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Abstract—The performance of the quantum Neyman-
Pearson receiver for a binary coherent state signal in the
presence of thermal noise is numerically investigated. To see
the detection sensitivity of the quantum Neyman-Pearson
receiver, its receiver operating characteristics (ROC) are
numerically obtained. The performance limit of the quan-
tum Neyman-Pearson receiver is directly computed when
the false alarm probability is very small, and the simula-
tion result of the binary thermal coherent state signal is
compared to that of the case of random phase signal.

I. INTRODUCTION

The Neyman-Pearson (NP) criterion was originally
developed for binary hypothesis testing [1], [2]. The idea
of the NP criterion was applied to optimal signal detection
problem in the early days of radar technologies [3], [4].
It is nowadays considered as one of fundamental signal
processing techniques for radar systems [5].

The first application of the NP criterion to quantum
signal detection was considered by Helstrom [6]. In the
literatures [7], [8] the performance of the quantum NP
receiver for a binary coherent state signal of random
phase is well analyzed in the presence of thermal noise.
An analysis for the corresponding non-random phase case
was discussed by Yoshitani [9] through a third-order
perturbative calculation. However, the analysis is valid
only for the case of very small thermal noise due to the
perturbative calculation, and hence the performance eval-
uation for the thermal coherent state signal having non-
random phase in wider range of thermal noise exceeding
the small noise case is remaining. Therefore, the aim of
this paper is to expand beyond the preceding works by
focusing on the numerical evaluation of the receiver.

II. NEYMAN-PEARSON CRITERION IN QUANTUM
DETECTION

Here, we introduce a general approach of the quantum
NP criterion in accordance with Helstrom [10]. Suppose
that there are two quantum hypotheses, H0 and H1, that
are associated with two distinct quantum-states ρ̂0 and
ρ̂1, respectively, and let Π = (Π̂0, Π̂1) = (1̂ − Π̂1, Π̂1)
denote a positive operator-valued measure (POVM) that
describes the mathematical model of a detector. The false
alarm of the detection is characterized by

Q0 = Pr{H1|H0} = TrΠ̂1ρ̂0, (1)

and the detection probability is defined as

Qd = 1− Pr{H0|H1} = Pr{H1|H1} = TrΠ̂1ρ̂1. (2)

The problem is to maximize the detection probability Qd

under the constraint Q0 ≤ α0, where α0 is a preassigned
constant. Using the undetermined multiplier method, the
function F to be maximized is written as

F = Qd − ζ(Q0 − α0)

= α0ζ +TrΠ̂1(ρ̂1 − ζρ̂0) (3)

with an undetermined multiplier ζ ≥ 0. If the operator
ρ̂1 − ζρ̂0 can be decomposed into the form

ρ̂1 − ζρ̂0 =
∑
i

λi(ζ)|λi(ζ)〉〈λi(ζ)| (4)

with its eigenvalues λi(ζ) and eigenvectors |λi(ζ)〉, then
the detection operator

Π̂1(ζ) =
∑

i:λi(ζ)>0

|λi(ζ)〉〈λi(ζ)|, (5)

maximizes F for a fixed ζ when zero eigenvalues occur
from a set of measure zero. Letting

α(ζ) =
∑

i:λi(ζ)>0

〈λi(ζ)|ρ̂0|λi(ζ)〉 (6)

and

β(ζ) = 1−
∑

i:λi(ζ)>0

〈λi(ζ)|ρ̂1|λi(ζ)〉, (7)

the problem is reduced to finding the optimal ζ that
maximizes 1 − β(ζ) under the constraint α(ζ) ≤ α0.
For this problem, one may use the bisection search (or
its variant such as the golden section search) to find the
optimal ζ◦, because the function α(ζ) is a monotonically
decreasing function of ζ due to the convexity of the set
of all possible points (Q0, Qd) (e.g. Fig.4. See also the
region D in Fig.4.2. of the textbook [10] ). Therefore, a
rough sketch of the calculation procedure for finding the
best detection probability Qd = 1 − β(ζ◦) is given as
follows:

1) [α0 is given]
2) Do the bisection search to find the optimal ζ◦ under

the constraint α(ζ) ≤ α0. In each stage of the
bisection search, compute α(ζ) by using Eq.(6).
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3) Once the optimal ζ◦ is found, compute Qd = 1−
β(ζ◦) by using Eq.(7).

