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Abstract—The closed-form expression of the square-
root measurement for the ternary coherent state signal
{|0⟩, |α⟩, |−α⟩} is derived. Further, the optimal distribution
of the ternary coherent state signal that makes the square-
root measurement Bayes-optimal is also derived. From a
numerical analysis, it is shown that the average probability
of error obtained from the square-root measurement and the
corresponding optimal distribution provides a good lower
bound of the minimax value for the ternary coherent state
signal.

I. INTRODUCTION

Quantum detection theory is one of fundamental tools
for evaluating the performance limit of optical digital
communication systems [1], [2]. When the probability
distribution of quantum state signals to be transmitted
from the sender is unknown at all, a better approach
for finding the minimum average probability of error
of the communication system under consideration is to
employ the quantum minimax strategy [3], [4], [5] rather
than the quantum Bayes strategy. The minimum average
probability of error in terms of the quantum minimax
strategy is called the minimax value. In general, ana-
lytical derivation of the minimax value for a given set
of quantum state signals is difficult. Although one can
use a numerical calculation procedure [6], finding the
minimax value with a required computational accuracy
will be not easy when the number of quantum state
signals becomes quite large. This motivates us to find an
appropriate quantity that behaves like an alternative to the
minimax value and is easy to calculate. For this purpose,
we focus attention on the square-root measurement [7],
[8], [9] because of its simple structure. According to the
literature [10], the square-root measurement for distin-
guishing linearly independent pure state signals becomes
Bayes-optimal with certain probability distribution that
is given by the diagonal entries of the square-root of
the Gram matrix formed by the state vectors of the
signals. From the definition of the minimax value, the
average probability of error obtained by the square-root
measurement for linearly independent pure state signals
and the corresponding optimal probability distribution
provides a lower bound for the minimax value in general.

In this study, we are aiming to investigate the tightness
of this lower bound for the minimax value. As the first

step to this aim, the square-root measurement for ternary
coherent state signal {|0⟩, |α⟩, |−α⟩} is considered in this
paper. In the context of the advanced optical modulation
formats for fiber-optic communication systems [11], this
type of ternary signal is actually used in some modu-
lation techniques such as duobinary and alternate mark
inversion. Moreover, in the context of the optical reading
schemes or optical radar systems that are operated with
binary phase shift keying signal, this type of ternary
signal describes a situation that reflected signals from the
target randomly disappeared on the way to the receiver.
Taking the difficulty of estimation of the signal disap-
pearance rate into account, the minimax approach to this
ternary signal is suitable for the right evaluation of its
error performance. Thus the error performance analysis
of the ternary coherent state signal itself is relevant to our
interest in developing design theory for practical quantum
communication systems, as well as the discussion on the
tightness of the lower bound for the minimax value of it.

The remaining part of this paper is organized as
follows. The column vector representation of the ternary
coherent state signal and the closed-form expression of
the corresponding square-root measurement are shown in
Section II, and the minimax case is reviewed in Section
III. Using the results of Sections II and III, numerical
comparison between the minimax value and the lower
bound obtained from the square-root measurement is
performed in Section IV, together with other two cases
that the uniform distribution of the signal is supposed,
and we summarize this paper in Section V.

II. SQUARE-ROOT MEASUREMENT FOR TERNARY
COHERENT STATE SIGNAL

Let A = {0,+,−} be the alphabet of signaling
symbols. For each symbol, we set

“0” �→ |ψ0⟩ = |0⟩, (1)
“ + ” �→ |ψ+⟩ = |α⟩, (2)
“− ” �→ |ψ−⟩ = |−α⟩, (3)

where |0⟩ is the vacuum state, and |±α⟩ are the coherent
states of light having amplitudes α > 0 and −α, respec-
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tively. Here we define

|ϕ1⟩ = c11|ψ0⟩+ c12|ψ+⟩+ c13|ψ−⟩, (4)
|ϕ2⟩ = c21|ψ0⟩+ c22|ψ+⟩+ c23|ψ−⟩, (5)
|ϕ3⟩ = c31|ψ0⟩+ c32|ψ+⟩+ c33|ψ−⟩, (6)

with the coefficients



c11 = 0,

c12 = c13 =
1√

2(1 + κ4)
,

c21 = 0,

c22 =
1√

2(1− κ4)
,

c23 = − 1√
2(1− κ4)

