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Abstract—Recently a numerical calculation method for nding
the minimax solution to the minimax problem in quantum signal
detection was reported [10]. In this paper, we evaluate the error
performance of the minimax receiver for 16QAM coherent state
signal by using this calculation method. Through this numerical
simulation, it will be pointed out that the use of the minimax
strategy has an advantage rather than that of the Bayes strategy
in designing quantum communication systems.

I. INTRODUCTION

Quadrature amplitude modulation (QAM) format is widely
used in current digital tele-communication systems [1]. As
the coherent detection technology for optical communication
systems is developed, it has also become one of important
modulation formats in the eld of optical communications [2].
In quantum communication theory the rst theoretical analysis
of QAM coherent state signal was done by Tamagawa Univer-
sity group including the author with the square-root measure-
ment technique [3]. After this work, the Holevo capacity of
16QAM coherent state signal was numerically computed [4].
In 2010, the error performance of the square-root measurement
for QAM coherent state signal in the presence of thermal noise
was investigated by Cariolaro and Pierobon [5]. Moreover,
QAM-based quantum stream cipher scheme was proposed in
2005 [6]. Thus, QAM is one of attractive modulation formats
also in quantum communication theory.

In this paper, we focus on the error performance evaluation
of QAM coherent state signal. In the literature [3], we have
used the square-root measurement as a receiver. In general, the
square-root measurement is not the optimal receiver that min-
imizes the average probability of decision errors for a given
probability distribution of the signal, although it is considered
as a sub-optimal receiver [7]. Therefore, we aim to evaluate
the error performance of QAM coherent state signal in a sense
of the ‘optimal’. In many situations that have been done so
far, the word ’optimal’ means the use of the Bayes strategy in
quantum signal detection theory. However, if one employs the
Bayes strategy to design a quantum communication system,
appropriate estimation of the probability distribution of the
signals is needed in advance. Further, even if an appropriate
distribution of the signals was given in advance, the receiver
that is designed according to the Bayes strategy with this
distribution will indicate the expected performance in only the
case that the true distribution is identical to the distribution

that was used in its design. To resolve this problem, we can
employ the minimax strategy in quantum signal detection.

Necessary and suf cient conditions for the minimax solution
to the minimax problem in quantum signal detection were

rst derived under the situation that the average probability
of decision errors is used as its quality function [8]. Recently
it was extended to more general case in which not only the
average probability of decision errors but also the average
Bayes-cost can be used as a quality function [9]. Moreover, a
numerical calculation method for nding the minimax solution
was reported [10]. In this study we attempt to evaluate the error
performance of the minimax receiver for QAM coherent state
signal by using this numerical calculation method. As the rst
step, we treat the case of 16QAM coherent state signal in this
paper.

The remaining part of this paper is organized as follows. In
Section II, we summarize the minimax problem in quantum
signal detection and the necessary and suf cient conditions
of the minimax solution in a general description. In Section
III, we give a brief explanation of the numerical calculation
method. The error performance of the minimax receiver for
16QAM coherent state signal is shown in Section IV, and

nally we give a conclusion based on the simulation result
in Section V.

II. THE MINIMAX PROBLEM IN QUANTUM SIGNAL
DETECTION

Suppose that there are M hypotheses about states of a
quantum system and the ith hypothesis Hi is the proposition
that the system is in the state ρ̂i, where ρ̂i is a density
operator on Hilbert space H: ρ̂i ≥ 0 and Trρ̂i = 1. The
prior probability of hypothesis Hi is denoted by pi. We let

Π = (Π̂1, Π̂2, . . . , Π̂M ) (1)

be a positive operator-valued measure (POVM) consisting of
M detection operators, where

Π̂j ≥ 0 ∀j,
M∑
j=1

Π̂j = 1̂, (2)

and 1̂ is the identity operator on H. Then the conditional
probability that the receiver chooses Hj when Hi is true is
given by P (j|i) = Trρ̂iΠ̂j . The cost incurred by choosing
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Hj when Hi is true is denoted by Bji, which is a non-
negative number. In general, Bji > Bii if i �= j. Letting
P (i, j) = piTrΠ̂j ρ̂i, the expected value of the Bayes costs is
given by

B̄(Π,p) = E[Bji] =
M∑
i=1

M∑
j=1

BjiP (i, j), (3)

where p = (p1, p2, . . . , pM ). De ning the risk operators by

Ŵi =
M∑
k=1

pkBikρ̂k, 1 ≤ i ≤M, (4)

this average Bayes cost is rewritten as

B̄(Π,p) = Tr

M∑
k=1

ŴkΠ̂k. (5)