This procedure is used to find the best detection proba-
bility Qd for our problem in Section IV.

III. MATRIX REPRESENTATION OF THERMAL
COHERENT STATES

Suppose that a binary coherent state signal {|0〉, |γ〉} is
in the pressure of thermal noise, where |0〉 is the vacuum
state and |γ〉 the coherent state of complex amplitude γ.
In this situation, we assume that the received signals are
given by the thermal vacuum and thermal coherent states.
The density operator of the thermal vacuum is expressed
in the following P -representation.

ρ̂0 = ρ̂th(0)

=
1

πnth

∫
exp[−|γ

′|2
nth

]|γ′〉〈γ′|d2γ′, (8)

where nth is the average photon number of thermal
noise given by nth = (e�ω/kBT − 1)−1 with the angular
frequency ω of light, Boltzmann constant kB, and the
absolute temperature T . This state is also written as

ρ̂0 = (1− ν)

∞∑
n=0

νn|n〉〈n|, (9)

where the real parameter ν is defined by ν =
nth/(1 + nth), or nth = ν/(1− ν). On the other hand,
the thermal coherent state with complex amplitude γ is
given by

ρ̂1 = ρ̂th(γ)

=
1

πnth

∫
exp[−|γ

′ − γ|2
nth

]|γ′〉〈γ′|d2γ′. (10)

The matrix representation of ρ̂1 in the basis {|n〉} is given
as follows [11]:

〈m|ρ̂1|n〉 =

√
m!

n!
(1− ν)νn

×
(
(1− ν)γ∗

ν

)n−m

× exp[−(1− ν)|γ|2]
×L(n−m)

m [− (1− ν)2|γ|2
ν

],

if m ≤ n, (11)
〈m|ρ̂1|n〉 = (〈n|ρ̂1|m〉)∗ , if m > n, (12)

where L
(m)
n [x] is the associated Laguerre polynomial

([12], [14]). By using Eq.(9) and Eqs.(11)-(12), one can
obtain a matrix representation of ρ̂1− ζρ̂0 in the ordered
basis {|0〉, |1〉, |2〉, . . . }. Since a computer can handle
only a finite matrix size, one must employ an appropriate
cut-off rule for the matrix size. In this study, we have
used the same cut-off rule for the matrix size as that of
the literature [13]: For a finite size matrix representation
ρi = [〈m|ρ̂i|n〉]n=0,1,...,D−1

m=0,1,...,D−1 of the state ρ̂i (i = 0, 1), (i)

compute Trρi and Trρ2i , (ii) compare them with 1 and
(1− ν)/(1+ ν), respectively, and (iii) check whether the
errors are within a preassigned accuracy εmatrix.

IV. PERFORMANCE OF THE NEYMAN-PEARSON
RECEIVER FOR BINARY THERMAL COHERENT STATE

SIGNAL

In the detection theory, the receiver operating char-
acteristic (ROC), which indicates the performance of
Qd against α0, is often used to evaluate the detection
sensitivity of a receiver. The ROC of the quantum NP
receiver for decision between two pure coherent states
|0〉 and |γ〉 is shown in (a) of Fig. 1, where we have
assumed γ is real and have set to γ2 = 0.01, 0.1, 0.5, 1,
and 2 (See also APPENDIX). The effect of thermal noise
can be observed in (b.1)-(b.5) of Fig. 1, where we have
used the following conditions for calculation:

• γ is real;
• ρ̂0 = ρ̂th(0) and ρ̂1 = ρ̂th(γ);
• γ2 = 0.01, 0.1, 0.5, 1, and 2;
• nth = 0, 0.01, 0.1, 1 and 5, or ν = 0, 0.0099, 0.091,

0.5 and 0.83.
The calculation program is based on the procedure men-
tioned in Section II. The source code of the calculation
program was written in C++ and was compiled by Intel
compiler on CentOS 5 (x86 64). To compute some spe-
cial functions and to find the eigenvalues and eigenvectors
of a matrix, GNU Scientific Library (GSL) [14] was
used. The accuracy εmatrix for determining the matrix
size was set to 10−13, so that the number D of the
rows (which equals to that of the columns) of the matrix
representation ρi (i = 0, 1) was determined according to
satisfying this accuracy. In each stage of the optimiza-
tion process for parameter ζ, the eigenvalue problem of
(1/(1 + ζ))ρ1 − (ζ/(1 + ζ))ρ0 was solved instead of
that of ρ1 − ζρ0. The initial values for the bisection
search were set to ζ

