytically.

Thanks to these analytical achievements to quantify
QD, the study of quantum correlations under decoher-
ence, which is seen as an ubiquitous phenomenon in quan-
tum world, attracts much attention in recent years. It is
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found theoretically [12–16] and experimentally [17] that,
much different to the sudden death behavior of entangle-
ment [18, 19], QD of a two-qubit system under individual
decoherence decays to zero in asymptotical manner. The
experimental [20] and theoretical [21, 22] works also show
the similar results for the Gaussian QD of the continuous-
variable system. It is also found both for discrete [23, 24]
and continuous [25] variable systems that some QD can
be developed transiently from certain initially classical
state under a single local Markovian dissipative dynam-
ics. It means that QD, in certain manner, is more robust
than entanglement to decoherence. Another character of
QD under decoherence much different to the behavior of
entanglement is the presence of the frozen QD during the
time evolution [17, 26, 27]. However, in all of the works,
the QD decays exclusively to zero in the long-time limit.
In quantum information processing, one always desires
that the quantum correlation in certain initial state can
be preserved in the long-time limit. Can we obtain finite
frozen QD even in the steady state?

In this Letter, we propose to stabilize the Gaussian
QD of a bipartite continuous-variable system by manip-
ulating the non-Markovian effect of the reservoirs. By
studying the correlation dynamics of the system, we re-
veal an explicit condition, under which a finite QD can
be frozen in the steady state. We show that a coupled
cavity array system realized in photonic crystal is a best
candidate to observe this phenomenon. Our work indi-
cates that in contrast to Markovian-approximation-based
results, the non-Markovian effect has certain self-healing
ability to the detrimental action of decoherence on quan-
tum correlation. This gives a useful guide to decoherence
control in quantum information science.

Model and dynamics.—Consider two noninteracting
harmonic oscillators coupled to two independent reser-
voirs. The Hamiltonian of each local subsystem is (� = 1)

Ĥk = ωkâ†
kâk +

∑
l

ωklb̂
†
klb̂kl +

∑
l

(gklâ
†
k b̂kl + h.c.),(1)

where âk and b̂kl (â†
k and b̂†

kl) are, respectively, the anni-
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hilation (creation) operators of the k-th harmonic oscil-
lator with frequency ωk and its corresponding reservoir.
The coupling strength between them is given by gkl. The
system has an intense relevance in quantum-optical set-
ting where the system oscillators can describe the quan-
tized optical fields in cavity [28] or in circuit [29] QED,
mechanical oscillators in opto-mechanics [30], and atomic
ensemble under large-N limit [31]. Currently, most quan-
tum optical experiments are performed at low tempera-
tures and under vacuum condition. Thus, we take the
reservoirs to be at zero temperature in this work.

The exact decoherence dynamics of the system can be
derived by Feynman and Vernon’s influence-functional
theory [32, 33]. The reduced density matrix of the system
expressed in the coherent-state representation is given by

ρ(ᾱf , α′
f ; t) =

∫
dμ(αi)dμ(α′

i)J (ᾱf , α′
f ; t|ᾱi, α′

i; 0)

× ρ(ᾱi, α′
i; 0), (2)

where J (ᾱf , α′
f ; t|ᾱi, α′

i; 0) is the propagating function.
The coherent-state representation is defined as |α〉 =∏2

k=1 exp(αka†
k)|0k〉, which are the eigenstates of anni-

hilation operators and obey the resolution of identity,∫
dμ (α) |α〉〈α| = 1 with the integration measures de-

fined as dμ (α) =
∏

k e−ᾱkαk dᾱkdαk

2πi . ᾱ denotes the com-
plex conjugate of α. J (ᾱf , α′

f ; t|ᾱi, α′
i; 0) is expressed

as the path integral governed by an effective action which
consists of the free actions of the forward and backward
propagators of the system and the influence functional
obtained from the integration of reservoir degrees of free-
dom. After evaluating the path integral, we get

