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Abstract—On the basis of fundamental idea of Yuen, we
present a new type of quantum random cipher, where pulse
position modulated signals are encrypted in the picture of
quantum Gaussian wave form. 1

I. INTRODUCTION

The concept of quantum random cipher was proposed
by H. P. Yuen and implemented through phase shift
keying (PSK) modulation and intensity modulation (IM),
which are called αη system or Y00 system. These sys-
tems enable us to realize high speed direct data trans-
mission with security protected by physical phenomena.
Moreover Yuen gave another implementation of quantum
random cipher by using coherent pulse position mod-
ulation (CPPM) and shown that N -ary detection can
overcome the limitation on the binary detection advantage
of optimal quantum receiver for PSK or IM signal states
[7]. In this paper we discuss phase mask encryption for
CPPM according to Yuen’s idea [10]. In Sect. II we give
a description of coherent pulse position modulation in
terms of quantum Gaussian waveform. In Sect. III we
formulate phase mask encryption on the basis of the idea
of canonical encryption.

II. QUANTUM RANDOM CIPHER WITH COHERENT
PULSE POSITION MODULATION

A. Basic structure of quantum random cipher

We briefly explain a configuration of quantum random
cipher (Fig. 1). Alice modulates her classical message
` to obtain a signal state ρ`. Then the signal state is
transformed into an encrypted state ρ̃` by a unitary
operator Uk, which is randomly chosen via a running
key k generated by using PRNG on a secret key K. We
assume the encrypted state ρ̃` is sent through the ideal
channel. Since the secret key K, PRNG and map k → Uk

are shared by Alice and Bob, Bob can apply the unitary
operator U†

k to the received state ρ̃` and obtains the signal
state ρ`. Thus Bob can receive a classical message `′ with
a very small error by applying the optimum detection to
ρ`. In contrast, Eve does not know the secret key K and
hence she must detect encrypted state ρ̃` directly. This
makes Eve’s error probability worse than Bob’s one.

1This paper was revised in April 2014.
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Fig. 1. configuration of quantum random cipher system

B. Coherent Pulse Position modulation
Alice uses the coherent pulse position modulation　

where classical information ` corresponds to the quantum
signal

|Φ`〉 = |0〉1 ⊗ · · · ⊗ |
√

S〉` ⊗ · · · ⊗ |0〉N , (1)

with a fixed positive real number S and ` = 1, ...., N .
Bob gets information from the signal by individual direct
detection. Then the error probability of Bob is given as

PBob = (1 − 1/N)e−S . (2)

For example, PBob ≈ 10−9 for S = 20, N >> 1.

C. Quantum Gaussian Waveform
In order to describe the unitary operator in the section

III, we summarize the description of the electromagnetic
field generated by a signal source. Here, for simplicity,
we use the Holevo’s notations given in the section IV.4
[15]. Note that more realistic ones can be found in [11].

Let us consider the periodic operator-valued function

X(t) =
∑

j

√
2π~ωj

T

(
aje

−iωjt + a†
je

iωjt
)

(3)
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where [0, T ] is the observation interval and ωj = 2πj/T .
We assume the mode aj is described by the Gaussian
states ρj(αj) with the first two moments given by

Trρj(αj)aj = αj , (4)

Trρj(αj)a
†
jaj = Nj + |αj |2. (5)

Then the whole process X(t) is characterized by the
product Gaussian states ρα = ⊗jρj(αj), such that

TrραX(t) = α(t) (6)

Trρα
1
4π

∫ T

0

X(t)2dt =
∑

j

~ωj(Nj +
1
2
)

+
1
4π

∫ T

0

α(t)2dt.

(7)

Here α(t) is a classical signal for quantum Gaussian
channel,

α(t) =
∑

j

√
2π~ωj

T
(αje

−iωjt + ᾱje
iωjt), (8)

where ᾱj is a complex conjugate of αj . Now let us
rewrite the CPPM quantum signal |Φ`〉 by using the rep-
resentation of quantum Gaussian waveform. The classical
signal corresponding to |Φ`〉 is given by

α`(t) = αc(t)χI`
(t) (9)

where

αc(t) =
√

NSKce
−iωct + c.c., (10)

χI`
(t) =

{
1 t ∈ I`

0 t ∈ [0, T ] \ I`
, (11)

Kc =
√

2π~ωc/T , ωc is a carrier frequency and I` =
[(`− 1)T/N, `T/N ]. Then Gaussian state corresponding
to the classical signal α`(t) is given by

ρ` = ⊗jρj(α`
j), ρj(α`

j) = |α`
j〉〈α`

j |, (12)

where we obtain the values of α`
j from the Fourier series

expansion of α`(t):

α`(t) =
∑

j

√
2π~ωj

T

(
α`

je
−iωjt + ᾱ`

je
iωjt

)
. (13)

Here, from the relation

α`(t) = α1(t − ` − 1
N

T ), ` = 1, ...., N, (14)

we have

α`
j = α1

je
iωj(`−1)T/N = α1

je
i2πj(`−1)/N . (15)

III. CANONICAL ENCRYPTION

A. General Definition of Gaussian States

We consider the Weyl operator

V (z) = exp i
∑
j∈J

(zq
j qj + zp

j pj), (16)

where z is a real vector with the elements zq
j , zp

j , j ∈
J = {j;ωj ∈ Vωc} = {j1, ..., jM} and

qj =
√

~/2ωj(aj + a†
j)

pj = i
√

~ωj/2(a†
j − aj).