0)
lft/(1 + ζ

0)
lft) = 0.0 (or ζ

0)
lft = 0)

and ζ
0)
rht/(1 + ζ

0)
rht) = 0.99999 (or ζ

0)
rht = 99999.0),

which was chosen heuristically to cover all the case under
consideration. Moreover, the accuracy for the bisection
search εsearch was set to εsearch = 10−12, that is, the
iteration halted when ζ

s)
rht − ζ

s)
lft < εsearch is satisfied

at an sth stage. In our simulation, we observed that the
resulting ζ◦ yields α(ζ◦) = α0 within accuracy 10−10.
Finally, we numerically checked the completeness of the
resulting eigenvectors with accuracy 10−12. It means that
every entry of the matrix consisting of the sum of the
dyadic product of the resulting eivenvectors is identical
to the corresponding entry of the identity matrix within
the accuracy 10−12.

As shown in (b-1) to (b-5), we observe the performance
degradation of the quantum NP receiver due to the
thermal noise in each γ2. From the comparison of the
cases of γ2 = 0.01 and γ2 = 2, we can find the difference
of the speed of the performance degradation against the
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increase of the average number nth of photons of thermal
noise. In this comparison, the latter might seem to be
more degraded against the increase of nth than the former.
But, when the average number nth of photons of thermal
noise is fixed, the ROC curves are lifted upwards as
γ2 increases. Hence the improvement of the signal-to-
noise ratio is essential for the detection sensitivity of the
quantum NP receiver.

In radar/lidar applications, the case of small α0 is of
much interest. Fig. 2 shows the detection probability Qd

versus γ2 when α0 is small. The simulation condition is
as follows:

• α0 = 10−2, 10−4, 10−6;
• γ is real, and 0.1 ≤ γ2 ≤ 18;
• nth = 0, 0.05, 0.1, 0.5, 1, and 5, or ν = 0, 0.048,

0.091, 0.33, 0.5, and 0.83;
where the computing environment (including the initial
set-ups, the verification level of the completeness of the
eigenvectors, and so on) is the same as in the case of Fig.
1. From these figures, we see that the behavior of the
curves in each figure is similar except its scaling of the
probabilities. It can be seen as a reflection of the trade-off
between the detection probability Qd and the false-alarm
level α0.

Here we consider the case that the phase of the
amplitude γ is uniformly distributed for comparison. In
this case the signal state ρ̂1 is replaced to

ρ̂1 = ρ̂th(|γ|eϕ)
=

1

2π

∫ 2π

0

[ 1

πnth

∫
exp[−|γ

′ − |γ|eiϕ|
nth

]

×|γ′〉〈γ′|d2γ′
]
dϕ

=
1

πnth

∫
exp[−|γ

′|2 + |γ2|
nth

]

×I0[ 2|γ
′||γ|

nth
]|γ′〉〈γ′|d2γ′, (13)

where I0[x] is the modified Bessel function of order zero
([12], [14], [15]). The detection probability Qd for this
random phase signal is given [7] by

Qd = 1−
z−1∑
n=0

Pn1 − (1− q)Pz1, (14)

where the fraction q is determined by α0 = q(1−ν)νz+
νz+1 and the decision level z = �(lnα0)/(ln ν)�, and

Pn0 = (1− ν)νn, (15)
Pn1 = (1− ν)νn exp[−(1− ν)|γ2|]

×Ln[−(1− ν)2|γ|2/ν], (16)

with the Laguerre polynomial Ln[x] ([12], [14]). The
detection probability Qd for the case of random phase
signal is shown in Fig. 3, together with that for the non-
random phase signal. The solid lines are identical to the
corresponding Qd shown in Fig. 2, and the dashed lines

are obtained from Eq.(14). In each figure, the difference
between the detection probabilities of two cases becomes
larger as γ2 increases. The parameter γ2 can be regarded
as a measure of closeness of the two signals. The effect
of randomness of the phase clearly appears when the two
signals are apart from each other in each case of nth.
Conversely, it seems to be limited when the signals are
closer.

