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We review part of the body of work developed on the use of entangled coherent states (ECSs)
and their generalization in the performance of non classicality tests such as Bell inequalities (in-
cluding their multipartite versions) and single-party contextuality inequalities. We show that a
self-contained programme of investigations along such lines is indeed possible and rather successful
when local operations based on the combination of both linear and non-linear bosonic operations
and dichotomized homodyne measurements are used over ECS-like states. Moreover, we discuss the
improvements that may arise from the use of noiseless local amplifier over the modes participating
to a given ECS-like state, thus providing an interesting forward look of experimental relevance.

Besides embodying useful resources for quantum com-
putation and information [1], entangled coherent states
(ECSs) are interesting testbed states for the addressing
of fundamental questions related to the contrast between
quantum and classical mechanics. As a significant exam-
ple, it is worth mentioning that the non local nature of
an ECS has been extensively studied in the past [2–7]. A
number of approaches has been used for the falsification
of Bell-CHSH inequalities [8] by either ECSs of their gen-
eralisation [9]. In this manuscript, we review recent ef-
forts made along the lines of building up a self-consistent
and contained programme for the assessment of non clas-
sicality via ECSs and their extensions/generalizations in
various directions, including the multipartite scenario.
We concentrate our attention to the framework based on
the use of effective local rotations and homodyne mea-
surements, which have been proven useful for the viola-
tion of Bell-CHSH inequalities [5–7].

In this context, we discuss a recently proposed test of
local realism for ECSs having an arbitrarily small ampli-
tude, supplemented by the application of local noiseless
amplification to the components of the system [10, 11].
Needless to say, the non-deterministic nature of local am-
plification operations requires postselection of measure-
ment outcomes and the invocation of the fair-sampling
assumption, which we consider valid throughout our
study. By increasing the amplitude of a coherent-state
components without amplifying the quantum fluctua-
tions, we show that the maximal violation of the Bell
inequality can be approached. The threshold for the vi-
olation of the CHSH inequality can be considerably low-
ered, thus realising the mechanism sought above. We
then move to the case of multipartite quantum correla-
tions shared by systems that, when individually taken,
are fully classical and revealed by instruments far from
offering any single-quantum resolution. We address the
case of multipartite GHZ-like entanglement shared by

bosonic systems that are locally prepared in thermal
states [7] and demonstrate that they violate properly de-
signed Bell-like nonlocality inequalities up to the max-
imum value allowed for a given representative of such
class of states. Similar conclusions can be drawn for W-
like states. Finally, we use the general tools designed
for ECS-based Bell tests to show that they are fit to
prove the state-indepedent incompatibility of quantum
mechanics and non-contextual arguments as embodied by
the Kochen-Specker theorem [12–14]. We use the same
inequality as in Ref. [15], which is constructed by means
of the effective bidimensional observables that we also
exploit for the Bell-CHSH inequalities mentioned above.
While, on one hand, the number of observables necessary
for our task is strictly the same as for discrete-variable
systems, our proposal may pave the way to a foreseeable
experimental implementation faithful to the constraint of
context independence.

I. RESOURCE STATE AND TOOLS

In this Section we formally introduce the class of states
used in our analysis together with the formalism and
tools necessary for the measurements required by our
tests of nonclassicality. Although bosonic modes of any
nature could be used to realize our proposal, it is natural
to consider hereafter ECSs of optical field modes. Among
the states falling into the family of ECSs, we consider

|ECS(α)〉AB =
|α, α〉AB + |−α,−α〉AB√

2(1 + e−4|α|2)
, (1)

where |α〉j = D̂j(α) |0〉j is a coherent state of amplitude

α ∈ C, D̂j(α) = exp[αâ†j − α∗âj ] is the displacement

operator, |0〉j is the vacuum state of field mode j = A,B

with associated creation (annihilation) operator â†j (âj).
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In this Section, for easiness of calculation and without
affecting the generality of our discussions, we consider
only the case of α ∈ R. The generalisation of Eq. (1)
to the multipartite case will be addressed in details in
Sec. III.

