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Use of entangled coherent states in quantm teleportation
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and
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I present in this talk mostly the work done at Allahabad in collaboration with Dr. Manoj Kumar
Mishra on use of entangled coherent states in almost perfect quantum teleportation and related
phenomenon for moderately large coherent amplitudes. It is shown that although entanglement
is a necessary resource, in some cases, use of non-maximally entangled states may lead to better
minimum average fidelity and hence may be more desirable for small |α|, if we use superposition of
coherent states with mean photon number ∼ |α|2. For such cases a strategy of using one of the two
possible unitary transformations for each result of the Bell state measurement is given.

It is shown that a single mode superposed coherent state can encode a qudit of information of
any arbitrary dimension, but larger dimensions of qudit may complicate very much the scheme of
teleportation. The case of quantum teleportation of a ququat of information is discussed in detail
and it is shown that an almost perfect teleportation (fidelity ≥ 0.99) may result if the coherent
amplitude |α| ≥ 3.2.

In usual quantum teleportation schemes, the information is destroyed the moment a Bell state
measurement is done. When entangled coherent states are used, certain results of Bell state mea-
surements give perfect failure in the sense that there is no prescription available for making a unitary
transformation resulting in teleportation with an acceptable fidelity. This is the reason why quantum
teleportation cannot be perfect even in principle using entangled coherent states.

We propose here a scheme for long distance atomic teleportation with perfect fidelity and with
success as large as desired using entangled coherent states and cavity assisted interactions. Here
photons carry information from one cavity to another and the Bell state measurement is done in
two steps. The first step tells whether a success is perceived and does not destroy the information.
Thus, one is permitted to start the Bell state measurements afresh if a failure is indicated in the
first step. This scheme has the advantage of having deterministic generation of entangled coherent
state, robustness of entangled coherent state against decoherence due to absorption and does not
require multi-stage cavity interaction or single photon detection ability.

We also study quantum discord of Werner states and quasi-Werner states made using entangled
coherent states.

I. INTRODUCTION

I wish to present here mostly the work done in col-
laboration with Dr. Manoj Kumar Mishra on use of en-
tangled coherent states in quantum teleportation. As all
introductory remarks needed here have already been pre-
sented by Prof. Ranjana Prakash in her talk, I shall be
brief in introduction.

Coherent states are eigenstates of the annihila-
tion operator a, i.e., a|α〉 = α|α〉, |α〉 =∑

n exp(−|α|2/2)(αn/
√
n!)|n〉. Commonly considered

superposed coherent states (SCS) used as information are
single mode states

|I〉 = ε+|α〉+ ε−| − α〉
= A+|EVEN, α〉+A−|ODD, α〉, (1)

where

|EVEN, α〉 = (|α〉+ | − α〉)/
√
2(1 + x2)

=
∞∑

n=0

√
2x/(1 + x2)

α2n

√
2n!
|2n〉, x ≡ e−|α|2 (2)
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|ODD, α〉 = (|α〉 − | − α〉)/
√
2(1− x2)

=
∞∑

n=0

√
2x/(1− x2)

α2n+1√
(2n+ 1)!

|2n+ 1〉 (3)

are even and odd coherent states. To abbreviate we write
these states as |±〉 whenever there is no chance of confu-
sion. The coefficients satisfy

ε± =
A+√

2(1 + x2)
± A−√

2(1− x2)
,

A± = (ε+ ± ε−)

√
1± x4

2
,

A+ = cos
θ

2
, A− = sin

θ

2
eiφ,

|A+|2 + |A−|2 = 1,

|ε+|2 + |ε−|2 + x2(ε+ε− + ε−ε+) = 1. (4)

Since 〈−α|α〉 = e−2|α|2 �= 0, states | ± α〉 are not or-
thogonal and do not form a useful basis. To cope with
this problem, we use the basis of even and odd coherent
states.
A state is represented on Bloch sphere by angles (θ, φ)

defined by A+ = cos θ
2 , A− = sin θ

2e
iφ. Entanglement

and Concurrence have already been introduced by earlier
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speakers, and for pure and mixed states these are [1]

C(ψ)AB = |〈ψ|σy ⊗ σy|ψ∗〉| = |〈ψ|ψ̃〉|, (5)

C(ρAB) = max {0, λ1 − λ2 − λ3 − λ4} (6)

It is worthwhile to investigate what happens if a non-
maximally state (NME) is taken as resource. The com-
mon belief is that it result in a reduction in fidelity,
and this happens for the case of atomic qubits. Verma
and the speaker [2] investigated this problem in detail
for pure non-maximally entangled sates. We found that
for a general non-maximally entangled resource informa-
tion state dependent fidelity is obtained and that the
Minimum Assured Fidelity (MASFI) defined a the min-
imum fidelity for any possible information state is given
by MASFI = (2C/(C + 1)), where C is concurrence.