If the Bayes cost is taken as Bij = 1 − δij , the average
Bayes cost becomes the average probability of decision errors
P̄e(Π,p). The Bayes problem in quantum signal detection is
expressed as follows:

min
Π∈D

B̄(Π,p), (6)

where we assume that p is given and where

D =
{
Π = (Π̂1, . . . , Π̂M )

}
(7)

is the set of all decision rules consisting of M decision
operators. For this problem, it has been proved [11] that there
exists an optimal decision rule Πbayes such that

min
Π∈D

B̄(Π,p) = B̄(Πbayes,p). (8)

We call this decision rule Πbayes the Bayes optimal receiver
in this paper. Necessary and suf cient conditions for Πbayes

are given as follows [11] (See also [12], [15]):

Π̂bayes
i (Ŵi − Ŵj)Π̂

bayes
j = 0 ∀(i, j), (9)

Ŵi − Υ̂ bayes ≥ 0 ∀i, (10)

where

Υ̂ bayes =

M∑
k=1

ŴkΠ̂
bayes
k . (11)

At that time, the minimum average Bayes cost given p is

B̄min(p) = min
Π∈D

B̄(Π,p) = TrΥ̂ bayes. (12)

Note that the set of the conditions (9) and (10) can be replaced
to one of the equivalent sets of the conditions according to the
literature [12]. Furthermore, B̄min(p) is a concave function of
p over the convex set P = {p = (p1, . . . , pM )}.

Now we move our attention to the minimax problem in
quantum signal detection. We assume that the true probability
distribution of the M quantum states is unknown. Under this
assumption, we consider the following optimization problem.

min
Π∈D

max
p∈P

B̄(Π,p). (13)

Then we have the following results [9]:
Theorem 1: There exist Π◦ and p◦ such that

min
Π∈D

max
p∈P

B̄(Π,p) = B̄◦ = max
p∈P

min
Π∈D

B̄(Π,p), (14)

where B̄◦ = B̄(Π◦,p◦). �
Hereafter, we call Π◦ the minimax decision rule, p◦ the

minimax distribution, and B̄◦ the minimax value. Note that
p◦ is not necessary to be identical to the true distribution.
Theorem 2: Necessary and suf cient conditions for the

minimax distribution and minimax receiver are

Π̂◦
i (Ŵ

◦
i − Ŵ ◦

j )Π̂
◦
j = 0 ∀(i, j), (15)

Ŵ ◦
i − Υ̂ ◦ ≥ 0 ∀i, (16)

M∑
j=1

BjiTrΠ̂
◦
j ρ̂i = TrΥ̂ ◦ ∀i s.t. p◦i > 0, (17)

M∑
j=1

BjiTrΠ̂
◦
j ρ̂i ≤ TrΥ̂ ◦ ∀i s.t. p◦i = 0, (18)

where

Ŵ ◦
j =

M∑
k=1

p◦kBjkρ̂k ∀j,

Υ̂ ◦ =
M∑
k=1

Ŵ ◦
k Π̂

◦
k .

(19)

The minimax value is given by B̄◦ = TrΥ̂ ◦. �
The conditions (15) and (16) come from the fact that the

minimax strategy is a special case of the Bayes strategy for
p◦. Therefore, this set of the conditions can also be replaced
to an equivalent one.
Theorem 3: Let Π◦ = (Π̂◦

1 , Π̂
◦
2 , . . . , Π̂

◦
M ) be the minimax

receiver, and let p◦ = (p◦1, p
◦
2, . . . , p

◦
M ) be the corresponding

minimax distribution. Then we obtain

B̄min(q) ≤ B̄(Π◦,q) ≤ B̄◦ ∀q ∈ P . (20)

If p◦i > 0 for all i, then B̄(Π◦,q) = B̄◦ for any q in P . �
In the following sections, we restrict ourselves to the case

of the average probability of decision errors; i.e. we let Bij =
1− δij . Hence, we use the error probability version of the set
of the necessary and suf cient conditions instead of the set of
Eqs. (15)-(18):

Π̂◦
i (p

◦
i ρ̂i − p◦j ρ̂j)Π̂

◦
j = 0 ∀(i, j), (21)

TrΠ̂◦
i ρ̂i = TrΓ̂ ◦ ∀i s.t. p◦i > 0, (22)