In general, the tests studied in this manuscript will re-
quire the distribution of state (1) [or its generalisations]
to remote agents having the task of performing local ef-
fective rotations and measurements. Here we thus de-
scribe the class of local operations that we will consider
and provide their physical embodiments. We consider
the transformation vj → R̂(θj , ϕj)vj over the vector
vj = (|α〉j |−α〉j)t for mode j with

R̂(θj , ϕj) =

(
sin

θj
2 eiϕj cos

θj
2

e−iϕj cos
θj
2 − sin

θj
2

)
. (2)

The 2×2 matrix describing such rotation in the
space spanned by {|α〉 , |−α〉} can be decom-
posed into the sequence of elementary rotations
Uz(−ϕj/2)Ux(π/4)Uz(ϑj/2)Ux(π/4)Uz(ϕj/2) with
Ux,z(ξ) = eiξσx,z and where σk is the k-Pauli matrix
(k = x, y, z). The effect of Uz(ξ) on a coherent state
|α〉 can be effectively approximated by a phase-space

displacement operation D̂(iξ/2α), while Ux(π/4) can be
implemented using the Kerr-like single-mode nonlinear-

ity UNL = e−iπ(â†â)2/2. The physical implementation of
Eqs. (2) would thus be given by the sequence [5, 6]

R̂(θj , ϕj)=D̂j(−iϕj/4α)ÛNLD̂j(iθj/4α)ÛNLD̂j(iϕj/4α).
(3)

After a lengthy but straightforward calculation, one gath-
ers the explicit transformation experienced by |±α〉j ,
which can be cast into the form

|α〉j →
1

2

{
e

iθj
4

[
|α+

iθj
4α
〉+ ie

iϕj
2 |−α− iϕj

2α
− iθj

4α
〉
]

+ie−
iθj
4

[
e

iϕj
2 | − α− iϕj

2α
+

iθj
4α
〉+ i|α− iθj

4α
〉
]}

,

|−α〉j →
1

2

{
ie

iθj
4

[
i|−α− iθj

4α
〉+ e−

iϕj
2 |α− iϕj

2α
+

iθj
4α
〉
]

+e−
iθj
4

[
ie−

iϕj
2 |α− iϕj

2α
− iθj

4α
〉+ | − α+

iθj
4α
〉
]}

.

(4)

For most of the tests that will be run throughout this pa-
per require the performance of dichotomic measurements
on the locally rotated state of a field mode. Our frame-
work will make use of experimentally non-demanding and
highly efficient homodyne measurements, which we take
here as projections onto the in-phase quadrature eigen-
state |x〉. We can thus determine the joint probability-
amplitude function

C({θ}, {ϕ}, x, y) =AB 〈x, y|R̂(θA, ϕA)R̂(θB , ϕB)|ECS〉AB ,
(5)

where {θ} ≡ {θA, θB} and {ϕ} = {ϕA, ϕB} identify the
two sets of relevant angles. A dichotomic variable is then

constructed by assigning value +1 to the outcome of a
homodyne measurement such that x ≥ 0 and −1 other-
wise. The corresponding joint probability is

Pkl({θ}, {ϕ}) =
∫
ωk

dx

∫
ωl

dy|C({θ}, {ϕ}, x, y)|2, (6)

where k, l = ±, ω+ = [0,+∞], and ω− = [−∞, 0]. We
can now introduce the correlation function

C({θ}, {ϕ}) =
∑

k,l=±
Pkk({θ}, {ϕ})−

∑
k �=l=±

Pkl({θ}, {ϕ}).

(7)

II. BELL-CHSH INEQUALITY WITH LOCALLY
AMPLIFIED ECS

Following the proposal put forward in Ref. [5–7], the
non local nature of ECSs can be tested by means of th-
elocal operations described above and dichotomized ho-
modyne measurements. An analysis of the behavior of
the Bell-CHSH function associated with such operating
conditions can be found in Refs. [5, 6], where it is shown
that the bound imposed by local realistic theories can be
violated by an ECS with α � 1 and entangled thermal
states (ETSs) displaced by a sufficiently large amount.
In Ref. [16] we have modifies such scheme by introduc-

ing local amplification stages as shown in Fig. 1, consid-
ering the local transformations

Ûj = Ĝj R̂j(θj , 0) (j = A,B) (8)

We have introduced the local noiseless amplification de-

scribed by the operator Ĝj = exp[(g − 1)â†j âj ] [17], where
g ≥ 1 is the gain of the amplifier. For now, we retain
the full form of the amplification operator to illustrate
the working principle of our proposal. Moreover, in full
agreement with standard Bell-CHSH inequality tests, we
set ϕj = 0 throughout this Section, which is sufficient to
violate the local realistic bound.