We also concluded [2] that MASFI is better measure
of quality of imperfect teleportation than concurrence or
Minimum Average Fidelity.

II. TELEPORTATION OF SUPERPOSED
COHERENT STATES USING NON-MAXIMALLY

ENTANGLED RESOURCE

van Enk and Hirota [3] showed how to a SCS encoded
with one qubit can be teleported using ECS with suc-
cess probability equal to 0.5. Wang [4] showed how to
teleport a bipartite ECS encoded with one qubit us-
ing ECS with success probability equal to 0.5. Naresh
Chandra, Ranjana Prakash, Shivani and I [5] modified
the photon counting scheme and reported almost per-
fect teleportation for an appreciable mean photon num-
ber. Many other schemes proposed the teleportation
of SCS using ECS. However most of the schemes used
maximally entangled coherent state (MECS) |E〉1,2 ∼
[|α, α〉 − | − α,−α〉]1,2 as quantum channel.

We consider more practical problem of teleporting SCS
using non-maximally entangled coherent state (NMECS)
and study the effect of entanglement on the quality of
teleportation [6]. For teleportation we use the bipartite
ECS, |E〉1,2 = N [cos θ

2 |α, α〉+ sin θ
2e

iφ| − α,−α〉]1,2, θ ∈
[0, π], φ ∈ [0, 2π), N = (1 + x4 sin θ cosφ)−1/2, x ≡
exp(−|α|2).

ECS can be expressed in terms of Even and Odd co-
herent states in the form

|E〉1,2 =
N

2
[C+(1 + x2)|+,+〉+ C+(1− x2)|−,−〉

+C−
√
(1− x4)(|+,−〉+ |−,+〉)], (7)

where C± = cos θ
2 ± sin θ

2e
iφ. Concurrence [1] is given by

relation, C =
∣∣(1− x4) sin θ cosφ/

(
1 + x4 sin θ cosφ

)∣∣.
For θ = π/2, φ = π, we obtain the MECS
|Eθ=π/2,φ=π〉1,2 = 1√

2
[|+,−〉 + |−,+〉]1,2 used in most

of the previously proposed schemes for QT of SCS. For
θ = π/2, φ = 0 or 2π, |Eθ=π/2,φ=0 or 2π〉1,2 = (2(1 +

x4))−1/2[(1 + x2)|+,+〉 + (1 − x2)|−,−〉]1,2 having C =

(1−x4)(1+x4). This is an important NMECS. We note
here that when |α|2 →∞, x→ 0 and concurrence C → 1.
In FIG. 1, ’⊕’ sign represents the MECS with unit

concurrence and two ’⊗’ signs represents a particular
NMECS with concurrence lesser than unit for low value
of |α|2.
However, we see that concurrence of particular

NMECS becomes almost equal to unity for appreciable
value of |α|2. Since for low values of |α|2, ECS is a
NMECS except at points represented by ’⊗’, therefore
it will be interesting to study how the quality of telepor-
tation of SCS is affected by the amount of entanglement
contained in ECS.
Let Alice desire to teleport information state (SCS)

given by Eq. (1), with coefficients satisfying Eqs. (4).
Also let the MECS be used as the quantum channel
|E〉1,2 = N [cos θ

2 |α, α〉+ sin θ
2e

iφ| − α,−α〉]1,2.
We find the final state in the modes 2, 3, 4, express the

coherent states in modes 3 and 4 in terms of zero-photon
state (the vacuum state), state with nonzero even num-
bers of photons and state with odd numbers of photons
given by

| ±
√
2α〉 = x|0〉+ 1√

2
(1− x2)|NZE,

√
2α〉

±
√

1

2
(1− x4)|ODD,

√
2α〉, (8)

where, |NZE,
√
2α〉 = (

√
2(1−x2))−1[(|√2α〉+|−√2α〉)−

2x|0〉], and |ODD,
√
2α〉 = (2(1 − x4))−1/2[|√2α〉 − | −√

2α〉] and the state with Bob in terms of even and odd
coherent states defined by Eqs. (2, 3).
There are five possible photon counting results, (1)

zero counts in modes 3 and 4, (2) zero counts in mode 3
and non-zero even in mode 4, (3) nonzero even counts in
mode 3 count zero in mode 4, (4) zero count in mode 3
and odd in mode 4, (5) odd counts in mode 3 and zero
in mode.
Residual states with Bob in mode 2 after measurement

corresponding to each PC results are

|BI〉2 ∼ (p−1C+|+〉+ q−1C−|−〉)2
|BII〉2 ∼ [p−1(C+A+p+ C−A−q)|+〉

+q−1(C−A+p+ C+A−q)|−〉]2
|BIII〉2 ∼ [p−1(C+A+p− C−A−q)|+〉

+q−1(C−A+p− C+A−q)|−〉]2
|BIV 〉2 ∼ [p−1(C−A+p+ C+A−q)|+〉

+q−1(C+A+p+ C−A−q)|−〉]2
|BV 〉2 ∼ [p−1(C−A+p− C+A−q)|+〉

+q−1(C+A+p− C−A−q)|−〉]2
with p =

√
1 + x2, q =

√
1− x2 and C± = cos θ

2 ±
sin θ

2e
iφ.