TrΠ̂◦
i ρ̂i ≥ TrΓ̂ ◦ ∀i s.t. p◦i = 0, (23)

where we have used the result of [12] (and [13]) to remove
the condition (16), and where

Γ̂ ◦ =
M∑
k=1

p◦kρ̂kΠ̂
◦
k . (24)

At that time, the minimax value is given as P̄ ◦
e = 1− TrΓ̂ ◦.
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III. A NUMERICAL CALCULATION METHOD FOR FINDING
THE MINIMAX SOLUTION

In this section we explain a numerical calculation method
for nding the minimax solution (Π◦,p◦, P̄ ◦

e ).
To begin with, we let p(0 = (p

(0
1 , p

(0
2 , . . . , p

(0
M ) be an

arbitrarily chosen distribution of the signals. Then, we can
nd a Bayes decision rule Π(0 = (Π̂

(0
1 , Π̂

(0
2 , . . . , Π̂

(0
M ) for

p(0; that is,

min
Π∈D

P̄e(Π,p(0) = P̄e(Π
(0,p(0) = P̄ (0

e . (25)

The calculation algorithm starts with these initial values
(Π(0,p(0) and iterates the procedures mentioned below until
the change of the average probability of decision errors is
small enough.

Suppose that the calculation algorithm has reached to the
(n + 1)-th stage. At that time, the n-th distribution p(n =

(p
(n
1 , p

(n
2 , . . . , p

(n
M ) and the corresponding Bayes decision rule

Π(n = (Π̂
(n
1 , Π̂

(n
2 , . . . , Π̂

(n
M ) have been already recorded as

the previously obtained data:

min
Π

P̄e(Π,p(n) = P̄e(Π
(n,p(n) = P̄ (n

e . (26)

Now we choose a pair of indeces (i, j) such that i �= j. For
this (i, j), we consider the probability distributions of the form

p(temp = (p
(n
1 , p

(n
2 , . . . , x︸︷︷︸

ith

, . . . , y︸︷︷︸
jth

, . . . , p
(n
M ), (27)

where x and y satisfy the conditions of x ≥ 0, y ≥ 0, and
x+ y = 1−∑

k �=i, �=j p
(n
k . From the concavity of P̄ bayes

e (p),
we have the inequality

P̄e(Π
(n,p(n) ≤ max

x,y
P̄ bayes
e (p(temp)

= max
x,y

min
Π

P̄e(Π,p(temp). (28)

Therefore, our task at this stage is to nd a pair (Π∗,p∗) such
that

max
x,y

min
Π

P̄e(Π,p(temp) = P̄e(Π
∗,p∗). (29)

Since x and y are not independent, the maximization part is a
single-parameter maximization problem. That is, by changing
the value of x form x = 0 to x = 1 −∑

k �=i, �=j p
(n
k , one

will have a solution to this maximization problem. Recall that
the Bayes cost reduction algorithm has been well developed
[14], [15]. Taking account of this, one can nd such a pair
(p∗, Π∗) without any technical dif culty; for instance, one
may use the golden section search algorithm together with the
Bayes cost reduction algorithm for this part. Once we could

nd (p∗, Π∗), we set⎧⎨
⎩

Π(n+1 ← Π∗,
p(n+1 ← p∗,
P̄

(n+1
e ← P̄e(Π

(n+1,p(n+1),

(30)

and proceed to the next stage by choosing another (i, j).
Finally, we check whether the conditions (21)-(23) are

satis ed or not, when the increase of P̄
(·
e is small enough. If

the conditions are satis ed with suf ciently small numerical
error, we halt the calculation procedure.
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β1 β5

β13
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β15
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α

3α

−α

−3α

Fig. 1. Signal Constellation of 16QAM

IV. 16QAM COHERENT STATE SIGNAL

Let |ψi〉 denote the ith signal quantum state. The 16QAM
coherent state signal is de ned as follows [3]:

|ψi〉 = |βi〉, 1 ≤ i ≤ 16, (31)

with complex amplitudes

β1 = α(+1 + i); β2 = α(−1 + i);
β3 = α(−1− i); β4 = α(+1− i);
β5 = α(+3 + i); β6 = α(−1 + 3i);
β7 = α(−3− i); β8 = α(+1− 3i);
β9 = α(+1 + 3i); β10 = α(−3 + i);
β11 = α(−1− 3i); β12 = α(+3− i);
β13 = α(+3 + 3i); β14 = α(−3 + 3i);
β15 = α(−3− 3i); β16 = α(+3− 3i),

(32)

where |βi〉 stands for the coherent state of light having
complex amplitude βi, and where α > 0 and i =

√−1. Fig.
1 shows the signal constellation of the 16QAM coherent state
signal in the (xc, xs)-space. For this signal, we de ned the
average number of signal photons N̄s = 10α2 in the literature
[3]. At that time, we assumed that the probability distribution
of the signal is uniform. However, in the case of the minimax
problem, we cannot assign a particular distribution in advance.
Hence, we use the parameter α2 instead of N̄s to specify the
amplitude of each signal in our error performance evaluation.