FIG. 1. Scheme for the violation of the CHSH inequality
with amplified entangled coherent state. We show the source
of ECS states, the local oscillator (LO) needed for homodyne
measurements, and the decomposition of the local unitary
transformations Ûj given in terms of the rotations R̂(θj) and

local amplification Ĝj (j = A,B). We also show the symbols
for beamsplitters and homodyners.
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In what follows, we will retain only the cases where bi-
lateral local amplification is successfully performed. Let
us consider the effect of ÛA ⊗ ÛB on |ECS(α)〉. As

Ĝj |α〉j = |α̃〉j with α̃ = αeg−1, it is straightforward
to show that

|ψf 〉 = N (ÛA ⊗ ÛB) |ECS(α)〉
= N {cos[θB − θA] |ECS(α̃)〉 +sin[θB − θA]

∣∣ECS′(α̃)〉}
(9)

withN = 1/(2+2 cos[θA−θB ]e−4α̃2

)1/2, ν = cos[θA−θB ],
and where we have introduced the unnormalized ECS∣∣ECS′(α)〉 = |α,−α〉AB − |−α, α〉AB . Eq. (9) has the
very same structure that would be taken using |ECS(α)〉,
bi-local rotation and no amplification [5], the only change
being the actual amplitude of the coherent-state compo-
nents. In turn, this implies that, upon application of the
proposal for Bell-CHSH test discussed in [5–7] we get
the following expression for the correlation function be-
tween measurement outcomes following the rotation of
the modes’ state by θA and θB respectively

Cα̃(θA, θB , 0, 0) = Erf2[
√
2α̃]

1 + νe−4α̃2 cos[θA − θB ] (10)

with Erf[·] the Error function. The Bell-CHSH inequality
that we should consider is thus written as

|B(α̃,Θ)| = |Cα̃(θA1, θB1, 0, 0) + Cα̃(θA1, θB2, 0, 0)

+ Cα̃(θA2, θB1, 0, 0)− Cα̃(θA2, θB2, 0, 0)| ≤ 2,
(11)

where Θ = {θA1, θA2, θB1, θB2} is a set of rotations
angles. Quantum mechanically, this inequality can be
violated using ECSs, the set of rotations in Eq. (2)
and dichotomic homodyne detection. By calling α the
amplitude of the coherent-state components at which
the Bell-CHSH inequality is first violated and preparing
|ECS+(αa)〉 with αa � α, we can get |B| > 2 using a
gain such that

g ≥ 1 + ln(α/αa). (12)

The behavior of B(α̃,Θ) against α and for a set of values
of g is shown in Fig. 2, demonstrating the quick satura-
tion of the Bell-CHSH function to the Csirel’son bound
and the reduction (exponential with the value of the gain
g) in the threshold amplitude for the violation of the in-
equality.

A. Effective amplification

The unbound nature of Ĝj makes the transformation
|α〉 → |α̃〉 implementable only probabilistically. The re-
alization of noiseless amplification has been at the cen-
tre of an intense theoretical and experimental activ-
ity [10, 11, 17–20]. The role of noiseless amplification
in quantum information processing and quantum com-
munication has been addressed in an ample variety of
ways [20–22]. For weak coherent states and small values

FIG. 2. Bell-CHSH function B(α̃,Θ), optimized over the set
of rotation angles Θ, plotted against α for g = 1 (solid red
line), g = 2 (blue dashed line) and g = 3 (purple dot-dashed
one). The light straight line marks the local realistic bound.

of the gain, the amplification operator can be expanded
to the first order in g as [10]

Ĝj  1̂1 + (g − 1)â†j âj = (g − 2)â†j âj + âj â
†
j . (13)

The amplification thus results in the application of a

weighted coherent superposition of the operators â†j âj
and âj â

†
j . Both photon-subtraction and addition oper-

ations have already been realized experimentally for ar-
bitrary states of light [23]. A general superposition of
these two operators can be experimentally engineered
with a suitable configuration of stimulated parametric
down-conversion and linear optics elements and with only
a negligible contribution from multiphoton events [24].
A remark is due at this stage: when Eq. (13) is used

together with the local operations discussed in Sec. II
and dichotomized homodyne measurements, the actual
ordering of the amplification and rotation stages is key
to the success of the overall protocol. In particular, it
takes a straightforward albeit lengthy calculation to show
that, when the amplification (with g � 1) precedes the
bilocal rotations, no advantage with respect to the no-
amplification version of the scheme is achieved. Indeed,
the state resulting from the application of the operator
Û ′A ⊗ Û ′B [with Ĝj approximated as in Eq. (13) and only
the cases of successful bilateral amplification being re-
tained] reads∣∣ψ′f〉  N{cos[θB − θA] |ECS(α)〉

+ sin[θB − θA]
∣∣ECS′(α)〉}, (14)

which bears no dependence on the amplification gain.
Differently, we will prove in what follows that amplifi-
cation following local rotations indeed results in a more
advantageous resource that exhibits features similar to
those of the fully amplified state in Eq. (9). We thus de-
scribe the protocol for the construction of the Bell-CHSH
function resulting from the application of the Ûj ’s onto
|ECS(α)〉 and dichotomized homodyne measurements.
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The construction of the Bell-CHSH function goes along
the lines described in the previous Subsection with the
new correlation function [16]

Cgα(θA, θB , 0, 0) =
e4α

2

ν Erf[
√
2α]

(μα + ν)2

{
4Erf[

√
2α]

× (e4α
2

+(1 + 8(g − 1)α2) cos[θA − θB ])

+

√
2

π
e−2α2

α(g − 1)(e4α
2

+ cos[θA − θB ])
}
.