Since Bob’s state depends on C+, the strategy is that
if |C+| ≤ |C−| (i.e., cosφ ≥ 0), Bob performs the
unitary operations: UI = UII = I, UIII = |+〉〈+| −
|−〉〈−|, UIV = |+〉〈−| + |−〉〈+|, UV = |+〉〈−| − |−〉〈+|
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FIG. 1.

FIG. 2. Upper of the left side figure shows the effect of 50:50
symmetric beam splitter (BS), lower of the left side figure
shows −π/2 phase shifter (PS) on a coherent state and right
side figure shows the teleportation scheme.

and if |C+| > |C−| (i.e., cosφ < 0), Bob performs the
unitary operations: UI = UIV = I, UII = |+〉〈−| +
|−〉〈+|, UIII = |+〉〈−| − |−〉〈+|, UV = |+〉〈+| − |−〉〈−|.
Complicated expressions for teleported state, probabili-
ties for outcome of BSM and Fidelities are given in ref-
erence [6].

Minimum average fidelity is defined as minimum possi-
ble value of average fidelity over all possible information
states. We minimized average fidelity, over all possible
information states, and then plot it with respect to en-
tanglement parameters θ and φ. Also, we take the ex-
pressions corresponding to |C+| ≤ |C−| or |C+| > |C−|.
The results are shown in FIG. 3.

For low values of |α|2, the contribution of NMECS

|Eθ=π/2,φ=0,2π〉1,2, given by F
(1)
min.,av = 1 − 1

2x
2(1 +

x2)/(1 + x4), is higher than the contribution of MECS

|Eθ=π/2,φ=π〉1,2, given by F
(2)
min.,av = 1 − 2x2/(1 + x2)2.

Difference between these two given by D = x2(3+x4)(1−
x2)/2(1 + x4)(1 + x2)2 is plotted against |α|2 in FIG. 4.

III. TELEPORTATION OF ONE QUQUAT
ENCODED IN SUPERPOSITION OF COHERENT

STATE

We now show [7] that encoding of a ququat or, in gen-
eral, a qudit in a single mode SCS, is possible. We also
propose a linear optical scheme that gives almost per-

fect teleportation (minimum average fidelity > 0.99) of
single ququat encoded in single mode SCS with the aid
of entangled ququat based on coherent states and us-
ing a 9-bit classical channel with almost perfect success
rate. We define four multi-photonic states by |α0〉 =
N0[|α〉+ |iα〉+ | − α〉+ | − iα〉], |α1〉 = N1[|α〉 − i|iα〉 −
| − α〉+ i| − iα〉], |α2〉 = N2[|α〉 − |iα〉+ | − α〉 − | − iα〉]
and |α3〉 = N3[|α〉 + i|iα〉 − | − α〉 − i| − iα〉] . These
states are orthonormal, 〈αj |αk〉 = δjk, and complete,
and contain 4n, 4n+1, 4n+2, and 4n+3 photons respec-
tively. Normalization constants are given by N0,2 =

[2(1 + x2 ± 2x cos |α|2)1/2]−1, and N1,3 = [2(1 − x2 ±
2x sin |α|2)1/2]−1. We can solve these equations and get
| ± α〉 = 1

2 [r0|α0〉 ± r1|α1〉 + r2|α2〉 ± r3|α3〉], | ± iα〉 =
1
2 [r0|α0〉±ir1|α1〉−r2|α2〉∓ir3|α3〉], where rj = (2Nj)

−1.
We define four entangled ququat states based on coher-
ent state, say, four bipartite four-component entangled
coherent states (BFECS) as

|E0,2〉 = NE0,E2 [|α, α〉 ± |iα, iα〉
+| − α,−α〉 ± | − iα,−iα〉] (9)

|E1,3〉 = NE1,E3 [|α, α〉 ∓ i|iα, iα〉
−| − α,−α〉 ± i| − iα,−iα〉] (10)

where NE0,E2 = [2(1 + x2 ± 2x cos |α|2)1/2]−1, NE1,E3 =

[2(1−x2±2x sin |α|2)1/2]−1 are normalization constants.
In terms of orthogonal states |αj〉, these BFECS can
also be written as |E0〉 = NE0 [r