V. CONCLUSION

We considered the quantum Neyman-Pearson receiver
for a binary coherent state signal in the presence of ther-
mal noise. The receiver operating characteristic (ROC)
curves of the quantum Neyman-Pearson receiver for
binary thermal coherent state signal were numerically
obtained. The performance limit of the quantum Neyman-
Pearson receiver was obtained via direct calculation of
the eigenvalues and eigenvectors of the operator ρ̂1−ζρ̂0
when the false alarm level α0 = 10−2, 10−4, and 10−6.
Further, the simulation result for the binary thermal co-
herent state signal is compared with the case of the signal
with random phase. This complements the preceding
works done by Yoshitani [9] and Helstrom [8] in terms of
the numerical evaluation of the quantum Neyman-Pearson
receiver for a binary thermal coherent state signal.
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APPENDIX

The case of binary pure state detection was analytically
solved by Helstrom [6]. This appendix is a short summary
of his result.

To begin with, let us consider the following two pure
states:

H0 : ρ̂0 = |ψ0〉〈ψ0| and H1 : ρ̂1 = |ψ1〉〈ψ1|, (17)

where 〈ψ0|ψ1〉 = κeiθ, 0 < κ < 1 and 0 ≤ θ < 2π. If
α0 = 0, one can employ the Kennedy receiver [16] to
construct the quantum NP receiver. It is given by

Π̂1 = 1̂− |ψ0〉〈ψ0| (18)

and hence
Qd = 1− κ2. (19)

Here we let

|μ0〉 = r00|ψ0〉+ r10|ψ1〉, (20)
|μ1〉 = r01|ψ0〉+ r11|ψ1〉, (21)

where

r00 =
1

2

(
1√
1 + κ

+
1√
1− κ

)
= r11, (22)

r01 =
1

2

(
1√
1 + κ

− 1√
1− κ

)
eiθ = r∗10. (23)



14

1.0

0.3

0.2

0.1

0.0

0.5

0.6

0.7

0.8

0.9

0.4

1.00.20.0 0.6 0.80.4

1.0

0.3

0.2

0.1

0.0

0.5

0.6

0.7

0.8

0.9

0.4

1.00.20.0 0.6 0.80.4

1.0

0.3

0.2

0.1

0.0

0.5

0.6

0.7

0.8

0.9

0.4

1.00.20.0 0.6 0.80.4

1.0

0.3

0.2

0.1

0.0

0.5

0.6

0.7

0.8

0.9

0.4

1.00.20.0 0.6 0.80.4

1.0

0.3

0.2

0.1

0.0

0.5

0.6

0.7

0.8

0.9

0.4

1.00.20.0 0.6 0.80.4

1.0

0.3

0.2

0.1

0.0

0.5

0.6

0.7

0.8

0.9

0.4

1.00.20.0 0.6 0.80.4

(a)

(b.2)

(b.4)

(b.1)

(b.3)

(b.5)

noiseless

Fig. 1. Receiver operating characteristics (ROC) for binary coherent states in the presence of thermal noise. (a) noiseless cases (γ2 = 0.01, 0.1, 0.5, 1
and 2). (b.1) case for γ2 = 0.01 with thermal noise nth = 0, 0.01, 0.1, 1 and 5. (b.2) γ2 = 0.1. (b.3) γ2 = 0.5. (b.4) γ2 = 1. (b.5) γ2 = 2.
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(a) (b) (c)

Fig. 2. Detection probability Qd [%] versus γ2. (a) α0 = 10−2. (b) α0 = 10−4. (c) α0 = 10−6.

These vectors form an ordered orthonormal basis B =
{|μ0〉, |μ1〉}. Then the states |ψ0〉 and |ψ1〉 are rewritten
as

|ψ0〉 = s00|μ0〉+ s10|μ1〉
.
= [|ψ0〉]B =

[
s00
s10

]
, (24)

|ψ1〉 = s01|μ0〉+ s11|μ1〉
.
= [|ψ1〉]B =

[
s01
s11

]
, (25)

where

s00 =
1

2

(√
1 + κ+

√
1− κ

)
= s11, (26)

s01 =
1

2

(√
1 + κ−√1− κ

)
eiθ = s∗10. (27)

Further, the matrix representations of ρ̂0 and ρ̂1 in the
basis B are respectively given as follows.