J (ᾱf , α′
f ; t|ᾱi, α′

i; 0) = exp
{ ∑

k=1,2

[
uk(t)ᾱkf αki

+ ūk(t)ᾱ′
kiα

′
kf + [1 − |uk(t)|2]ᾱ′

kiαki

]}
, (3)

where uk(t) satisfies

u̇k(t) + iωkuk(t) +
∫ t

0
fk(t − τ)uk(τ)dτ = 0 (4)

with fk(x) ≡ ∫
Jk(ω)e−iωxdω under the continuous limit

of the environmental modes. Combining Eq. (3), the
time-dependent state can be obtained from any initial
state by evaluating the integration in Eq. (2). The
exact decoherence dynamics, determined by Eq. (4),
essentially depends on the so-called spectral density
Jk(ω) ≡ ∑

l |gkl|2 δ(ω −ωk), which characterizes the cou-
pling strength of the different environmental modes to
the system with respect to their frequencies. In the con-
tinuum limit it takes the form

Jk(ω) = ηkω
( ω

ωc

)n−1
e− ω

ωc , (5)

where ωc is a cutoff frequency, and ηk is a dimension-
less coupling constant. The environment is classified as

Ohmic if n = 1, sub-Ohmic if 0 < n < 1, and super-
Ohmic for n > 1 [34]. Different spectral densities mani-
fest different non-Markovian decoherence dynamics.

To compare with the conventional Born-Markovian ap-
proximate description to such system, we now derive a
master equation by taking the time derivative to Eq. (2).
We obtain the master equation as

ρ̇(t) =
∑

k=1,2
{−iΩk(t)[â†

kâk, ρ(t)] + Γk(t)[2âkρ(t)â†
k

−â†
kâkρ(t) − ρ(t)â†

kâk]}, (6)

where

Γk(t) + iΩk(t) ≡ −u̇k(t)/uk(t). (7)

It can be found that Eq. (6) keeps the Lindblad form
but with time-dependent shifted frequency Ωk(t) and de-
cay rate Γk(t). All the backactions induced by the non-
Markovian effect have been incorporated into these time-
dependent coefficients self-consistently.

Dynamical frozen of Gaussian QD.—Consider explic-
itly the initial state of the system as two-mode squeezed
state |ψ(0)〉 = exp[r(â1â2 − â†

1â†
2)]|00〉 with r being the

squeezing parameter. The time evolution of such state
under Eq. (2) keeps the Gaussianity. The Gaussian
state can be fully characterised by the covariance ma-
trix σ12 =

(
α1 γ
γT α2

)
, where αk are the 2 × 2 covariance

matrices for the k-th subsystems, and γ is the matrix
containing the correlations between (x1, p1) and (x2, p2)
with x̂k = âk+â†

k√
2 and p̂k = âk−â†

k√
2i

. σ12 can be easily
estimated experimentally from the homodyne measure-
ments to the amplitude quadratures x̂k and p̂k. The QD
for Gaussian state can be calculated as follows. The total
correlation for a bipartite system is given by the mutual
information I(ρ) = S(ρ1) + S(ρ2) − S(ρ), where S is
the von Neumann entropy and ρ1(2) is the reduced den-
sity matrix of the 1 (2) subsystem. Another measure of
mutual information that only quantifies the amount of
classical correlations extractable by a Gaussian measure-
ment is C1(ρ) = S(ρ1) − infσM S(ρ1|σM

) where σM is the
covariance matrix of the measurement on mode 2. As
it only captures the classical correlations, the difference,
D1 = I(ρ) − C1(ρ), is a measure of Gaussian quantum
correlation that is coined Gaussian QD. An explicit ex-
pression for this QD has been found [11]:

D(σ12) = f(
√

I2) − f(ν−) − f(ν+) + f(
√

m) (8)

with f(x) = ( x+1
2 ) log x+1

2 − ( x−1
2 ) log x−1

2 and

m =

⎧⎨
⎩

2I2
3 +(I2−1)(I4−I1)+2|I3|

√
I2

3 +(I2−1)(I4−I1)
(I2−1)2 , a)