2
0|α0, α0〉+ r1r3|α1, α3〉+

r22|α2, α2〉+ r3r1|α3, α1〉] (etc) and are NMECS. For ap-
preciably large coherent amplitude, however, i.e., in the
limit, |α| → ∞, the coefficients NEj and rj , become al-
most equal to 1/2 and unity, respectively, and therefore
BFECS becomes maximally entangled.
The BFECS can be generated by having the two inputs

modes 1 & 2 (see FIG. 5) as even coherent states which
give the two mode (4 & 5) output as |ψ〉4,5 = N2

e [|α, iα〉+
|iα, α〉+ | − iα,−α〉+ | −α,−iα〉], Ne[2(1+x2)]1/2. Pho-
ton counting in mode 4 gives results 4n, 4n+1, 4n+2
or 4n+3 and correspondingly at Mode 5 the output is
|α0〉, |α1〉, |α2〉 or |α3〉 respectively. Probability of gen-
eration of each state |αj〉 is Pj = N4

e r
4
j , which becomes

equal to 0.25 for appreciable value of coherent amplitude
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FIG. 3.

FIG. 4. Variation of F
(1)
min.,av for non-maximally ECS,

F
(2)
min.,av for maximally ECS and their difference D with re-

spect to mean photon number |α|2. The maximum difference
is ≈ 0.17 at |α|2 ≈ 0.6.

|α|. After illuminating a 50-50 BS by state |αj〉, the re-
sulting state is an entangled ququat similar to BFECS
|Ej〉.

One ququat information state can be written as

|I〉1 = [ε0|α〉+ ε1|iα〉+ ε2| − α〉+ ε3| − iα〉]1
= [c|α0〉+ c1|α1〉+ c2|α2〉+ c3|α3〉]1 (11)

where the coefficients satisfy normalization conditions
and c0,2 = 1

2r0,2(ε0 ± ε1 + ε2 ± ε3), c1,3 = 1
2r1,3(ε0 ±

iε1− ε2∓ iε3). For BFECS quantum channel |E0〉, calcu-
lations done on the usual line give the Alice-Bob system
final state as

|ψ〉1,2,3 = NE0
[ε0(|iα, 0, β, β, α〉+ |iβ,−iβ, 0, iα, iα〉

+|0, α,−iβ, iβ,−α〉+ |β, β, α, 0,−iα〉)
+ε1(|iβ, iβ, iα, 0, α〉+ | − α, 0, iβ, iβ, iα〉
+| − β, β, 0,−α,−α〉+ |0, iα, β,−β,−iα〉)
+ε2(|0,−α, iβ,−iβ, α〉+ | − β,−β,−α, 0, iα〉
+| − iα, 0,−β,−β,−α〉+ | − iβ, iβ, 0,−iα,−iα〉)

FIG. 5. Scheme for generating BFCECS.

+ε3(|β,−β, 0, α, α〉+ |0,−iα,−β, β, iα〉
+| − iβ,−iβ,−iα, 0,−α〉
+|α, 0,−iβ,−iβ,−iα〉)]8,9,10,11,3

with |β〉 = | 12 (1+ i)α〉. Alice performs the photon count-
ing (PC) in modes 8, 9, 10, and 11 and conveys her PC
result to Bob, on the basis of which Bob performs an ap-
propriate unitary operation on his mode 3 to get faithful
replica of the original information state. By writing

| ± α〉 = a0|0〉 ± a1|α1〉+ a2|α1〉 ± a3|α3〉+ a4|α4〉
| ± iα〉 = a0|0〉 ± ia1|α1〉 − a2|α1〉 ∓ ia3|α3〉+ a4|α4〉

where a0 =
√
x, a1,2,3 = 1

2r1,2,3, a4 = 1
2

√
r20 − 4x and

similar relations for | ± β〉 and | ± iβ〉 with expressions
for bj obtainable from those of aj , by replacing αj by βj .
Using these expansions one can verify that one of the

modes 8, 9, 10, and 11 always has vacuum state and each
of the other three modes can give any of the five results,
zero or nonzero, which is 0, 1, 2 or 3 (modulo 4).
Thus, there are C4

14
3 + C4

24
2 + C4

34
1 + C4

44
0 = 369

different PC results. These results can be transmitted
to Bob on a 9-bit classical channel. Since Bob has to
know only the required unitary transformation and there
are only 64 distinct unitary transformations, even 8 c-
bit channel is sufficient. We write these PC results as 0,
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1, 2, 3 and 4, the last one being the nonzero result (0
modulo 4) written as 4 to distinguish it from the result
of 0 counts and classify them into four groups:

Group I (All modes count zero photon),

Group II (Any three modes count zero and one mode
count non-zero photon),

Group III (Any two modes count zero photon and rest
two modes count non-zero photon), and

Group IV (Only one mode count zero and rest three
modes count non-zero photons).