(15)

While a local realistic description of the entangled co-
herent state in the presence of the ideal local rotations
and without amplification is not possible for α � 0.63,
for a state locally amplified by g = 1.1 such threshold is
lowered to 0.57 [cf. inset of Fig. 3 (a)].

Further reductions of the threshold value of α can be
obtained increasing the gain, still remaining within the
limits of validity of the second-order expansion within
which our calculations have been performed. For in-
stance, in the main panel of Fig. 3 (a) we show the
Bell function, optimised numerically over Θ, for g = 1
(red curve) and g = 1.4 (blue curve), plotted against
the coherent-state amplitude α. The value of α at which
the Bell-CHSH inequality is first violated when the state
is locally amplified goes down to 0.43, an approximately
30% reduction in the value corresponding to no local am-
plification. In this case the inaccuracy due to the second
order expansion in g is about 2×10−3. As an example, we
report the value of the optimized Bell’s function without
amplification for α = 0.7 which is B1

id(0.7,Θ0.7)  2.14,
and compare it to B1.4

id (0.7,Θg
0.7)  2.76, which corre-

sponds to g = 1.4. We can see that, already at α = 0.7,
the Bell’s function is almost saturated.

(a) (b)

FIG. 3. (a) Bell function (optimized numerically over the set
of rotation angles Θ) plotted against the coherent-state am-
plitude α for g = 1.0 (red curve) and g = 1.4 (blue curve).
Inset: same as in the main panel but for g = 1.0 (red curve)
and g = 1.1 (blue curve) and α ∈ [0, 2]. Even small in-
creases in the gain factor result in noticeable reductions of
the threshold for the violation of the Bell-CHSH inequality.
(b) Numerically optimized Bell’s function plotted against the
amplitude of the coherent states with effective rotations for
g = 1.0 (purple curve) and g = 1.3 (green curve). The black
point represents the value of α for which the violation occurs
with ideal rotations and no amplification.

B. Effective rotations

We now replace the idealized local rotations in Eq. (2)
with their physical embodiments discussed in Sec. I. We
thus construct the correlation function resulting from
the use of the operations approximating the local ro-
tation operators on each mode of our system. A long
albeit straightforward calculation shows that the associ-
ated joint probabilities depend on the probability ampli-
tudes

Ceff
g (θA, θB , xA, xB) =

∑
γ=±α

Πg
γ(xA, θA)Π

g
γ(xB , θB)

(16)
with

Πg
±α(xj , θj) = ∓ iδ

±α
α

4
√
π

[
ieiθj (ξ+χ+

(xj , θj) + iξ−χ+
(xj , θj))

∓e−iθj (ξ−χ−(xj , θj) + iξ+χ−(xj , θj))
]
,

ξ±χ±(xj , θj) = e−(xj∓χj
±)2 [1 + (g − 1)(±2χj

±xj − χj2
± )],

(17)

and χj
± = α ± iθj/α. Fig. 3 (b) shows the optimized

Bell-CHSH function for g = 1.0 (purple curve) and g =
1.3 (green curve). In this case, the threshold for the
violation of the Bell-CHSH inequality is lowered from
α = 0.84, which is the value achieved using the effective
rotations, to α = 0.63, corresponding to the use of the
ideal rotation, perfect homodyne measurements, and no
amplification.

III. MULTIPARTITE NON LOCALITY TESTS
USING ETS

Although one may be tempted to identify one with the
other, quantum non-locality and quantum entanglement
in multipartite settings are concepts which should be ap-
proached carefully. In fact, it is straightforward to real-

FIG. 4. Scheme for generating GHZ-like ETS. Three dis-
placed thermal states (labelled j = 1, 2, 3) interact with a
two-level ancilla prepared in state |+〉A = (|0〉A + |1〉A)/

√
2.