I1I2−I2
3 +I4−

√
I4

3 +(I4−I1I2)2−2C2(I4+I1I2)
2I2

, b)
(9)

where a) applies if (I4−I1I2)2 ≤ I2
3 (I2+1)(I1+I4) and b)

applies otherwise. Ik = det αk, I3 = det γ, I4 = det σ12
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FIG. 1. (Color online) Time evolution of Gaussian quantum
discord for super-Ohmic spectral density when (a): ωc/ω0 =
1.0 and η = 0.08 (dot-dot-dashed), 0.25 (dot-dashed), 0.5
(dashed), and 1 (solid); and when (b): η = 0.08 and ωc/ω0 =
1.0 (dot-dot-dashed), 1.5 (dot-dashed), 2.0 (dashed), and 3.0
(solid). The squeezing parameter is chosen as r = 1.0.

are the symplectic invariants and ν2
± = 1

2 (δ ± √
δ2 − 4I4)

with δ = I1 + I2 + 2I3 are the symplectic eigenvalues.
Choosing the super-Ohmic spectral density, explicitly

n = 3 in Eq. (5), as an example, we plot in Fig. 1
the time evolution of the Gaussian QD for the initial
two-mode squeezed state. Compared with the Ohmic
and sub-Ohmic spectral densities, the super-Ohmic one
is higher-frequency dominate, which will cause a strong
modification to the short-time decoherence dynamics of
the system. It has been shown that the super-Ohmic
spectral density can describe the phonon bath in one or
three dimensions, depending on the symmetry properties
of the strain field [35] and a charged particle coupled to
its own electromagnetic field [36]. We can see from Fig.
1(a) that the Gaussian QD decays to zero when the cou-
pling is weak, which is qualitatively consistent with the
results under Born-Markovian approximation. However,
it is remarkable to find that the Gaussian QD tends to
be frozen partially in the steady state with the increase
of the coupling constant. This is dramatically contrary
to one’s expectation that a stronger coupling between
the system and the environment always induces a sev-
erer decoherence to the system. The similar Gaussian
QD frozen can also be achieved with the increase of the
cutoff frequency in Fig. 1(b).

We argue that the formation of a localized mode be-
tween each of the harmonic oscillators and its local reser-
voir plays essential role in this Gaussian QD frozen. To
verify this, we perform a Fourier transform to Eq. (4)
and obtain

y(E) ≡ ω0 −
∫ ∞

0

J(ω)
ω − E

dω = E. (10)

Combining with Eq. (5), we can find that y(E) is a mono-
tonically decreasing function in the region E ∈ (−∞, 0).
It means that Eq. (10) may have one and only one neg-
ative root if the system parameters fulfill y(0) < 0. On
the other hand, no further discrete root exists in the re-
gion (0, +∞) because that would make the integration
in y(E) divergent. After the inverse Fourier transform,

�

�

Ω t

�
�
�

�

�

Ω t

�
�
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FIG. 2. (Color online) The corresponding decay rate of Fig.
1(a) and (b). The localized mode is formed when η > 0.5 for
(a) and ωc > 1.84ω0 for (b).

the obtained uk(t) contributed from this discrete nega-
tive root will have a vanishing decay rate Γk(t) according
to Eq. (7). This vanishing decay rate causes the deco-
herence inhabited to the system. It means that the dis-
crete negative root for Eq. (10) actually corresponds to a
stationary state to Eq. (4), which preserves the quantum
coherence in its superposed components during time evo-
lution. We call this stationary state the localized mode
of the whole system [37]. For our super-Ohmic spectral
density, we can readily evaluated that the localized mode
is formed when ω0 − 2η

ω3
c

ω2
0

< is fulfilled. This criterion
gives a basic judgement on the condition under which the
Gaussian QD frozen is present.

To verify dynamical consequence of the formed local-
ized mode, we plot in Fig. 2 the decay rate in the case
Fig. 1(a,b). We can see that if the localized mode is
absent, the decay rate keeps to be positive and tends to
a positive value, which, as expected, will induces mono-
tonic decoherence to the system (as shown in Fig. 1).
On the contrary, if the localized mode is present, the
decay rate is transiently negative, which manifests the
lost information/energy of the system returns back from
the reservoir back. Another character different to the
case when the localized mode is absent is that the decay
rate tends to zero asymptotically. This vanishing decay
rate causes the decoherence of the system ceased in the
long-time limit. This give an explanation why a strong
coupling can induce a suppressed decoherence in Fig. 1.