Before calculating the minimax solution for the 16QAM
coherent state signal, we examine the symmetry of the signal
constellation in order to reduce the computation time. Let p
be an arbitrarily chosen distribution for this signal:

p = (p1, p2, p3, p4, p5, p6, p7, p8,

p9, p10, p11, p12, p13, p14, p15, p16)

≡ pa. (33)
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From this pa, we form the following distributions.

pb = (p4, p3, p2, p1, p12, p11, p10, p9,

p8, p7, p6, p5, p16, p15, p14, p13); (34)
pc = (p4, p1, p2, p3, p8, p5, p6, p7,

p12, p9, p10, p11, p16, p13, p14, p15); (35)
pd = (p3, p2, p1, p4, p11, p10, p9, p12,

p7, p6, p5, p8, p15, p14, p13, p16); (36)
pe = (p3, p4, p1, p2, p7, p8, p5, p6,

p11, p12, p9, p10, p15, p16, p13, p14); (37)
pf = (p2, p1, p4, p3, p10, p9, p12, p11,

p6, p5, p8, p7, p14, p13, p16, p15); (38)
pg = (p2, p3, p4, p1, p6, p7, p8, p5,

p10, p11, p12, p9, p14, p15, p16, p13); (39)
ph = (p1, p4, p3, p2, p9, p12, p11, p10,

p5, p8, p7, p6, p13, p16, p15, p14). (40)

From the symmetry of the signal constellation of 16QAM, we
obtain

P̄ bayes
e (p) = P̄ bayes

e (pa) = · · · = P̄ bayes
e (ph). (41)

By using the concavity of the minimum error probability, we
obtain

P̄ bayes
e (p) =

1

8

(
P̄ bayes
e (pa) + · · ·+ P̄ bayes

e (ph)
)

≤ P̄ bayes
e (p′) (42)

with

p′ = (ζ1, ζ1, ζ1, ζ1, ζ2, ζ2, ζ2, ζ2,

ζ2, ζ2, ζ2, ζ2, ζ3, ζ3, ζ3, ζ3), (43)

where

ζ1 =
p1 + p2 + p3 + p4

4
; (44)

ζ2 =
p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12

8
; (45)

ζ3 =
p13 + p14 + p15 + p16

4
. (46)

From Eq.(42), we can expect that⎧⎨
⎩

p◦1 = p◦2 = p◦3 = p◦4,
p◦5 = p◦6 = p◦7 = p◦8 = p◦9 = p◦10 = p◦11 = p◦12,
p◦13 = p◦14 = p◦15 = p◦16.

(47)

Our computer simulation is carried out taking into account of
this fact.

In the simulation, we calculate the minimax decision rule
Π◦, the minimax distribution p◦, and the minimax value P̄ ◦

e ,
together with the minimum error probability P̄ bayes

e (u) for
the uniform distribution u. The error probabilities P̄ ◦

e and
P̄ bayes
e (u) are shown in Fig. 2 for the range from α2 ∼ 0 to

α2 = 5.0. As expected from the de nitions of the receivers,
we see that P̄ ◦

e > P̄ bayes
e (u) in this gure. Comparing these

probabilities with that of the square-root measurement that has

1.0 2.0 3.0 4.0 5.00
10E-9

α2

10E-7

10E-5

10E-3

10E-1

Pe

Minimum for The Uniform Distribution

Mini-Max

16QAM

Fig. 2. The minimax value P̄ ◦
e and the minimum error probability P̄bayes

e (u)

been shown in Figure 2-(a) of the literature [3], the behavior
of the error probabilities, P̄ ◦

e , P̄ bayes
e (u), and P̄ srm

e (u), are
similar to each other.

