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Abstract—The wiretap channel (Wyner, 1975) is a model
for communication subject to eavesdropping in information
theory. Recently, the author obtained asymptotically optimal
explicit codes for communication over the wiretap channel.
Here, the explicitness means that the codes are constructible
in polynomial time in their code-lengths. This result is
briefly reviewed and it is described how the result was
obtained.

I. INTRODUCTION

The wiretap channel [1] is an information-theoretic
model for communication subject to eavesdropping. In
some rough usage of the term ‘wiretap channel,’ it also
means the problem formulation of secure and reliable
information transmission through such leaky channels
due to [1], or the now standard generalized problem
formulation in [2].

Recently, the author obtained a constructive solution
to the problem of the wiretap channel [3], [4]. In the
simplest case where the wiretap channel consist of a pair
of binary symmetric channels (BSCs), the result can be
stated as follows. It has been shown that for any pair
(W1, Ws) of binary symmetric channels, there exists a
sequence of encoder-decoder pairs (¢, ;) that achieves
any rate below the secrecy capacity Cs = Cs(Wy, Wa)
while each encoder ¢; is constructible in polynomial
time in its block length. Here, a BSC means a channel
that flips an input symbol 0 into 1, and 1 into O with
probability p for some 0 < p < 1, ‘achieves a rate R’
means the information rate of the encoder approaches
R as the block length grows large while the encoder-
decoder pair fulfills the requirement that the following
two quantities should go to zero asymptotically: (i) the
decoding error probability for the information transmis-
ston through Wj, (ii) the amount of ‘information leakage’
to the eavesdropper through Wy. These are measures on
reliability and security, respectively, and are quantified
in standard information-theoretic manners. The number
Cs has been known as the maximum rate at which
information can be sent reliably and securely, but earlier
results on achievability are existential.

In this article, the result is briefly reviewed and it is
described how the result was obtained.

II. THE RESULT TO BE EXPLAINED
A. Compact Form of the Result

The author obtained several proofs for the constructive
result described in the previous section. In fact, the
version published by IEEE [4] of this statement is more
general, as described below.

As usual, [Fy denotes the finite field consisting of ¢
elements.

Theorem 1: [4]. Let Pypir be the uniform distribution
on F,. For any pair of discrete memoryless channels
(W1, W) with input alphabet F; (often called wiretap
channel), there exists a sequence of encoder-decoder pairs
(¢:,%;) such that the sequence achieves any rate below
C" = I(Punis, W1) — I(Punit, W2), provided C’ > 0, and
each encoder ¢; is constructible in polynomial time in its
block length.

Here, we have adopted Csiszar and Korner’s alternative
way of writing [(P, W) in place of the mutual infor-
mation I(X;Y) for random variables X,Y with Pr{X =
z,Y =y} = P(x)W(y|z).! Note if Wi is less noisy
than Wy, (see [2, Theorem 3] and [6]) and I(Pynir, W;)
is the capacity of W; for j = 1,2, the theorem says that
the constructible codes achieve the secrecy capacity of
(W1, Ws). (This is the case if ¢ = 2 and Wy, Wy are
BSCs with ¢’ > 0 as can be checked elementarily [5];
the statement in Introduction indicates this case.)

B. Remark

We remark that the author has already strengthened
the above theorem to the statement that says the secrecy
capacity of an arbitrary wiretap channel consisting of
discrete memoryless channels is achievable with codes
constructible in polynomial time. (The encoders in the
above theorem can be tailored to such general wiretap
channels.)

For those who have mastered information theory and
have read [4], the following remarks on Theorem 1 would
be enough to see this strengthening, where V- W denotes
the cascade of channels V' and W:

o Theorem 1 implies the achievability of C” =
I(Punif7 Wpre . Wl) - I(Punifa Wpre : WZ) with POl)/'

Definitions of the mutual information can be found in most textbooks
of information theory, or in {5].
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nomially constructible encoders readily and obvi-
ously.

o The achievability of C"" = I(P,Wpe - Wi) —
I(P,Wye-Wa) for an arbitrary P is still a corollary
to Theorem 1 [by a technique of Gallagar’s (1968)].