,

c31 =

√
1 + κ4

1− κ2
,

c32 = c33 = − κ

(1− κ2)
√
1 + κ4

,

(7)

where κ = exp[−|α|2/2]. These vectors form an ordered
orthonormal basis, γ = {|ϕ1⟩, |ϕ2⟩, |ϕ3⟩}. By using this
orthonormal basis γ, the signal states can be represented
as

|ψ0⟩
.
= [|ψ0⟩]γ =




w
0
x


 , (8)

|ψ+⟩
.
= [|ψ+⟩]γ =




y
+z
0


 , (9)

|ψ−⟩
.
= [|ψ−⟩]γ =




y
−z
0


 , (10)

where the entries are given by



w =

√
2κ√

1 + κ4
,

x =
1− κ2

√
1 + κ4

,

y =

√
1 + κ4

√
2

,

z =

√
1− κ4

√
2

.

(11)

For the signal set {|ψ0⟩, |ψ+⟩, |ψ−⟩}, the decision
vectors of the square-root measurement are written as

|d•0⟩ = Ĝ−1/2|ψ0⟩, (12)
|d•+⟩ = Ĝ−1/2|ψ+⟩, (13)

|d•−⟩ = Ĝ−1/2|ψ−⟩, (14)

where the Gram operator Ĝ is given by Ĝ = |ψ0⟩⟨ψ0|+
|ψ+⟩⟨ψ+|+ |ψ−⟩⟨ψ−|. Since the signal set is linearly in-
dependent, the vectors |d•0⟩, |d•+⟩, and |d•−⟩ are orthonor-
mal. Therefore, the decision operators of the square-
root measurement, Π̂•

0 = |d•0⟩⟨d•0|, Π̂•
+ = |d•+⟩⟨d•+|,

and Π̂•
− = |d•−⟩⟨d•−|, form a projection-valued measure

(PVM). The Gram matrix of the ternary coherent state
signal is

G =




⟨ψ0|ψ0⟩ ⟨ψ0|ψ+⟩ ⟨ψ0|ψ−⟩
⟨ψ+|ψ0⟩ ⟨ψ+|ψ+⟩ ⟨ψ+|ψ−⟩
⟨ψ−|ψ0⟩ ⟨ψ−|ψ+⟩ ⟨ψ−|ψ−⟩




=




1 κ κ
κ 1 κ4

κ κ4 1


 . (15)

The eigenvalues of G are given by

λ1 = 1− κ4, (16)

λ2 =
1

2

(
2 + κ4 − κ

√
8 + κ6

)
, (17)

λ3 =
1

2

(
2 + κ4 + κ

√
8 + κ6

)
, (18)

and the eigenvectors are given by

λ⃗1 =




λ
(1)
1

λ
(2)
1

λ
(3)
1


 (corresponding to λ1), (19)

λ⃗2 =




λ
(1)
2

λ
(2)
2

λ
(3)
2


 (corresponding to λ2), (20)

λ⃗3 =




λ
(1)
3

λ
(2)
3

λ
(3)
3


 (corresponding to λ3) (21)

with



λ
(1)
1 = 0,

λ
(2)
1 = − 1√

2
,

λ
(3)
1 =

1√
2
,

λ
(1)
2 = − 1√

2
· κ3 +

√
8 + κ6

√
8 + κ6 + κ3

√
8 + κ6

,

λ
(2)
2 =

1√
2
· 2√

8 + κ6 + κ3
√
8 + κ6

,

λ
(3)
2 = λ

(2)
2

λ
(1)
3 =

1√
2
· −κ3 +

√
8 + κ6

√
8 + κ6 − κ3

√
8 + κ6

,

λ
(2)
3 =

1√
2
· 2√

8 + κ6 − κ3
√
8 + κ6

,

λ
(3)
3 = λ

(2)
3

(22)

where the eigenvectors have been normalized. Using these
eigenvalues and eigenvectors, we have the square-root of
the Gram matrix as follows:

G1/2 =




f11 f12 f13
f12 f22 f23
f13 f23 f33


 (23)
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√
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λ
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√
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λ
(3)
2 = λ
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λ
(1)
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√
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√
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√
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8 + κ6 − κ3
√
8 + κ6

,

λ
(3)
3 = λ

(2)
3

(22)

where the eigenvectors have been normalized. Using these
eigenvalues and eigenvectors, we have the square-root of
the Gram matrix as follows:

G1/2 =




f11 f12 f13
f12 f22 f23
f13 f23 f33


 (23)

with


f11 =
2− κ2

√
4− 2κ2 + κ4

,

f12 =
κ√

4− 2κ2 + κ4
,

f13 = f12,

f22 =
2− κ2 + κ4 +

√
1− κ4

√
4− 2κ2 + κ4

2
√
4− 2κ2 + κ4

,

f23 =
2− κ2 + κ4 −

√
1− κ4

√
4− 2κ2 + κ4

2
√
4− 2κ2 + κ4

,

f33 = f22.
(24)

Further, the inverse of the square-root of the Gram matrix
is given by

G−1/2 =




h11 h12 h13

h12 h22 h23

h13 h23 h33


 (25)

with


h11 =
2− κ2 + κ4

(1− κ2)
√
4− 2κ2 + κ4

,

h12 = − κ

(1− κ2)
√
4− 2κ2 + κ4

,

h13 = h12

h22 =
2 + κ2 − κ4 +

√
1− κ4

√
4− 2κ2 + κ4

2(1− κ4)
√
4− 2κ2 + κ4

,

h23 = −2 + κ2 − κ4 +
√
1− κ4

√
4− 2κ2 + κ4

2(1− κ4)
√
4− 2κ2 + κ4

,

h33 = h22.
(26)

Then the decision vectors of the square-root measurement
are expressed in the following form:

|d•0⟩
.
= [|d•0⟩]γ =




s
0
t


 , (27)

|d•+⟩
.
= [|d•+⟩]γ =

1√
2




t
1

−s


 , (28)

|d•−⟩
.
= [|d•−⟩]γ =

1√
2




t
−1
−s


 , (29)

where

s =

√
2κ√

1 + κ4
√
4− 2κ2 + κ4

, (30)

t =
2− κ2 + κ4

√
1 + κ4

√
4− 2κ2 + κ4

. (31)

Now we set p• = (p•0, p
•
+, p

•
−) by




p•0 =
2− κ2 + κ4 +

√
1− κ4

√
4− 2κ2 + κ4

10− 5κ2 + κ4 +
√
1− κ4

√
4− 2κ2 + κ4

,

p•+ =
4− 2κ2

10− 5κ2 + κ4 +
√
1− κ4

√
4− 2κ2 + κ4

,

p•− = p•+.
(32)

It is easy to verify that p•a > 0, a ∈ A, and p•0 + p•+ +
p•− = 1; that is, p• is a probability distribution. With this
probability distribution, the square-root measurement Π•

satisfies the Bayes-optimality conditions. Therefore the
minimum average probability of error at p• is given as
follows.