The interaction is ruled by the coupling Hamiltonian ĤAj =

�Ω|1〉A〈1|â†
j âj for a time equal to π/Ω. The ancilla is finally

projected onto |±〉A with A〈+|−〉A = 0.
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ize that the violation of an n-particle Bell’s inequality by
an n-particle entangled state is not sufficient to guaran-
tee that genuine multipartite entanglement is shared by
the system’s elements. The non-local nature witnessed
by the violation of a Bell’s inequality might well be en-
tailed simply by an entangled state involving only m < n
particles. In 1987, Svetlichny addressed this point by de-
riving an inequality, for the tripartite case, that is able
to discriminate between two- and three-particle entan-
glement [25]. Such inequality is satisfied by restricted lo-
cal realistic models allowing for a degree of two-particles
non-locality.

The inequality formulated by Svetlichny reads

S(a,b, c) = |C (abc1) + C (ab1c) + C (a1bc) + C (abc)

− C (a1b1c)− C (a1bc1)− C (ab1c1)− C (a1b1c1)| ≤ 4,
(18)

where k = a, b, c is a label for the party involved in the
test, k = (k, k1) and C (abc) is the statistical correla-
tion function for measurements having outcomes a, b and
c respectively. Eq. (18) states that, for any local real-
istic theory, the Svetlichny function S(a,b, c) is limited
by 4. Quantum mechanics, on the other hand, predicts
the existence of genuinely tripartite quantum correlated
states violating such a bound. In particular, when the
correlations C (abc) are evaluated over a tripartite GHZ

state, the value 4
√
2 is obtained for the Svetlichny func-

tion, which is the maximum achievable for any tripar-
tite state. Such maximum violation is achieved by pro-
jecting each particle j in a GHZ state onto the eigen-
states of cosϕj σ̂x,j+sinϕj σ̂y,j , where σ̂x,y,z are the three
Pauli matrices. A straightforward calculation gives the
correlation function C (θ, φ, μ) = cos(θ + φ + μ). For
θ = θ1 + π/2 = 3π/4, φ = −μ1 = π/2 and μ = φ1 = 0,

we have |M| = |M1| = 2
√
2 and |S| = 4

√
2, which

shows violation of both Svetlichny and Mermin inequal-
ity. The inequality by Svetlichny has been independently
extended to the n-partite scenario in Refs. [26, 27]. Very
recently, Lavoie et al. have experimentally demonstrated
the violation of SI by a tripartite GHZ state encoded in
the polarization degrees of freedom of three photons in a
linear optics setup [28].

A. Generation of GHZ/W-like ETS and violation
of Svetlichny inequality

We now address tripartite non-locality using ECSs
and, more generally, the class of ETSs mentioned pre-
viously in this paper, used explicitly in Ref. [6, 7],
and defined as ρthj (V, d) =

∫
d2αP th

α (V, d)|α〉j〈α|, where
P th
α (V, d) = 2[π(V − 1)]−1e−

2|α−d|2
V −1 is their Gaussian P

function centered in d and with variance proportional to
V = 2n + 1 (n is the mean thermal occupation number
of the mode). In our proposal, three local parties are
each provided with one mode j = 1, 2, 3 of a tripartite
ETS that has been off-line prepared using single-mode
displaced thermal states [7]. Displaced thermal states

are the building blocks for the construction of a tripartite
GHZ-like ETS state, as described in the scheme of Fig. 4,
which is based on conditional displacements of each of the
three modes upon interaction with a two-level ancilla A
having logical states |0〉A and |1〉A. This is realized by en-

forcing the mode-ancilla coupling ĤAj = �Ω|1〉A〈1|â†j âj
and preparing A in |+〉A = (|0〉A + |1〉A)/

√
2. Nonlin-

ear media with free-traveling optical fields or dispersive
interactions within optical/microwave cavities may be
used to implement the required interactions [7, 29]. The
state of A is eventually projected onto the state basis
{|+〉A , |−〉A} (with A〈−|+〉A = 0). The scheme in Fig. 4
creates the state

ρ
(3)
ghz = N

∫
d2αd2β d2ζP th

α (V, d)P th
β (V, d)P th

ζ (V, d)

× |GHZ(α, β, ζ)〉123〈GHZ(α, β, ζ)|
(19)

with N the normalization factor, α, β, ζ ∈ C, and the
(unnormalized) GHZ-like entangled coherent state

|GHZ(α, β, ζ)〉123 = (1̂1 +⊗3
j=1e

iπâ†
j âj ) |α, β, ζ〉123 . (20)