From above analysis, we can conclude that the Gaus-
sian QD frozen is present due to an interplay between
the formed localized mode and the non-Markovian ef-
fect. The localized mode provides an ability to froze the
Gaussian QD, while the non-Markovian effect provides a
dynamical way to froze the Gaussian QD. The mecha-
nism of the stable Gaussian QD frozen in our system is
linked to the non-Markovian memory effect of the har-
monic oscillator with its local reservoir when the localized
mode is formed. It is much different to the case of two
harmonic oscillators coupled to a comment reservoir [38],
where a stable QD is established due to an indirect in-
teraction between the two harmonic oscillators induced
effectively by the common reservoir.
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FIG. 3. (Color online) Two initially correlated cavity fields
propagating in two cavity arrays formed in photonic crystal
platform.

Physical realization.— With the basic criterion at
hands, we can see that the Gaussian QD frozen we re-
vealed is a generic phenomenon in open quantum sys-
tems. A best candidates to observe our prediction is the
system of two chains of coupled cavity arrays, which can
now be realized experimentally in micro-disc cavities cou-
pled by one tapered optical fiber [39], in photonic crystal
system [40–42], and synthesized in optical waveguide ar-
ray system [43, 44]. In Fig. 3 we depict the schematic
illustration to this scheme realized in photonic crystal
system. Here two initially correlated quantized optical
fields are fed into the two system cavities. With some
probability the fields in the two system cavities will hop
respectively to the two spatially separated coupled cavity
arrays. Each of the local system is governed by Ĥ(1) =
ω0â†â + ωC

∑N−1
j=0 b̂†

j b̂j + (gâ†b̂0 + ξ
∑N−2

j=0 b̂†
j+1b̂j + h.c.).

A Fourier transform b̂j =
∑

k b̂keikjx0 can recast Ĥ(1)

into

Ĥ(1) = ω0â†â +
∑

k

εk b̂†
k b̂k + g√

N

∑
k

(â†b̂k + h.c.) (11)

with εk = ωC + 2ξ cos kx0 and x0 being the spatial sep-
aration between the two neighbour cavities of the cavity
arrays. One can notice that the dispersion relation of
the field in such structured reservoirs shows finite band
width, which can induce a strong non-Markovian even in
the weak and intermediate coupling regimes.

In Fig. 4(a), we plot the possible formation of the
localized mode manifested by the intersection points be-
tween the dotted line with each line in different parame-
ter regimes. It can be seen that if there is no intersection
point, which means the localized mode is absent, then
the Gaussian QD, as shown in Fig. 4(b), decays to zero.
Whenever the localized mode is formed, certain finite

Gaussian QD can be frozen in the steady state. An inter-
esting observation in this situation is that a large amount
of Gaussian QD can be frozen even there is no strong
coupling between the system with the reservoirs. This
reduces greatly the experimental difficult in the practical
realization.

Conclusions.—In summary, focusing on how to pro-
tect the quantum correlation from decoherence, we have

E �ΩC

y
�E
��
Ω

C

ΩCt

�

FIG. 4. (Color online) (a): The formation of a localized mode
manifested by intersection point of the thin dotted line with
the thick lines in different parameter regime. (b) The corre-
sponding evolution of Gaussian QD. ξ = 0.05ωC , g = 0.02ωC ,
N = 200 and ω0 = 0.95ωc (dot-dot-dashed green), 0.9ωc (dot-
dashed purple), 0.85ωc (dashed red), and 0.8ωc (solid blue).