In Group I, there is only one case of result and the
teleported state is seen to be ∼ |α〉+ |iα〉+ |−α〉+ |− iα〉
irrespective of the information. If the information is in
this state F = 1 and if the information is orthogonal to
it F = 0. Thus MASFI is 0 and we say that the Tele-
portation Fails. This case is however important
for small |α|2, and for |α|2 > 1.5 probability for
occurrence of this case is nearly zero.

In Group II, there are 16 possible PC results as the
non-zero photon mode may be any one of the four modes

FIG. 6. Scheme for teleporting one ququat encoded in super-
position of coherent states with the aid of entangled ququat
based on coherent state called BFECS. BS and PS stands
for 50-50 beam splitter and −π/2 phase shifter, respectively.
Bold numbers represent the quantum mode.

FIG. 7. (a) Dashed curve shows variation of maximum prob-
ability of occurrence for photon counting result (0000) of
group I, with respect to coherent amplitude. Continuous
curve shows the variation of summation of probabilities of
occurrence for all 256 photon counting results belonging to
Group IV. (b) Dashed and continuous curves shows varia-
tions of maximum probability of occurrence with respect to
coherent amplitude for typical cases of group II and III of the
photon counting result (4000) and (4040) respectively.

and non-zero photon counts may be any of 4n+1, 4n+2,
4n+3 or 4n+4. Since nonzero counts may be obtained
both for |α4〉 and for |β4〉, one cannot devise a prescrip-
tion for the required unitary transformation to be per-
formed by Bob and hence Teleportation Fails.
In Group III, there are C4

24
2 = 96 PC results, which

may further be divided into two subgroups, Subgroup
III.I and Subgroup III.II.
Subgroup III.I (Pair of modes ’8 and 10’ or ’8 and

11’ or ’9 and 10’ or ’9 and 11’ show zero counts, while
the rest two modes show non-zero photons): This sub-
group has C4

14
2 = 64 PC results. The situation for this

case is exactly similar to that discussed for Group II and
Teleportation Fails.
FIG. 7 shows variation of maximum probability of oc-

currence for PC result of different groups. From where
it is clear that probability of occurrence for PC result
belonging to groups I, II and III becomes zero for appre-
ciable coherent amplitude. Thus Occurrence of PC
results belonging to Groups I, II, III will not de-
grade the average fidelity for |α| ≥ 3.2.
Subgroup III.II (modes ’8 and 9’ or ’10 and 11’

counts zero, while rest mode count non-zero photons):
This subgroup has 32 PC results. If we look at the
states with Bob for the 32 PC results, it is seen that the
Bob’s state is invariably in the form B(j,k,m) = 1

2 [B
(j,k)+

imB(j+2,k)], where B(j,k) =
∑3

l=0 cl+k(rl/rl+k)i
jl|αl〉.

For 16 cases, a unitary transformation resulting in per-
fect or almost perfect teleportation exists, the required
unitary transformations for the Bob’s state B(j,k,m) is
U (j,k,m) = 1

2 [U
(j,k) + (−i)mU (j+2,k)], where U (j,k) =∑3

l=0(−i)jl|αk+l〉〈αl|. For the cases where no unitary
transformation giving F = 1 is possible and MASFI =
0, we admit failure, but prescribe unitary transforma-
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FIG. 8. Dashed curve shows variation of FMASFI
5,6,8,10, dash-dotted

curve shows variation of FMASFI
7 and solid curve shows vari-

ation of MAVFI.

tions U j,k which give F = 1 for certain cases of special
information states, although MASFI = 0. There are 16
such cases. Table given in Reference [7] shows all 32 PC
results belonging to subgroup III.II, corresponding state
with Bob, the unitary operations, teleported state and
the fidelities in six different forms F1, F2, ..., F6. For 16
cases for which fidelity is F5 or F6 [7], MASFI ≈ 1 for
|α| ≥ 1.7. For other 16, MASFI = 0.

FIG. 8 shows that plot of FMASFI
5,6 and shows that it

reaches unity for |α| ≥ 1.7. Thus 16 PC results of this
subgroup fails to teleport the information state, while
rest 16 PC results gives almost perfect teleportation for
|α| ≥ 1.7.

In Group IV there are C4
14

3 = 256 PC re-
sults. For this group of PC results the Bob’s state
and unitary transformation are seen to occur in the
form, B(j,k) =

∑3
l=0 cl+k(rl/rl+k)i

jl|αl〉 and U (j,k) =∑3
l=0(−i)jl|αk+l〉〈αl|, respectively [7].

For all 256 PC results corresponding Bob’s state and
required unitary transformation, are tabulated in Refer-
ence [7]. PC results for k = 0, 1, 2, 3 lead to fideli-
ties F7, F8, F9 and F10, respectively with F7 = 1, F8 =
F5, F10 = F6 [7]. Variation of MASFI against coherent
amplitude is shown by dashed curve for k = 1 or 3 and
by dash-dotted curve for k = 2 in FIG. 8.