ρ̂0
.
= [ρ̂0]B

=

[
1
2 (1 +

√
1− κ2) 1

2κe
iθ

1
2κe

−iθ 1
2 (1−

√
1− κ2)

]
, (28)
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(a)

(b)

(c)

Fig. 3. Detection probability Qd [%] for binary thermal coherent state signal of known phase and for that of unknown phase. Solid line: known
phase cases. Dashed line: unknown phase cases. (a) α0 = 10−2. (b) α0 = 10−4. (c) α0 = 10−6.
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and

ρ̂1
.
= [ρ̂1]B

=

[
1
2 (1−

√
1− κ2) 1

2κe
iθ

1
2κe

−iθ 1
2 (1 +

√
1− κ2)

]
. (29)

Hence we have

ρ̂1 − ζρ̂0
.
= [ρ̂1 − ζρ̂0]B =

[
A00 A01

A10 A11

]
(30)

with

A00 =
1

2
(1−

√
1− κ2)− 1

2
(1 +

√
1− κ2)ζ, (31)

A01 =
1

2
κeiθ − 1

2
κζeiθ, (32)

A10 =
1

2
κe−iθ − 1

2
κζe−iθ = A∗

01, (33)

A11 =
1

2
(1 +

√
1− κ2)− 1

2
(1−

√
1− κ2)ζ. (34)

From this one can find the eigenvalues of ρ̂1 − ζρ̂0 as
follows.

λ− =
1

2
(1− ζ − Λ) < 0, (35)

λ+ =
1

2
(1− ζ + Λ) > 0, (36)

where Λ =
√
(1 + ζ)2 − 4ζκ2. The corresponding eigen-

vectors are then given by

|λ−〉 = Û |μ0〉 = u00|μ0〉+ u10|μ1〉
.
= [|λ−〉]B =

[
u00

u10

]
, (37)

|λ+〉 = Û |μ1〉 = u01|μ0〉+ u11|μ1〉
.
= [|λ+〉]B =

[
u01

u11

]
, (38)

where we have defined

Û = u00|μ0〉〈μ0|+ u01|μ0〉〈μ1|
+u10|μ1〉〈μ0|+ u11|μ1〉〈μ1|,

.
= [Û ]B =

[
u00 u01

u10 u11

]
(39)

with

u00 =
Λ+ (1 + ζ)

√
1− κ2√

2Λ2 + 2(1 + ζ)Λ
√
1− κ2

= u11, (40)

u01 =
κ(1− ζ)eiθ√

2Λ2 + 2(1 + ζ)Λ
√
1− κ2

= −u∗
10. (41)

Letting

Π̂0 = |λ−〉〈λ−| = Û |μ0〉〈μ0|Û †,
.
= [Π̂0]B

=

[
1− 1

Ω (1− ζ)2κ2 − 1
2Λ (1− ζ)κeiθ

− 1
2Λ (1− ζ)κe−iθ 1

Ω (1− ζ)2κ2

]
(42)

and

Π̂1 = |λ+〉〈λ+| = Û |μ1〉〈μ1|Û †
.
= [Π̂1]B

=

[
1
Ω (1− ζ)2κ2 1

2Λ (1− ζ)κeiθ
1
2Λ (1− ζ)κe−iθ 1− 1

Ω (1− ζ)2κ2

]
(43)

with Ω = 2Λ
{
Λ+ (1 + ζ)

√
1− κ2

}
, the type-I error

probability α(ζ) = P (1|0) and the type-II error proba-
bility β(ζ) = P (0|1) are respectively given by

α(ζ) =
1

2
− (1 + ζ)− 2κ2

2Λ
, (44)

β(ζ) =
1

2
− (1 + ζ)− 2ζκ2

2Λ
. (45)

A typical behavior of α(ζ) and β(ζ) is illustrated in
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Fig. 4. α(ζ) and β(ζ).

Fig. 4. Form this we observe there is a trade-off relation
between α(ζ) and β(ζ) for the choice of ζ.

The remaining task for the the NP criterion is to find
the optimal ζ that maximizes the detection probability
1 − β(ζ) under the constraint α(ζ) ≤ α0. When α0 is
chosen as κ2 < α0 ≤ 1, the constraint α(ζ) ≤ α0 can be
replaced to α(ζ) = κ2 since the maximum value of α(ζ)
is κ2 and there is a trade off relation between α(ζ) and
β(ζ). Solving the equation α(ζ) = κ2, the optimal ζ◦ is
0. When α0 is chosen as 0 < α0 ≤ κ2, then the constraint
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α(ζ) ≤ α0 can be replaced to α(ζ) = α0. Solving the
equation α(ζ) = α0, we have

ζ◦ = −(1− 2κ2) + (1− 2α0)

√
(1− κ2)κ2

(1− α0)α0
,

where we have used the condition ζ > 0. Substituting the
optimal ζ◦ into Eq.(45), we have

Qd = 1− β(ζ◦)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− κ2, if α0 = 0;(
κ
√
α0 +

√
(1− α0)(1− κ2)

)2

,

if 0 < α0 ≤ κ2;
1, if κ2 < α0 ≤ 1.