Both the tripartite GHZ- and W-like entangled coherent
states have been shown to violate inequalities for (non-
genuine) multipartite nonlocality [30]. In Ref. [31] it has
been shown that Eq. (19) with an appropriate displace-
ment amplitude can be used to violate the coherent-state
version of Svetlichny inequality. Our task here is to give
a clear-cut account of such results, using the set of local
rotations in Eq. (2).
Following the arguments by Svetlichny illustrated

above, we restrict the set of local rotations over the modes
at hand to the equatorial plane in the equivalent single-
qubit Bloch sphere, i.e. θj = π/2 (j = 1, 2, 3) in Eq. (2),
with ϕj free to change. The projections needed in order
to evaluate joint probabilities and correlation functions
as described in Eq. (18) are implemented by dichotomiz-
ing the outcomes of homodyne measurements performed

over the three modes in ρ
(3)
ghz, and associating a logical +1

(−1) to a positive (negative) homodyne signal so that

C(ϕ1, ϕ2, ϕ3) = P+++−P−−−+P(P+−−−P++−), (21)

where we have omitted the dependence of the above cor-
relation function on the values of {θj}, P represents a
permutation of the pedeces appearing in the conditional
probabilities

Pklp(ϕ1, ϕ2, ϕ3) =

∫
ωk

dx

∫
ωl

dy

∫
ωp

dz 〈x, y, z|ρ(3)′ghz|x, y, z〉,
(22)

with k, l, p = ± and ρ
(3)′

ghz = ⊗3
j=1R̂j(

π
2 , θj)ρ

(3)
ghz ⊗3

j=1

R̂†j(
π
2 , θj). In Ref. [31] it is found

Cghz(ϕ1, ϕ2, ϕ3) = Nghz cos(ϕ1 + ϕ2 + ϕ3)Erf
3[

√
2d√
V

]

(23)

The First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science
— Towards Macroscopic Quantum Communications —

November 26-28, 2012, Tokyo, Japan



126 G. Torlai et al.

with Nghz the normalisation after the local operations.

When d�√
V/2, Erf[

√
2d/
√
V ] → 1 and Nghz → 1,

making the correlation function identical to the one ob-
tained for a tripartite spin-1/2 GHZ state [28].

When inefficient homodyne detectors (all with the
same detection efficiency η) are considered, the corre-
lation function is easily found from Cghz(ϕ1, ϕ2, ϕ3) with
the replacements d → ηd and V → 1 + η2(V − 1) in
the error function appearing in Eq. (23). So, the effect
of an inefficient detector is just to slow down the satu-
ration of the d-dependent term in the correlation func-
tion. This simply means that, for set values of V and for
η < 1, a larger value of d is required to achieve the maxi-
mum allowed degree of violation of Svetlichny inequality.
More in detail, for V � 1 we need to displace the local
thermal states by dη  d

√
1 + (V η2)−1 in order for the

corresponding correlation function to reach the value of
Cghz(θ1, θ2, θ3) corresponding to η = 1. We thus get

Sghz
η (ϕ1, ϕ2, ϕ3) ∝ Sghz(ϕ1, ϕ2, ϕ3)Erf

3[

√
2dη√

1 + η2(V − 1)
]

(24)
where Sghz(ϕ1, ϕ2, ϕ3) is the Svetlichny function for the
ideal case of spin-1/2 particles. Fig. 5 (a) shows the
Svetlichny function against V and d for η = 0.1. Maxi-
mum violations of the inequality can be observed for any
value of V by choosing a sufficiently large d. The pa-
rameter d is the “knob” to tune in order to optimize the
non-classical properties of a given state at an assigned
value of the thermal spread V . Intuitively this means
that the entanglement in an ETS is a delicate trade-off
between the distinguishability of its state components,
as measured by their mutual distance d in phase-space,
and the width V of each thermal distribution. When
the Gaussian probability functions defining each thermal
state are so large that they overlap significantly, the state
components become quasi-indistinguishable and entan-
glement is correspondingly destroyed. It should thus be
clear that, per assigned value of V , a way to counteract
such entanglement washing-out effect is to make the state
components sufficiently distinguishable in phase space,
which implies the increase of d.

The qualitative features discussed above do not depend
on the form of the multipartite state being considered. In
fact, by following arguments similar to those valid for a
GHZ-like ETS state, one can easily verify that the corre-
lation function corresponding to an ETS version of the W
state, which can be generated as discussed in [30], reads
(for η = 1)

Cw(ϕ1, ϕ2, ϕ3) = Nw[cosϕ1 cosϕ2 cosϕ3

+ 2 cos(ϕ1 + ϕ2 + ϕ3)]Erf
3[

√
2d√
V

].
(25)

The angular part is identical to what one can find for
a tripartite spin-1/2 W state (1/

√
3)

∑3
j=1 σ̂x,j |000〉123.