Thus, out of all 256 PC results belonging to Group IV,
64 PC results gives perfect teleportation for any value of
|α|, while rest 192 PC results gives almost perfect telepor-
tation for |α| ≥ 1.7. Continuous curve shows minimum
average fidelity (MAVFI).

It is clear that Favmin ≥ 0.99 for |α| ≥ 3.2 and thus
almost perfect teleportation with perfect success
rate is achieved for |α| ≥ 3.2.

IV. LONG DISTANCE ATOMIC
TELEPORTATION USING ENTANGLED

COHERENT STATES AND CAVITY ASSISTED
INTERACTION

Large numbers of schemes for teleportation of qubits
based on single photon and superposed coherent states
(SCS) have been proposed. However, single-photon or
SCS are not ideal for long term storage of quantum in-
formation as they are very difficult to keep in a certain
place. On the other hand, it has been demonstrated that
a single atom can be trapped for a few seconds inside an
optical cavity. Thus, atoms are ideal for quantum infor-
mation storage. Numbers of schemes for atomic telepor-
tation using atom-cavity interactions and atoms as flying
qubit have been proposed. Since atoms move slowly and
interact strongly with their environment, these schemes
are unable to perform long distance atomic teleportation
and hence can not be used as link between two quantum
processors working distant apart. Long distance telepor-
tation is of particular importance because of its applica-
bility in secure quantum communication and future satel-
lite based quantum communication. S Bose et al [8], have
presented a novel scheme for teleporting quantum state
of an atom trapped in an optical-cavity to second atom
in another distant optical-cavity. This scheme involves
mapping of atomic state to a cavity state with Alice, fol-
lowed by the detection of photons leaking out from Alice’s
cavity and Bob’s cavity (initially in maximally entangled
atom-cavity state) by mixing over a beam splitter. The
main shortcoming of this scheme is that the teleportation
fidelity and success rate in this depends on the state to
be teleported. Under reasonable cavity parameters and
cavity decay time, success rate is near 1/2.
Further Chimczak [9] pointed out the inefficiency of

scheme proposed by Bose due to large damping values
of currently available cavities that reduces the fidelity of
state mapping from atom to cavity and discussed a modi-
fication using non-maximally entangled atom-cavity state
with amplitudes chosen in such a way that compensates
the damping factors due to state mapping. Although this
resolves the effect of damping but gives very low success
rate. In case of failure, in both schemes the message state
is destroyed. Moreover, both schemes are expected to
suffer decoherence due to photon absorption while prop-
agating toward beam splitter.
For all these reasons, a dream scheme for long distance

atomic teleportation is required that, (i) gives state inde-
pendent teleportation fidelity and (ii) high success rate,
(iii) conserves message state on failure thus permitting
repeated attempts and (iv) does not need efficient sin-
gle photon detection ability, and (v) many matter-light
interaction stages. Along with these requirements, the
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FIG. 9. Scheme for teleportation of atomic-state trapped in
cavity C1 to second atom in a distant cavity C2. Entangled
coherent state (|ψ+〉1,2 = N+[|α, α〉+ |−α,−α〉]1,2) in modes
1 and 2 is produced by illuminating beam splitter BS1 with
an even-coherent state (|E〉0 = N+[|

√
2α〉 + | − √

2α2〉]0) in
mode 0. Inset shows level structure of atom. D1, 2, 3, 4
are photon detectors, atom in cavity C1 is measured in basis
(|±〉). Encircled numbers represent the quantum mode.

scheme should use (i) quantum channel that can be de-
terministically prepared and (ii) must be robust against
photon absorption.

Since ECS are more robust against decoherence due to
photon absorption than the SBBS [10] and trapped atom
in an optical cavity are ideal for quantum information
storage, we propose [11] here a scheme for long distance
atomic teleportation using ECS that fulfills most of the
requirements mentioned above.

Wang and Duan [12] showed that if |g〉 and |f〉 are
the ground levels with different hyperfine spins and |e〉
is the excited level, the transition |f〉 → |e〉 is resonantly
coupled to the cavity mode ac, which is resonantly driven
by an input coherent pulse |α〉. The transition |g〉 → |e〉
is decoupled to the cavity mode ac due to large detuning
from the hyperfine frequency.

If initial joint state of atom and input pulse is
|g,±α〉c,in, then input pulse is resonant with cavity and
exact quantum optics calculation by [13], shows that in-
put pulse reflects with a phase change by π, or stat-
ing mathematically |g,±α〉c,in → |g,∓α〉c,out. For sate
|f,±α〉c,in, however, since cavity mode is significantly de-
tuned from the center frequency of the input pulse due to
strong atom cavity coupling, |f,±α〉c,in → |f,±α〉c,out.