P̄ •
e = min

Π∈D
P̄e(p

•, Π)

= P̄e(p
•, Π•)

= 1− p•0P
•
0|0 − p•+P

•
+|+ − p•−P

•
−|−

=
{
4
√
4− 2κ2 + κ4

−2
(
4− 5κ2 + 3κ4 − κ6

)√
1− κ4

}

/
{(

10− 5κ2 + κ4
)√

4− 2κ2 + κ4

+
(
4− 2κ2 + κ4

)√
1− κ4

}
, (33)

where the conditional probabilities are given by

P •
0|0 = f2

11 =
4− 4κ2 + κ4

4− 2κ2 + κ4
, (34)

P •
+|+ = f2

22

=
(2− κ2 + κ4)

√
1− κ4

√
4− 2κ2 + κ4

2 (4− 2κ2 + κ4)

+
4− 3κ2 + κ4

2 (4− 2κ2 + κ4)
, (35)

P •
−|− = f2

33 = P •
+|+. (36)

Observe that the probabilities p•a are rewritten as


p•0 = Z/f11,
p•+ = Z/f22,
p•− = Z/f33,

(37)

where

Z =
2− κ2 + κ4 +

√
1− κ4

√
4− 2κ2 + κ4

10− 5κ2 + κ4 +
√
1− κ4

√
4− 2κ2 + κ4

× 2− κ2

√
4− 2κ2 + κ4

. (38)

Thus, this result is an example for Theorem 5 of [10].

III. MINIMAX DISCRIMINATION

Here we mention the minimax discrimination for the
ternary coherent state signal in briefly. Let Π◦ =
(Π̂◦

0 , Π̂
◦
+, Π̂

◦
−) = (|d◦0⟩⟨d◦0|, |d◦+⟩⟨d◦+|, |d◦−⟩⟨d◦−|) denote

the minimax POVM for the ternary coherent state signal.
The minimax decision vectors are given [6] by

|d◦0⟩
.
= [|d◦0⟩]γ =




u
0
v


 , (39)

|d◦+⟩
.
= [|d◦+⟩]γ =

1√
2




v
1
−u


 , (40)

|d◦−⟩
.
= [|d◦−⟩]γ =

1√
2




v
−1
−u


 , (41)



32

where

u =
√
2

(
2κ

√
1− κ4

(1 + 4κ2 + κ4)
√
1 + κ4

− (1− 2κ2 − κ4)κ
√
2 + κ2

(1 + 4κ2 + κ4)
√
1 + κ4

)
, (42)

v =
(1− 2κ2 − κ4)

√
1− κ4

(1 + 4κ2 + κ4)
√
1 + κ4

+
4κ2

√
2 + κ2

(1 + 4κ2 + κ4)
√
1 + κ4

. (43)

The minimax distribution p◦ = (p◦0, p
◦
+, p

◦
−) is given by

p◦0 =
2
√
1− κ4 − (1− 2κ2 − κ4)

√
2 + κ2

(1 + 4κ2 + κ4)
√
2 + κ2

, (44)

p◦+ =
−
√
1− κ4 + (1 + κ2)

√
2 + κ2

(1 + 4κ2 + κ4)
√
2 + κ2

, (45)

p◦− = p◦+. (46)

Further, the minimax value P̄ ◦
e is given by

P̄ ◦
e = min

Π∈D
max
p∈P

P̄e(Π,p)

= P̄e(Π
◦,p◦)

=
(
3 + 2κ2 + κ4 − 2

√
2 + κ2

√
1− κ4

)

×
2κ2

(
1 + κ2

)

(1 + 4κ2 + κ4)
2 . (47)

From the definition of the minimax strategy, it is clear
that P̄ ◦

e ≥ P̄ •
e .

IV. NUMERICAL ANALYSIS

To begin with, we compare the minimax value P̄ ◦
e with

the minimum average probability P̄ •
e of error at p•, the

average probability P̄e(Π
•,u) of error that is obtained

from the square-root measurement Π• and the uniform
distribution u = (1/3, 1/3, 1/3), and the minimum aver-
age probability P̄ bayes

e (u) of error at u. TABLE I shows
the numerical calculation results for κ = 0.9, 0.7, 0.5,
0.3, and 0.1. From this table, we see that P̄ •

e provides a
good lower bound of the minimax value P̄ ◦

e . Further, we
observe

P̄ ◦
e > P̄ •

e > P̄e(Π
•,u) ≳ P̄ bayes

e (u) (48)

for 0 < κ < 1. The left-most inequality is due to the fact
that p◦ ̸= p• for 0 < κ < 1, and the right-most inequality
reflects the result of the literature [8]; when κ is very
small, then G ∼ I and hence P̄e(Π

•,u) ∼ P̄ bayes
e (u).