This class of states violates Svetlichny inequality by
 0.355 [32], which is achieved by projecting each party

(a) (b)

0 10 20 30 40 50 60

FIG. 5. (a) Violation of Svetlichny inequality by a tripartite
GHZ-like ETS under effective rotations and inefficient homo-
dyne detection (efficiency η = 0.1). We show the Svetlichny
function against displacement d and variance V of the local
thermal distributions. The floor of the plot is given by the
local realistic bound of 4. For d � √

V , the upper bound
of 4

√
2 is achieved, exactly as it would be for a pure GHZ

state of three spin-1/2 particles under sharp measurements.
(b) Svetlichny function for a tripartite W-like ETS at vari-
ous values of V . The local realistic bound is 4 (shaded region
of the plot). The maximum achieved violation of Svetlichny
inequality, reached at large values of d, is quantitatively the
same as in the spin-1/2 case.

onto the eigenstates of cosϕj σ̂z,j + sinϕj σ̂x,j . In our
formalism, this is equivalent to applying the local rota-
tions R̂j(2 arctan[(cosϕj − 1)/ sinϕj ], 0) to each mode
and perform dichotomic homodyne measurements as de-
scribed above. The corresponding Svetlichny function
SW is shown in Fig. 5 (b) for several values of V and

η = 1. Evidently, a large enough ratio d/
√
V makes a W-

like ETS state violate the tripartite Svetlichny inequal-
ity up to the maximum degree allowed to the spin-1/2
counterpart of such states. The inclusion of detection
inefficiency and the corresponding results are perfectly
analogous to what was discussed regarding the GHZ-like
ETS case.

IV. KOCHEN-SPECKER INEQUALITY

In this Section, we abandon multi-mode non-locality to
address the properties of an effective single-body quan-
tum system against the constraints imposed by the as-
sumptions of classical non-contextuality [33].

We briefly introduce and discuss the KS inequality that
has been experimentally tested in Ref. [15], was assessed
in Ref. [34] using ECSs, and is briefly reviewed in this
paper. The inequality is constructed using nine observ-
ables, along the lines of the arguments put forward by
Peres and Mermin [35, 36] to prove the incompatibil-
ity between quantum mechanics and non-contextuality.

Such observables are arranged in a 3×3 array Â, known as
the Peres-Mermin square, in such a way that the entries

Âij (i, j=1, 2, 3) in each column and row are mutually

compatible and have dichotomic outcomes ν(Âij)= ± 1.
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Denote the products of rows and columns as

R̂k = Âk1Âk2Âk3, Ĉk = Â1kÂ2kÂ3k, (26)

respectively: Assuming non-contextuality implies that

ν(R̂k) = ν(Âk1)ν(Âk2)ν(Âk3), (27)

ν(Ĉk) = ν(Â1k)ν(Â2k)ν(Â3k). (28)

Thus the total product becomes Π3
k=1ν(Rk)ν(Ck) = 1,

since any ν(Âij) appears twice in the product. However,
this is in contrast with the predictions of quantum me-
chanics, where a Peres-Mermin square can be built out
of the dichotomic Pauli operators {σ̂x, σ̂y, σ̂z} associated
with two spin-1/2 systems as

Â =

⎡
⎢⎣σ̂

(1)
z ⊗1̂1

(2)
1̂1
(1)⊗σ̂(2)

z σ̂
(1)
z ⊗σ̂(2)

z

1̂1
(1)⊗σ̂(2)

x σ̂
(1)
x ⊗1̂1

(2)
σ̂
(1)
x ⊗σ̂(2)

x

σ̂
(1)
z ⊗σ̂(2)

x σ̂
(1)
x ⊗σ̂(2)

z σ̂
(1)
y ⊗σ̂(2)

y

⎤
⎥⎦ . (29)

In this case, the product of each row and column gives
11, except those of the last column that gives −11. Hence,
in this case we have the additional property of compat-

ibility for R̂k and Ĉk (k=1,2,3) and so, assuming non-

contextuality, Π3
k=1ν(R̂k)ν(Ĉk)=−1. This witnesses the

contradiction between a non-contextual assumption and
the predictions of quantum mechanics. Such a conflicting
outcome is formalized by the KS-like inequality [37]

〈χ̂ks〉 = 〈R̂1〉+〈R̂2〉+〈R̂3〉+〈Ĉ1〉+〈Ĉ2〉−〈Ĉ3〉 ≤ 4. (30)

In Ref. [37] it has been proven that this inequality is
bounded by 4 for any non-contextual hidden variable
(NCHV) theory, while 〈χ̂ks〉 = 6 for any state of two
spin-1/2 particles. Eq. (30) will be used throughout this
paper.