If Alice desires to teleport message state of an atom in
cavity C1 given by |M〉C1 = [a|g〉+b|f〉]C1, |a|2+ |b|2 = 1
to a second atom in a distant cavity C2, initially in state,
|+〉C2 = 1√

2
[|g〉+ |f〉]C2, and they share an entangled co-

herent state, |ψ+〉1,2 = N+[|α, α〉+ | − α,−α〉]1,2, which
can be prepared by illuminating a 50:50 beam splitter by

even coherent state |E〉0 = N+[|
√
2α〉+ | −√2α2〉]0, cal-

culations on usual lines show that the initial state of the
system changes from |φ〉1,2,C1,C2 = |ψ+〉1,2|M〉C1|+〉C2

to |φ〉1,4,C1,C2

1

2
[(|
√
2α, 0,

√
2α, 0〉+ |0,−

√
2α, 0,−

√
2α〉)7,8,9,10

×(|+〉C1(|M〉)C2 + |−〉C1(σz|M〉)C2)

+(|
√
2α, 0, 0,−

√
2α〉+ |0,−

√
2α,

√
2α, 0〉)7,8,9,10

×(|+〉C1(σx|M〉)C2 + |−〉C1(−iσy|M〉)C2)]. (12)

Now Alice performs photon counting in mode 7 & 8,
and performs atomic measurement in diagonal basis in
cavity C1, while Bob performs PC in modes 9 & 10. It is
clear from the above given output state that two modes
always gives zero count. For appreciable value of mean
photon numbers of the order of |α|2 all possible measure-
ment results are different and hence appropriate unitary
operation can be prescribed to generate exact replica of
original information state in cavity C2.
However, since coherent states are the superposition

of vacuum state and all photon number state, thus there
is nonzero probability to detect vacuum state even when
light is present. This results to some nonzero probability
of failure at small mean photon numbers |α|2.
To estimate success rate and resolve the problem of

failure at small values of |α|2, we expand coherent state

| ± √2α〉 into vacuum state (|0〉) and state with nonzero

numbers of photons (|NZ±〉) given by ±√2α〉 = x|0〉 +√
1− x2|NZ±〉. Using this the final output state becomes

|φ〉7,8,9,10,C1,C2

N+[|M〉C1|+〉C2(2x
2|0, 0, 0, 0〉

+x
√

1− x2|0, 0,NZ+, 0〉+ |NZ+, 0, 0, 0〉
+|0, 0, 0,NZ−〉+ |0,NZ−, 0, 0〉)7,8,9,10
+
1

2
(1− x2)(|+〉C1|M〉C2 + |−〉C1σz|M〉C2)

×(|NZ+, 0,NZ+, 0〉+ |0,NZ−, 0,NZ−〉)7,8,9,10
+
1

2
(1− x2)(|+〉C1σx|M〉C2 + |−〉C1(−iσy)|M〉C2)

×(|NZ+, 0, 0,NZ−〉+ |0,NZ−,NZ+, 0〉)7,8,9,10].

It is clear that two modes of the 7, 8, 9, and 10 are
always in vacuum state and measurement results can be
classified into two groups:
Group I: Two field modes among 7-10 gives non-zero

photon counts and atom in cavity C1 is detected in either
of the states |+〉 or |−〉.
Group II: Three or all field modes among 7-10 are de-

tected as OFF and atom in cavity C1 is detected in either
of the states |+〉 or |−〉.
When measurement results falls into group I, Bob’s

atom can be transformed to the original message state
just by applying an appropriate unitary operation given
in the Table I against measurement results for success-
ful teleportation. Tick stands for detection of non-zero
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TABLE I. Measurement results for successful teleportation.

Alice Bob Bob’s Unitary
D7 D8 D± D9 D10 Atomic States Operation√ × +

√ × M I√ × -
√ × σzM σz

× √
+ × √

M I

× √
- × √

σzM σz√ × + × √
σxM σx√ × - × √ −iσyM iσy

× √
+

√ × σxM σx

× √
-

√ × −iσyM iσy

FIG. 10. Shows variation of the success probability (P
(n)
S ) for

different numbers of attempts n with |α|2.

photon and cross stands for detection of vacuum by de-
tectors. ± stands for atomic state in basis |±〉 and σ’s
are Pauli matrices.

Group I gives perfect teleportation with unit fidelity.
The probability of successful teleportation Ps is given by
summing the probability of occurrence of all measure-
ment results corresponding to group I, and it is given by
relation, Ps = (1− x2)2(1 + x4)−1.

However, for the measurement results corresponding
to group II, teleportation fails. Probability of failure Pf

is given by Pf = 2x2(1 + x4)−1 = 1 − Ps. But, it is
clear that in such case before measurement on atom in
cavity C1, the joint state of atoms in cavity C1 and C2
is given by |M〉C1|+〉C2. Thus message state of atoms
in cavity C1 and initial state of the atom in cavity C2
remains conserved up to this stage and it enables a fresh
attempt.