ITII. DEFINITIONS

A. Basics

To go into details, we need definitions. Throughout,
n,m, N are positive integers, and logarithms are to base
g. We denote by [vw] the juxtaposition (concatenation)
of vectors or sequences v and w, e.g., [(0,1,0)(1,0)] =
(0,1,0,1,0); the juxtaposition extends naturally to more
vectors, e.g., [uvw] = [[uv]w] = [u|vw]].

In this work, as usual, a channel means a stochas-
tic matrix [W(bla)]( pyex=y, where X', ) are finite or
countable sets. We will also refer to such a matrix W as
a stochastic map W : & shep Y. The product of matrices
(W (bla)](apycaxy and [V(c|b)]p,e)eyxz is written as
WV or W V' so that the resulting matrix U = WV is
given by Ufcla) = } ey W(bla)V (c|b). This represents
the cascade of W and V.

Definition 1: For any function f : X — Y, fstch
denotes the unique stochastic map fs*h : X stch y
satisfying fstP(f(x)|x) = 1 for any z € X

B. Structured Encoders for Wiretap Channels

Consider the following simple process for encoding:

We generate a string w of ko digits uniformly
randomly; then, we encode the secret data v €
F¥ into 2 = [vw]G+t, where G is a (k+52) xn
full-rank matrix and ¢ € Fy'.
It has been turned out that this type of encoders or
compositions (concatenations) of them are powerful. We
also use the following notation.
Definition 2: For k,k1,k with & = k1 — kg (0 <
ko < K1 <n) and a function f : ]F"“1 — [F”, we define a
stochastic map (encoder) [f]sth : ]1""’1c shep F7 by [fl5ich =

Ty - F5°, where Ty, : Fh ™5 stch Fst is defined by

/g™ if 3w e Fg2, x = [vw)

0 otherwise.

T s (w0) = {

The encoder is called an [[n, k]] encoder (over Fy) if f
is one-to-one whereas f is called an [n, k1] encoder.

Example 1: Given a k1 x n matrix G and a vector
t € Fy, let us define a function F¢, : Fj* — Fy by

Fou(u) = uG +1. )

Then, [Fg 55" stands for the aforementioned simple
process for encoding. (It is a convention to call the range
of Fe ¢ an [n, k1] code when G is of full rank.) Some-
times, G will be called a generator matrix of [Fg,JStch.

In this example, if we divide GG into two submatrices

as
G
G= { Go } 2)

where G1 and G2 have k1 — k2 and ko rows, respectively,
the role of GG3 may be understood as a kind of scrambler.
The encoder [Fg, ,]StCh has appeared as the encoder of the
quotient code C/B in [7], where G2 and G generate B
and C, respectively, and ? is the zero vector. We remark
that the way to produce the stochastic map [Fa il S“h
described in [7] is different from the above.?

Definition 3: A product [¢)|---|¢(V)] of stochastic
maps ¢ : V7 S Wwn i€ {1,..., N}, is defined by

[¢(1);...‘¢(N)]([ MM @ - o]
_ Hd) B (8 |v 3)

where v € V™ 2 e Wn e {1,...,N}.

C. Wiretap Channels

As usual, a channel W X o Y is called a
memoryless channel in the situation where a transmitted
word x € X'V is changed by (v uses of) the channel W
into y € V¥ with probability W (y|z). Here, W" is the
vth extension of W:

WY =W [W]. C)
N——

A broadcast channel with confidential messages
(BCC) [2] is a pair of channels (W7, Wy) consisting of
memoryless channels Wy : X stch Yand Wy : X stch Z,
where X,), Z are finite sets. The outputs of Wi are
received by the legitimate user, and those of Wy by
the eavesdropper. We sometimes call a BCC (W, Ws)
a wiretap channel as in Theorem 1 when no common
message is wanted to be broadcast (but only confiden-
tial messages) while originally, the part W’ of a BCC
(W1, W1 W') was called a wire-tap channel [1].