Next, we take κ = 0.5 to understand the relation (48)
graphically. In this case, we have the following numerical

TABLE I
P̄ ◦
e , P̄ •

e , P̄e(Π•,u), AND P̄bayes
e (u)

Parameter Probability of error
κ = 0.9 P̄ ◦

e = 0.404879
|α|2 = 0.210721 P̄ •

e = 0.402008
P̄e(Π•,u) = 0.393017

P̄bayes
e (u) = 0.386295

κ = 0.7 P̄ ◦
e = 0.209461

|α|2 = 0.713350 P̄ •
e = 0.205191

P̄e(Π•,u) = 0.201989

P̄bayes
e (u) = 0.201362

κ = 0.5 P̄ ◦
e = 0.0966410

|α|2 = 1.38629 P̄ •
e = 0.0941934

P̄e(Π•,u) = 0.0935778

P̄bayes
e (u) = 0.0935369

κ = 0.3 P̄ ◦
e = 0.0323350

|α|2 = 2.40795 P̄ •
e = 0.0314511

P̄e(Π•,u) = 0.0313877

P̄bayes
e (u) = 0.0313865

κ = 0.1 P̄ ◦
e = 0.00344978

|α|2 = 4.60517 P̄ •
e = 0.00335168

P̄e(Π•,u) = 0.00335097

P̄bayes
e (u) = 0.00335097

calculation results:

|ψ0⟩
.
= t[ 0.685994, 0.000000, 0.727607] ,

|ψ+⟩
.
= t[ 0.728869, 0.684653, 0.000000] ,

|ψ−⟩
.
= t[ 0.728869,−0.684653, 0.000000] ,

p◦ = ( 0.413815, 0.293092, 0.293092);

|d◦0⟩
.
= t[ 0.425813, 0.000000, 0.904811] ,

|d◦+⟩
.
= t[ 0.639798, 0.707107,−0.301095] ,

|d◦−⟩
.
= t[ 0.639798,−0.707107,−0.301095] ;

P̄ ◦
e = 0.0966410;

p• = ( 0.342107, 0.328947, 0.328947);

|d•0⟩
.
= t[ 0.363449, 0.000000, 0.931614] ,

|d•+⟩
.
= t[ 0.658751, 0.707107,−0.256997] ,

|d•−⟩
.
= t[ 0.658751,−0.707107,−0.256997] ;

P̄ •
e = 0.0941934,

u = ( 0.333333, 0.333333, 0.333333);

P̄e(Π
•,u) = 0.0935778;

|dbayes0 (u)⟩ .
= t[ 0.355204, 0.000000, 0.934789] ,

|dbayes+ (u)⟩ .
= t[ 0.660996, 0.707107,−0.251167] ,

|dbayes− (u)⟩ .
= t[ 0.660996,−0.707107,−0.251167] ;

P̄ bayes
e (u) = 0.0935369.

The behaviors of P̄ bayes
e (p), P̄e(Π

•,p), and P̄e(Π
◦,p)

at κ = 0.5 are shown in Fig.1 under the constraint
p+ = p−. The minimum average probability of error
P̄ bayes
e (p) draws a convex-upward curve, which is shown

in the solid line. The dashed-dotted straight line stands for
P̄e(Π

•,p), the average probability of error of the square-
root measurement at p, which touches the convex curve
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where

u =
√
2

(
2κ

√
1− κ4

(1 + 4κ2 + κ4)
√
1 + κ4

− (1− 2κ2 − κ4)κ
√
2 + κ2

(1 + 4κ2 + κ4)
√
1 + κ4

)
, (42)

v =
(1− 2κ2 − κ4)