studied the dynamics of Gaussian QD of two harmonic
oscillators interacting with two independent reservoirs.
We have revealed a physical mechanism under which the
decoherence of Gaussioan QD can be avoided and a fi-
nite Gaussian QD can be frozen in the steady state. We
found that it is the interplay between a formed localized
mode and the non-Markovian effect which plays essential
role in the Gaussian QD frozen. The possible observation
of our prediction in coupled cavity array system realized
in photonic crystal platform has also been investigated.
Our result suggests a control way to beat the effect of de-
coherence by engineering the spectrum of the reservoirs
to approach the non-Markovian regime and to form lo-
calized mode of the whole system. This can be readily
realized in the newly emerged field, i.e. reservoir engi-
neering [45, 46], on controlling the quantum system by
tailoring its coupling to the reservoirs.
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Supplementary material
The covariance matrix.—The initial state can be rep-

resented in the coherent-state representation as

ρ(ᾱi, α′
i; 0) = exp[− tanh r(ᾱ1iᾱ2i + α′

1iα
′
2i)]

cosh2 r
. (12)

Substituting Eq. (12) into Eq. (2), we can obtain the
evolved state as

ρ(ᾱf , α′
f ; t) = a exp[

∑
k �=k′

( b

2 ᾱkf ᾱk′f +cᾱkf α′
kf +b∗

2 α′
kf α′

k′f )],

(13)
where

a = 1
cosh2 |r| [1 − tanh2 |r| (1 − |u(t)|2)2]

, (14)

b = − tanh |r| u(t)2

1 − tanh2 |r| (1 − |u(t)|2)2
, (15)

c = tanh2 |r| (1 − |u(t)|2) |u(t)|2
1 − tanh2 |r| (1 − |u(t)|2)2

. (16)

For the continuous-variable (Gaussian-type) bipartite
state, its density matrix is characterized by the co-
variance matrix defined as the second moments of the
quadrature vector X̂ = (x̂1, p̂1, x̂2, p̂2),

σij = 〈ΔX̂iΔX̂j + ΔX̂jΔX̂i〉, (17)

where ΔX̂i = X̂i − 〈X̂i〉, and x̂i = âi+â†
i√

2 , p̂i =
âi−â†

i

i
√

2 . From the time-dependent state (13), the covari-
ance matrix for the harmonic oscillators can be calculated
straightforwardly,

σ = 2

⎛
⎜⎜⎜⎜⎝

y(1+d)
2(1−d)2 0 aRe[b]

x
aIm[b]

x

0 y(1+d)
2(1−d)2

aIm[b]
x

−aRe[b]
x

aRe[b]
x

aIm[b]
x

y(1+d)
2(1−d)2 0

aIm[b]
x

−aRe[b]
x 0 y(1+d)

2(1−d)2

⎞
⎟⎟⎟⎟⎠ , (18)

where x = [(1 − c)2 − |b|2]2, y = a
1−c , and d = c + |b|2

1−c .
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�t
�
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FIG. 5. (Color online) The corresponding |u(t)|2 of Fig. 1(a)
and (b). The localized mode is formed when η > 0.5 for (a)
and ωc > 1.84ω0 for (b).

Anomalous decoherence.—Accompanying with the for-
mation of the localized mode of the whole system, the
dynamics of the reduced system is inhibited. This can
be verified by the time-dependent behaviors of u(t). In
Fig. 5, we plot the evolution of |u(t)|2 corresponding
to the parameter regimes used in Fig. 1(a,b), respec-
tively. We can see that with the formation of the lo-
calized mode above the critical point η = 0.5 for Fig.
5(a) and ωc = 1.84ω0 for Fig. 5(b), the time-dependent
behavior of |u(t)|2 shows qualitatively changes. If the
localized mode is absent, |u(t)|2 decays to zero monoton-
ically, which is consistent with the results under Born-
Markovian approximation. On the other hand, if the
localized mode is present, |u(t)|2 tends to a finite value
after transient oscillation. It indicates the ceasing of the
decoherence in the long-time limit, which also consistent
with the vanishing decay rate in Fig. 2. It deviates qual-
itatively the results under Born-Markovian approxima-
tion. This shows clearly that the non-Markovian effect
can not only induce transient oscillation, but also induce
dramatic change to the steady state behavior to the open
quantum system. Equipped with this anomalous deco-
herence, it is not hard to understand the Gaussian QD
frozen revealed in our work.
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