IV. THE CONCATENATED ENCODER

The codes, or encoders more precisely, that have been
proved to be constructible in polynomial time and to
achieve any rate below C” are concatenated encoders,
which generalize Forney’s concatenated codes. (Even
though C” is not the secrecy capacity for some wiretap
channels, the encoders in the above theorem can be
modified to achieve the secrecy capacity of the general
wiretap channel, as already explained.)

%In fact, the primary purpose of writing [7] was to explain the
standard (symplectic) quantum error-correcting codes by relating their
ability of error correction with that of the corresponding quotient codes.
For this purpose, the author did not care for the efficiency of encoding
but explaining the relation.



The concatenated encoder proposed by this author [8],
[4] is an encoder of the form

d)~ = ¢out : [¢(1)| U |¢(N)] (5)

where doys is an [[kIN, K| encoder and ¢ are [[n, k||
encoders.?

V. SECURITY OF THE CONCATENATED ENCODER

A lemma on the security of the concatenated encoder
qg (Section IV), used on a BCC (W7, Ws) as described
in Section III-C, was presented in [4]. With this lemma,
the achievability of any rate below the secrecy capacity
was proved. (The lemma is essentially the same as the
security lemma in [3]. Theorem 2 of [4] is a refinement
of the lemma, i.e., Lemma 1 thereof.)

VI. How THE CODES WERE OBTAINED
A. How the Codes Were Obtained

In 2006, a method for concatenating codes that can
be used both for quantum error correction and for com-
munication over wiretap channel was proposed by the
author [9]. This has been presented in [9], [10] as a
method for creating a pair of linear codes (Li, L)
with Ly C L; from a pair of g*-ary codes (Dy, Do)
with DZL C D; (outer codes) and pairs of g-ary codes
€9, iy with ¢+ < ¢ and |0 /] = ¢
(inner codes) to encode the ith symbol of D; or Dy 45

When this author wrote the initial version of [10], the
author thought the primary application of this method
would be cryptographic protocols. In fact, the motivation
for the investigation in [10] was quantum key distribution
(QKD) since concrete constructions of (Lq,Lg) were
awaited as the heart of QKD protocols, which have
been claimed to be information-theoretically (uncondi-
tionally [12]) secure. On the other hand, in the community
of information theory, interest in another related issue has
been revived. The issue is that of wiretap channels. Such
situation of communication as described with wiretap
channels is the one the author thought most important,
and he applied for a patent [8] for the invention of the
encoder in Section III-B and the concatenated encoder q~5

It should be explained how such a code pair (L1, L2)
can be used to transmit secret information. Some analysis
of QKD protocols using code pairs (Ly, Ly) with Ly C
L, is directly applicable to analysis of L;/Ls used for
wiretap channels. This may be expected if one notice that
the secret information (key) is encoded into L; /LQL in

3The concatenated encoder is an [[nN, K,]] encoder.

4A version (close to the original) of the first half of [10] is [11],
which uses variable inner codes explicitly; the change of [10] is due to
a reviewer’s request to avoid the use of variable inner codes since it is
not necessary for the main result of [10].

SNow the author would like to comment that calling this method con-
catenating in [10] may have caused some confusion. This is because the
concatenated encoder in Section IV seems the legitimate generalization
of Forney’s concatenated codes whereas the concatenation of pairs of
linear codes only generalize the concatenation of linear codes.
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such QKD protocols, and we can use L1/L§- to encode
a secret message into Ly /Ls directly for communication
over wiretap channels. A code of the form L;/Ls had
been named a quotient code [7].

Thus, the author expected that the concatenated code
pairs (L1, L2) would be useful for communication over
channels subject to eavesdropping in the converted form
Ly/Ly and wrote [8] after he had wrote a manuscript
arXiv:quant-ph/0610194 (the initial version of [10], sub-
mitted in Aug. 20006). Then, he presented security analysis
of L1/Lz used on classical and quantum wiretap chan-
nels in [13], [14] invoking to techniques from quantum
information theory.

The analysis in [13], [14] is applicable to the
polynomial-time constructions of quotient codes L;/La
in [9], [15]. As an illustration of the result, an achiev-
able rate of the polynomially constructible quotient
codes Li/Ls was evaluated for the wiretap channel
that consists of BSCs. For this specific wiretap channel,
however, the result was not very satisfactory in that the
obtained rate was suboptimal in this case. (This does not
mean the analysis in [13], [14] is all obsolete since the
codes are secure against a much wider class of classical
channels to the eavesdroppers, not to mention quantum
channels, than the class of BSCs.)