(17)

The density operator ρ is called Gaussian if its quantum
characteristic function has the form

TrρV (z) = exp
[
imT z − 1

2
zT Az

]
, (18)

with mean vector m and correlation matrix A. In particu-
lar, the Gaussian state ρ` given by Eq. (12) has the mean
vector:

m = ΩM (xj1 , yj1 , ....., xjM
, yjM

)T (19)

with αj = xj + iyj and

ΩM = ⊕M
m=1

[ √
2~/ωjm 0

0
√

2~ωjm

]
, (20)

and the correlation matrix:

AM = ⊕M
m=1

[
~/2ωjm 0

0 ~ωjm/2

]
=

1
4
Ω2

M . (21)

B. Symplectic Transformation

The transformation L : R2M → R2M is called sym-
plectic, when the corresponding Weyl operator Ṽ (z) =
V (LT z) satisfies

Ṽ (z)Ṽ (z′) = exp
[

i

2
∆(z, z′)

]
Ṽ (z + z′) (22)

with ∆(z, z′) = ~
∑

j∈J(z′qj zp
j − zq

j z′pj ) We denote the
totality of symplectic transformation by Sp(M, R). It
follows from Stone-von Neumann theorem that there
exists the unitary operator U satisfying

V (LT z) = U†V (z)U (23)

for any L ∈ Sp(M, R). We call such derived opera-
tor U the unitary operator associated with symplectic
transformation L. Then the characteristic function of
ρ̃` = Uρ`U† is given by

φ̃(z) =Trρ̃`V (z) = Trρ`U†V (z)U

=Trρ`V (LT z) = exp
[
i(Lm)T z − 1

2
zT LAMLT z

]
(24)

yumiko
テキスト ボックス
6



Our interest is devoted to the case where the state ρ̃` has
the form of ⊗j∈J |α̃`

j〉〈α̃`
j |. Then the symplectic trans-

formation should satisfy the condition LAMLT = AM ,
which means

Ω−1
M LΩM (Ω−1

M LΩM )T = I2M (25)

i.e.

Ω−1
M LΩM ∈ O(2M) ∩ Sp(M, R) ∼= U(M) (26)

where U(M) denotes the totality of M × M unitary
matrices, and O(2M) the totality of 2M×2M orthogonal
matrices.

C. Canonical Encryption

In the canonical encryption, we encrypt the message
using unitary operator Uk associated with Lk satisfying
Eq. (26). In the isomorphism O(2M) ∩ Sp(M, R) ∼=
U(M), an element of O(2M) ∩ Sp(M, R), r11R(θ11) · · · r1MR(θ1M )

...
. . .

...
rM1R(θM1) · · · rMMR(θMM )

 , (27)

corresponds to r11e
iθ11 · · · r1Meθ1M

...
. . .

...
rM1e

iθM1 · · · rMMeθMM

 ∈ U(M). (28)

with ri,j ∈ R and R(θjk) is a rotation matrix. We denote
the unitary matrix corresponding to Ω−1

M LkΩM by Uk .
Then we can find the Gaussian state ρ` = ⊗j∈Jρj(α`

j)
is encrypted into

ρ̃` = ⊗j∈Jρj(β`
j) (29)

with

(β`
j1 , ....., β

`
jM

)T = ULk
(α`

j1 , ....., α
`
jM

)T . (30)

We consider a phase mask encryption as an example
of the canonical encryption. If rij = δij holds for i, j =
1, ..., M in Eq. (28), the cannonical encryption is called
a phase mask encryption and the matrix (28) is denoted
by U(θ11, ..., θNN ). The phase mask encryption can be
realized by the liquid crystal modulator (LCM) or the
acousto-optic modulator (AOM). We assume N is a prime
number. Then in the right-hand side of Eq. (15), we have

{ei2πjm(`−1)/N ; ` = 1, ..., N} = {ei2πn/N ; n = 1, ..., N},
(31)

if the value of jm is not divisible by N . So it is natural
to consider the phase mask encryption given by

ULk
= U(2πk1/N

′, ...., 2πkM/N ′), (32)

where N ′ is a multiple of N and k = (k1, ..., kM ) with
0 ≤ km < N ′ is a key generated from PRNG. Then each
β`

jm
in Eq. (30) takes values of the form

α1
jm

ei2πn′/N ′
, n′ = 1, ..., N ′. (33)

IV. DISCUSSIONS

Let us consider the inequality

H(Xn|KY E
n ) > H(Xn|KY B

n ), (34)

where Xn is a random variable for plaintext, Y E
n is a

random variable for Eve’s ciphertext obtained from the
measurement without the secret key K and Y B

n is a
random variable for Bob’s ciphertext obtained from the
measurement with the secret key K. If the inequality (34)
holds, we can say that the cipher exceeds the Shannon
limit [3]. In this setting Eve may use not only the
ciphertext Y E

n but also the secret key K in order to
estimate Xn. The security considered in such a situation
is called everlasting security [3]. Our random cipher is
expected to achieve it. In future work we will show this
through detailed evaluation of Eve’s error probability.
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