FIG. 10 shows variation of the success probability

(P
(n)
S ) for different numbers of attempts ’n’ with |α|2.

We plot P
(n)
S with respect to |α|2 and ’n’ in FIG. 10.

In a single attempt ’n = 1’, the probability of success
increases as |α|2 increases and becomes almost equal to
unity for |α|2 ≥ 2.5. This is due to the fact that for
higher |α|2, probability of detecting vacuum in coher-
ent state becomes almost zero. However for small |α|2,
probability of success is appreciably less then unity but
increases rapidly with increasing number of attempts ’n’.
For example, at |α|2 = 1, success is 0.734, 0.963 or 0.998
for one, two or three attempts.
Thus unit success can be obtained in a single attempt

for |α|2 ≥ 2.5 or in finite number of attempts for low
value of |α|2 < 2.5. We made calculations using a
shared non-maximally entangled coherent state |ψ+〉1,2 =
N+[|α, α〉+ |−α,−α〉]1,2. If we use the maximally entan-
gled coherent state |ψ+〉1,2 = N+[|α, α〉−|−α,−α〉]1,2, it
is seen that the success rate increases by a multiplicative
factor of (1 + x2)(1 − x2). For this, however, in case of
a failure, the message states alter trivially and require
transformation by Pauli matrix σz for restoration.

V. QUANTUM DISCORD AND
ENTANGLEMENT OF QUASI-WERNER STATES

BASED ON BIPARTITE ENTANGLED
COHERENT STATES

For random variables X and Y, classical mutual in-
formation can be written in two equivalent expressions,
I(X : Y ) = H(X) + H(Y ) − H(X,Y ) and J(X : Y ) =
H(X)−H(X|Y ). Oliver and Zurek [14] showed that the
quantum equivalents of I and J are different and defined
quantum discord as the difference,

D(X : Y ){∏Y
j } = I(X : Y )− J(X : Y ){∏Y

j }
= S(ρY )− S(ρX,Y ) + S(ρX|{∏Y

j }). (13)

Here, {∏Y
j } is a complete set of one-dimensional pro-

jector satisfying
∑

j

∏Y
j = 1 and ρX|∏Y

j
is the re-

duced density operator for X when measurement on Y
has been done and state j has been detected and is

given by ρX|∏Y
j
= (

∏Y
j ρX,Y

∏Y
j )/Tr(

∏Y
j ρX,Y ). Inter-

est is also on minimum of this over the set {∏Y
j }, i.e.,

δ(X : Y ){∏Y
j } = min{∏Y

j }[D(X : Y ){∏Y
j }].

Investigating QD in some systems is of important sig-
nificance. On the one hand, it allows us to discover rele-
vant quantum properties of systems. On the other hand,
studying QD in physical systems helps and prompts us
to explore the theory of QD. Most of the studies related
to quantum discord remained focused on qubit systems.
We [15] considered Werner-Like states formed by

MECS’s |ψ±〉XY and NMECS |φ±〉XY , which are defined
by

|ψ±〉XY = n±[|α, α〉 ± | − α,−α〉]XY , (14)

|φ±〉XY = n±[|α,−α〉 ± | − α, α〉]XY . (15)
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FIG. 11.

The density operators are given by

ρ(ψ+, a) =
1

4
(1− a)I + a|ψ+〉〈ψ+|, (16)

ρ(ψ−, a) =
1

4
(1− a)I + a|ψ−〉〈ψ−|, (17)

ρ(φ+, a) =
1

4
(1− a)I + a|φ+〉〈φ+|, (18)

ρ(φ−, a) =
1

4
(1− a)I + a|φ−〉〈φ−|, (19)

For measurement basis, |π0〉 = cos θ|+〉 +
eiφ sin θ|−〉, |π1〉 = sin θ|+〉 − eiφ cos θ|−〉, we find
that the quantum discords for states given by the
density operators ρ(ψ−, a) and ρ(φ−, a) do not depend
on angles θ, φ or α. We calculated the entanglement of
formation of these states also and found that quantum
discord δ is greater than or equal to the entanglement of
formation E. The two are identical and equal to 0 at a
= 0 and identical and equal to 1 at a = 1. D is zero in
the beginning and then picks up.

For the other two states, which we call quasi-Werner
states, however, the dependence of quantum discord D is
seen on θ and α although it is independent of φ. For very
small |α|, the dependence on θ is very pronounced and D
first increases with a and then it decreases. Dependence
on θ, however, becomes unnoticeable for |α| > 1. For
this case, however, D increases uniformly with a. This is
shown in the FIG. 12.

The behaviour for higher values of |α|2 is shown in
FIG. 13.

Variation of minimum of quantum discord against θ
and of the entanglement of formation E with |α| and a
are shown in the FIG. 14.
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