Thus, an improvement of this achievable rate were
awaited, and the author accomplished this in [3]. Namely,
in [3], it was shown that the polynomially constructible
code Ll/Lj- in [9], [15] actually achieve the secrecy
capacity.

The presentation of the code construction in [3], which
depends on [9], [15], might look awkward for those
interested only in the solution to the classical issue of
wiretap channels and not in quantum error correction or
QKD; they would prefer the presentation of the code con-
struction in [4] since it is simple and direct. Besides this,
the security analysis in [4] is strengthened as compared
to that of [3].

B. Remarks

The publication of the solution seems exceptional in
that it was first published in a specification of a patent [8],
and later the asymptotic optimality (achievability of the
secrecy capacity) was established [3], [4].

Note in information theory, it it customary to express
an encoder for wiretap channels as a stochastic map
following [2]. When the author wrote [8], the way of
writing was subject to this convention. The author noticed
that this might be confusing for the readers of [8], so
that he amended [8]. Specifically, an ‘encoder’ usually
means a device for encoding information (and an ‘en-
coding’ usually means a process to encode information
verbatim) except in the literature on the wiretap channels
in information theory. Whereas the terms ‘encoder’ and
‘encoding’ was used primarily in such usual sense in [8],
the author called the two-step encoding that corresponds
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to ¢ in (5) an [[nV, K,]] encoding in the initial version of
[8].% But this would not be precise since in [8], an [[n, k]|
encoding was defined to be such process as described at
the beginning of Section 1II-B of the present article. Thus,
he noticed that the two-step encoding should have been
referred to as equivalent to an [[nN, K,]| encoding as
in the amended version. (The footnote 2, which states
that the concatenated encoder is an [[nN, K,]] encoder,
is correct since the present article defines an encoder as
a stochastic map.)

For those who have read (4], the author would like to
make another remark. He wrote in [4]:

There are two ways to establish Theorem 1 or
its analogues:

1) Find an ensemble of encoders that are
good on average, and single out a good
encoder from the ensemble. Use it as
a fixed inner code in the concatenated
encoder;

2) Find an ensemble of encoders that are
good on average, and use all encoders in
the ensemble as variable inner codes in
the concatenated encoder.

Here, the inner codes or inner encoders mean the
components ¢, i = 1,...,N, of the concatenated
encoder ¢ in Section IV. Both fixed and variable inner
codes would be interesting. However, I emphasized in [9]
a construction with variable inner codes.

In retrospect, the primary reason for this seems to be
that at the time of writing [9],

the author expected his polynomially con-
structible codes [9] using variable inner codes
would be proved to achieve larger rates by some
security analysis that was not yet obtained at
that time.

The work [4] or [3] has presented such security
analysis and resulting achievable rates. The codes have
turned out to be optimal for a wide class of wiretap
channels in that they achieve the asymptotically optimum
rate, the secrecy capacity, and can be used as the heart
of secrecy-capacity-achieving codes for other wiretap
channels. (This was presented in [3]; the work [4] covers
most contents of [3] relevant to the achievability).

The author also suggested a construction with fixed
inner codes in [9] implicitly. However, this construction
needs to be modified to achieve the secrecy capacity. The
modification is the first code construction in [4].

VII. CONCLUDING REMARKS

In view of the fact that Forney’s concatenated codes
have influenced subsequent researches and developments

°In [8], the variables corresponding to n, K, are slightly different
from those of this article. Namely, the [[nN, K,]] encoding has ap-
peared as [[N'', K']] encoding in [8]. In [8], the two-step encoding has
been named so since the suggested process is the process corresponding
10 dout followed by the process corresponding to [¢p(1)] - - -|o(N)].

of the art of coding both theoretically and practically
still after decades, the method for concatenating codes
for the wiretap channel would also be worth further
investigations. Thus, the author has been continuing the
study on this method.
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