√
1− κ4

(1 + 4κ2 + κ4)
√
1 + κ4

+
4κ2

√
2 + κ2

(1 + 4κ2 + κ4)
√
1 + κ4

. (43)

The minimax distribution p◦ = (p◦0, p
◦
+, p

◦
−) is given by

p◦0 =
2
√
1− κ4 − (1− 2κ2 − κ4)

√
2 + κ2

(1 + 4κ2 + κ4)
√
2 + κ2

, (44)

p◦+ =
−
√
1− κ4 + (1 + κ2)

√
2 + κ2

(1 + 4κ2 + κ4)
√
2 + κ2

, (45)

p◦− = p◦+. (46)

Further, the minimax value P̄ ◦
e is given by

P̄ ◦
e = min

Π∈D
max
p∈P

P̄e(Π,p)

= P̄e(Π
◦,p◦)

=
(
3 + 2κ2 + κ4 − 2

√
2 + κ2

√
1− κ4

)

×
2κ2

(
1 + κ2

)

(1 + 4κ2 + κ4)
2 . (47)

From the definition of the minimax strategy, it is clear
that P̄ ◦

e ≥ P̄ •
e .

IV. NUMERICAL ANALYSIS

To begin with, we compare the minimax value P̄ ◦
e with

the minimum average probability P̄ •
e of error at p•, the

average probability P̄e(Π
•,u) of error that is obtained

from the square-root measurement Π• and the uniform
distribution u = (1/3, 1/3, 1/3), and the minimum aver-
age probability P̄ bayes

e (u) of error at u. TABLE I shows
the numerical calculation results for κ = 0.9, 0.7, 0.5,
0.3, and 0.1. From this table, we see that P̄ •

e provides a
good lower bound of the minimax value P̄ ◦

e . Further, we
observe

P̄ ◦
e > P̄ •

e > P̄e(Π
•,u) ≳ P̄ bayes

e (u) (48)

for 0 < κ < 1. The left-most inequality is due to the fact
that p◦ ̸= p• for 0 < κ < 1, and the right-most inequality
reflects the result of the literature [8]; when κ is very
small, then G ∼ I and hence P̄e(Π

•,u) ∼ P̄ bayes
e (u).

Next, we take κ = 0.5 to understand the relation (48)
graphically. In this case, we have the following numerical

TABLE I
P̄ ◦
e , P̄ •

e , P̄e(Π•,u), AND P̄bayes
e (u)

Parameter Probability of error
κ = 0.9 P̄ ◦

e = 0.404879
|α|2 = 0.210721 P̄ •

e = 0.402008
P̄e(Π•,u) = 0.393017

P̄bayes
e (u) = 0.386295

κ = 0.7 P̄ ◦
e = 0.209461

|α|2 = 0.713350 P̄ •
e = 0.205191

P̄e(Π•,u) = 0.201989

P̄bayes
e (u) = 0.201362

κ = 0.5 P̄ ◦
e = 0.0966410

|α|2 = 1.38629 P̄ •
e = 0.0941934

P̄e(Π•,u) = 0.0935778

P̄bayes
e (u) = 0.0935369

κ = 0.3 P̄ ◦
e = 0.0323350

|α|2 = 2.40795 P̄ •
e = 0.0314511

P̄e(Π•,u) = 0.0313877

P̄bayes
e (u) = 0.0313865

κ = 0.1 P̄ ◦
e = 0.00344978

|α|2 = 4.60517 P̄ •
e = 0.00335168

P̄e(Π•,u) = 0.00335097

P̄bayes
e (u) = 0.00335097

calculation results:

|ψ0⟩
.
= t[ 0.685994, 0.000000, 0.727607] ,

|ψ+⟩
.
= t[ 0.728869, 0.684653, 0.000000] ,

|ψ−⟩
.
= t[ 0.728869,−0.684653, 0.000000] ,

p◦ = ( 0.413815, 0.293092, 0.293092);

|d◦0⟩
.
= t[ 0.425813, 0.000000, 0.904811] ,

|d◦+⟩
.
= t[ 0.639798, 0.707107,−0.301095] ,

|d◦−⟩
.
= t[ 0.639798,−0.707107,−0.301095] ;