Fig. 3 shows an enlarged gure for α2 = 0.5 to α2 = 1.0,
together with the corresponding minimax distribution p◦. As
stated above, the minimax value P̄ ◦

e never exceed downward
the minimum error probability P̄ bayes

e (u) for the uniform
distribution u, although the difference P̄ ◦

e − P̄ bayes
e (u) is very

small. This might lead us to a conclusion that the minimax
receiver has less advantage to the Bayes optimal receiver
that is designed with the uniform distribution. However, it
is not true. To explain the reason why, we treat the case of
α2 = 1.0 as an example. In this setting, we examine the
average probability of decision errors for the Bayes optimal
receiver that is designed with the uniform distribution under
the situation of non-uniform distributions.

Let Πbayes(u) denote the Bayes decision rule for the
uniform distribution u. For α2 = 1.0 the diagonal elements of
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Fig. 3. The minimax value P̄ ◦
e and the minimax distribution p◦.

the channel matrix generated by Πbayes(u) are

P bayes(i|i) = 〈ψi|Π̂bayes
i (u)|ψi〉

�
⎧⎨
⎩

0.979972, 1 ≤ i ≤ 4;
0.985382, 5 ≤ i ≤ 12;
0.990413, 13 ≤ i ≤ 16,

(48)

and the average probability of decision errors at the uniform
distribution u is

P̄ bayes
e (u) = P̄e(Π

bayes(u),u) � 0.0147126. (49)

On the other hand, the minimax receiver has

P ◦(i|i) = 〈ψi|Π̂◦
i |ψi〉 � 0.984631, 1 ≤ i ≤ 16, (50)

and the minimax distribution and the minimax value are
respectively given as

p◦i �
⎧⎨
⎩

0.0977465, 1 ≤ i ≤ 4;
0.0586488, 5 ≤ i ≤ 12;
0.0349559, 13 ≤ i ≤ 16,

(51)

and
P̄ ◦
e = P̄e(Π

◦,p◦) � 0.0153696. (52)

Since every probability in p◦ is non-zero, the equality

P̄e(Π
◦,q) = P̄ ◦

e , (53)

holds for each q ∈ P by Theorem 3. Thus the error per-
formance of the minimax receiver is stable. In other words,
when the minimax receiver is used, one can always expect
the same performance — P̄e � 0.0153696 — regardless
of the probability distribution of the signal. On the other
hand, the error performance of the Bayes optimal receiver
that is designed with the uniform distribution depends on the
probability distribution of the signal. To see this, we consider
the following cases for explanation.

Case 1: q′ ∈ P with

q′i =

⎧⎨
⎩

0.0525, 1 ≤ i ≤ 4;
0.0575, 5 ≤ i ≤ 12;
0.0825, 13 ≤ i ≤ 16.

(54)

Case 2: q′′ ∈ P with

q′′i =

⎧⎨
⎩

0.0425, 1 ≤ i ≤ 4;
0.0525, 5 ≤ i ≤ 12;
0.1025, 13 ≤ i ≤ 16.

(55)

Case 3: q′′′ ∈ P with

q′′′i =

⎧⎨
⎩

0.0025, 1 ≤ i ≤ 4;
0.0375, 5 ≤ i ≤ 12;
0.1825, 13 ≤ i ≤ 16.

(56)

The average probability of decision errors of the Bayes op-
timal receiver Πbayes(u) for each case is shown in TABLE I.
From this table, we can understand that the average probability
of decision errors of the Bayes optimal receiver Πbayes(u) is
unstable, and it indicates worse performance than the minimax
receiver in some region.

V. CONCLUSION

The error performance of the minimax receiver for the
16QAM coherent state signal has been calculated by using a
numerical calculation method that was proposed by the author.
In the simulation the average probability of decision errors of
the minimax receiver has been compared with that of the Bayes
optimal receiver that is designed for the uniform distribution.
From the comparison, it has been shown that the performance
of the minimax receiver is stable regardless of the probability
distribution of the signal, while that of the Bayes optimal
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TABLE I
THE BAYES OPTIMAL RECEIVER V.S. THE MINIMAX RECEIVER

Case 1

P̄e(Πbayes(u),q′) � 0.015 346 7 < P̄ ◦
e

P̄e(Π◦,q′) � 0.015 369 6 = P̄ ◦
e

Case 2

P̄e(Πbayes(u),q′′) � 0.015 980 7 > P̄ ◦
e

P̄e(Π◦,q′′) � 0.015 369 6 = P̄ ◦
e

Case 3

P̄e(Πbayes(u),q′′′) � 0.018 516 9 > P̄ ◦
e

P̄e(Π◦,q′′′) � 0.015 369 6 = P̄ ◦
e

receiver is not. Therefore, the use of the minimax strategy will
be a better way than that of the Bayes strategy in designing
quantum communication systems.
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