(46)

Thus we could reach to the result shown in Eq.(2.33) of
the textbook [10] (or Eq.(2.18) of the literature [8]).

At the tail of this appendix, we must mention that the
analysis above is mainly based on the analysis used in the
literature [17] which treats the problem of the minimax
criterion. In this analysis we have used a technique of the
square-root measurement.

REFERENCES

[1] J. Neyman and E. S. Pearson, “On the Problem of the most Effi-
cient Tests of Statistical Hypotheses,” Phil. Trans. R. Soc. Lond. A,
vol.A231, no.9, pp.289-337, 1933.

[2] J. Neyman and E. S. Pearson, “The testing of statistical hypotheses
in relation to probabilities a priori,” Proc. Camb. Philos. Soc.,
vol.29, no.4, pp.492-510, 1933.

[3] H. V. Hance, “The optimization and analysis of systems for the
detection of pulse signals in random noise,” Sc.D. dissertation,
M.I.T., Jan. 2, 1951.

[4] D. Middleton, “Statistical Criteria for the Detection of Pulsed
Carriers in Noise. I,” J. Appl. Phys., vol.24, no.4, pp.371-378,
1953; D. Middleton, “Statistical Criteria for the Detection of
Pulsed Carriers in Noise. II,” J. Appl. Phys., vol.24, no.4, pp.379-
391, 1953.

[5] M. A. Richards, Fundamentals of Radar Signal Processing,
McGraw-Hill, New York, 2005.

[6] C. W. Helstrom, “Detection Theory and Quantum Mechanics,”
Inform. Contr., vol.10, no.3, pp.254-291, 1967; C. W. Helstrom,
“Detection Theory and Quantum Mechanics (II),” Inform. Contr.,
vol.13, no.2, pp.156-171, 1968.

[7] C. W. Helstrom, “Performance of an Ideal Quantum Receiver of
a Coherent Signal of Random Phase,” IEEE Trans. Aerosp. Elec-
tron. Syst., vol.AES-5, no.3, pp.562-564, 1969.

[8] C. W. Helstrom, “Quantum Detection Theory,” Progress in Optics,
pp.289-369, 1972.

[9] R. Yoshitani, “On the Detectability Limit of Coherent Optical
Signals in Thermal Radiation,” J. Stat. Phys., vol.2, no.4, pp.347-
378, 1970.

[10] C. W. Helstrom, Quantum Detection and Estimation Theory,
Academic Press, New York, 1976.

[11] B. R. Mollow and R. J. Glauber, “Quantum Theory of Parametric
Amplification. I,” Phys. Rev., vol.160, no.5, pp.1076-1096, 1967.

[12] M. Abramowitz and I. A. Stegun, Ed., Handbook of Mathemati-
cal Functions With Formulas, Graphs, and Mathematical Tables,
Applied Mathematics Series 55, National Bureau of Standards,
United States Department of Commerce, Washington, D.C., 1964.

[13] C. W. Helstrom, “Bayes-Cost Reduction Algorithm in Quantum
Hypothesis Testing,” IEEE Trans. Inform. Theory, vol.IT-28, no.2,
1982.

[14] GSL - GNU Scientific Library. http://www.gnu.org/software/gsl/
[15] G. Lachs, “Theoretical Aspects of Mixtures of Thermal and Co-

herent Radiation,” Phys. Rev., vol.138, no.4B, pp.B1012-B1016,
1965.

[16] R. S. Kennedy, “A near-optimum receiver for the binary coherent
state quantum channel,” M.I.T. Res. Lab. Electron. Quart. Progr.
Rep., vol.110, pp.142-146, 1973.

[17] K. Kato, “Necessary and Sufficient Conditions for Minimax
Strategy in Quantum Signal Detection,” Proc. IEEE ISIT 2012,
pp.1077-1081, 2012.