P̄ ◦
e = 0.0966410;

p• = ( 0.342107, 0.328947, 0.328947);

|d•0⟩
.
= t[ 0.363449, 0.000000, 0.931614] ,

|d•+⟩
.
= t[ 0.658751, 0.707107,−0.256997] ,

|d•−⟩
.
= t[ 0.658751,−0.707107,−0.256997] ;

P̄ •
e = 0.0941934,

u = ( 0.333333, 0.333333, 0.333333);

P̄e(Π
•,u) = 0.0935778;

|dbayes0 (u)⟩ .
= t[ 0.355204, 0.000000, 0.934789] ,

|dbayes+ (u)⟩ .
= t[ 0.660996, 0.707107,−0.251167] ,

|dbayes− (u)⟩ .
= t[ 0.660996,−0.707107,−0.251167] ;

P̄ bayes
e (u) = 0.0935369.

The behaviors of P̄ bayes
e (p), P̄e(Π

•,p), and P̄e(Π
◦,p)

at κ = 0.5 are shown in Fig.1 under the constraint
p+ = p−. The minimum average probability of error
P̄ bayes
e (p) draws a convex-upward curve, which is shown

in the solid line. The dashed-dotted straight line stands for
P̄e(Π

•,p), the average probability of error of the square-
root measurement at p, which touches the convex curve
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Fig. 1. P̄bayes
e (p), P̄e(Π•,p), and P̄e(Π◦,p) for κ = 0.5, under

the constraint p+ = p−. (Points C and D are omitted)

at the point B(0.342107, 0.0941934). The dashed line
stands for the average probability of error of the minimax
receiver, P̄e(Π

◦,p). As expected from Lemma 3 of [4],
this line remains constant and touches the convex curve
at the point A(0.413815, 0.0966410). The point corre-
sponding to P̄e(Π

•,u) is C(0.333333, 0.0935778) on
the dashed-dotted straight line P̄e(Π

•,p), and the point
corresponding to P̄ bayes

e (u) is D(0.333333, 0.0935369)
on the solid line P̄ bayes

e (p). The points A, B and D are
put on the convex curve of P̄ bayes

e (p), while the point C
is not on the convex curve.

Since the point A is put on the top of the convex curve
P̄ bayes
e (p), we observe P̄ ◦

e > P̄ •
e and P̄ ◦

e > P̄ bayes
e (u).

Recall that the dashed-dotted straight line P̄e(Π
•,p) is a

tangent line to the convex curve P̄ bayes
e (p). This yields

P̄e(Π
•,u) > P̄ bayes

e (u). The relation P̄ •
e > P̄e(Π

•,u)
comes from the fact that the slope of the tangent line
P̄e(Π

•,p) is positive and 1/3 < p•0.

V. CONCLUSIONS

The square-root measurement for the ternary coherent
state signal {|0⟩, |α⟩, |−α⟩} was considered. For this
signal, the closed-form expression of the square-root mea-
surement Π• is derived. Further, the optimal distribution
p• of the signal that makes the square-root measurement
Bayes-optimal is also derived. Through the numerical
analysis, the minimax value P̄ ◦

e was compared with the
minimum average probability P̄ •

e of error at p•, the
average probability P̄e(Π

•,u) of error obtained from the
square-root measurement Π• and the uniform distribution
u, and the minimum average probability P̄ bayes

e (u) of

error at u. From the comparison, we obtained the relation
P̄ ◦
e > P̄ •

e > P̄e(Π
•,u) ≳ P̄ bayes

e (u) for 0 < κ < 1 for
the ternary coherent state signal. Thus it was numerically
demonstrated that P̄ •

e provides a good lower bound of the
minimax value P̄ ◦

e for the ternary coherent state signal.
More general discussion will be given in the near future.
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