In Ref. [34], the KS inequality was tested using a CV
Werner-like class of states. These are defined as

ρw(a, p) = p |ECS(a)〉〈ECS(a)|+ (1− p)

4
11±α (31)

with 11±α = |α, α〉〈α, α|+ |α,−α〉〈α,−α| +
|−α, α〉〈−α, α|+ |−α,−α〉〈−α,−α|. State |ECS(a)〉
denotes the non-maximally entangled ECS state

|ECS(a)〉=(
√
a |α, α〉+√1−a |−α,−α〉)

[1+2
√
(1− a)ae−4|α|2 ]1/2

,

whose degree of entanglement is parameterised by a ∈
[0, 1]. For a=0, 1 the state is fully separable, while at
a=1/2 and |α| � 1 it approximates a maximally entan-
gled two-qubit Bell state. The parameter p ∈ [0, 1] ac-
counts for the degree of mixedness of ρw(a, p), which is a
statistical mixture (a pure ECS state) for p = 0 (p = 1).
The combined tuning of a and p gives us access to a broad
range of states that can be used to test the KS inequality
for a state-independent violation.

(a) (b)
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FIG. 6. (a) Violation of non-contextuality by a CV Werner
state at increasing values of the amplitude α ∈ R. We plot
three KS functions, each corresponding to p = 1 in Eq. (31).
The three curves correspond to a = 1, 3/4 and 1/2. Maximum
violation of the non-contextual KS inequality in Eq. (30) is
achieved independently of the degree of entanglement. The
inset shows a magnification of the region given by α ∈ [0.5, 2].
In panel (b) we have plotted the KS functions corresponding
to a = 0.5, thereby working with maximally entangled co-
herent states, for p = 1, 0.5 and 0 in a CV Werner state.
Maximum violation of the KS inequality is achieved, regard-
less of the degree of mixedness within the state. The inset
shows a magnification of the region given by α ∈ [0.5, 2].

The KS function 〈χ̂ks〉 for this Werner-like class of

states is built from the correlators 〈R̂i〉, 〈Ĉi〉 (i = 1, 2, 3)
as in Eq. (30). The Pauli spin-1/2 matrices σ̂x, σ̂y and

σ̂z are given by R̂(0, 0), R̂(0,−π/2) and R̂(π, 0), respec-

tively. The correlator 〈Ω̂i〉 (Ω̂ = R̂, Ĉ and i = 1, 2, 3) is
written as

〈Ω̂i〉 = (1− p)
∑

s1,2=±
〈s1α, s2α| Ω̂i |s1α, s2α〉/4

+ p 〈ECS(a)| Ω̂i |ECS(a)〉 .
(32)

The explicit form of the correlators as functions of α, p
and a is too lengthy to be shown here and its components
have been presented in Ref. [34].
In Fig. 6 (a) and (b), we show two significant cases of

the quasi-state independence of the KS function 〈χ̂ks〉
achieved in our model (for simplicity, we have taken
α ∈ R). Panel (a) is for p = 1 and three different
values of the entanglement within the state, from full
separability to maximum entanglement. On the other
hand, panel (b) studies the effects that mixedness has
on the behavior of 〈χ̂ks〉. We set a = 0.5, so that the CV
Werner state is maximally entangled, and tune p from
a fully pure state to maximum mixedness. The results
show that for α < 1, the KS function quickly grows to
trespass the bound imposed by NCHV’s in a narrow re-
gion around α∼1. In these conditions, we observe some
minor dependence of the KS function from the various
states being used. The KS functions associated with re-
source states having larger degrees of entanglement and
purity become larger than 4 for slightly smaller values of
α. The situation changes as the amplitude grows, nulli-
fying the differences highlighted above and delivering a
truly state-independent KS function that quickly reaches
6, the value that is known to be achieved by 〈χ̂ks〉 in the
discrete-variable case and regardless of the state being
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used. Although Figs. 6 (a) and (b) address only a few
significant cases, we have checked that the description
provided here is valid for any other choice of a and p.
Ref. [34] goes significantly beyond the exemplary cases
addressed here and illustrates the state-independent vi-
olation of the KS inequality for a much larger class of
two-mode states.

V. CONCLUSIONS AND OUTLOOK

We have reviewed the violation of two-mode and multi-
mode Bell-like inequalities by ECSs and ETSs address-
ing, in the former case, the potential advantages coming
from the use of local noiseless amplification. We have
then extended the panorama of our investigation to con-
textually related questions, addressing the well-known
KS inequality and proving that ECS-like states can be
used to prove state independent quantum contextually.
The success of the tests that we have addressed owes a
lot to the nature of the local transformations that we have
chosen for running both the (multipartite) Bell inequali-
ties and the KS one described in this paper. Such studies

are interesting examples of the versatility of ECSs and re-
inforce the premier role that they play in the quantum
information context.
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