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On Parameterizations of Rotations
Mitsuru Hamada

Quantum Information Science Research Center
Quantum ICT Research Institute

Tamagawa University
6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan

Abstract—A conversion between two parameterizations for
SU(2) is presented. One parameterization is well-known and
it is in terms of a triple of rotation angles called Euler angles,
and the other generalizes this parameterization. The latter is
involved similarly with a triple of angles for rotation while
the configuration of the three axes for rotation is the most
general possible.

I. INTRODUCTION

Motivated by some problems on quantum computation,
the author has recently investigated issues on rotations
in the Euclidean space and the corresponding unitary
operations. Specifically, in a recent article [1], the author
presented a concrete expression for the minimum number
of rotations required for constructing an arbitrarily given
target rotation (under some constraint), and more impor-
tantly, an algorithm for giving an optimal, i.e., minimum-
achieving construction. The present article extracts a result
related to parameterizations of rotations from [1]. It is on
a conversion between two parameterizations for SU(2) in
terms of triples of rotation angles. Among the two param-
eterizations, one is well-known and it is in terms of Euler
angles [2], and the other generalizes this parameterization.

The reasons for presenting this result include (i) that
the result seems useful for treating other issues for its
generality, (ii) that the conversion was not fully but only
partially presented in [1], (iii) that explicitly showing a
region of parameters that makes the generalized parame-
terization one-to-one (Remark 2) will be useful in view
of the fact that even in the special case of the classical
parameterization with Euler angles [2], many authors have
not paid enough attention to this issue, which has led
to propagation of an error in the literature, and (iv) that
this result may serve, especially for non-specialists, as an
introduction to the issue treated in [1]. In fact, the main
result in [1] could not have been obtained without the result
to be presented below (and a lemma already reported in a
previous article of this author [3]1).

II. DEFINITIONS

Let X,Y and Z denote the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

1Specifically, that lemma was in an unpublished manuscript, an abstract
of which is [4]. Later, when this was used to give the constructive result
in [1], it was reduced to a form neater than the original.

Throughout, I denotes the 2 × 2 identity matrix. The
transpose of a vector v̂ is denoted by v̂T.

We put

Rv̂(θ) = (cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ), (1)

where v̂ = (vx, vy, vz)
T ∈ R

3 with ‖v̂‖ =√
v2x + v2y + v2z = 1 and θ ∈ R, with R denoting the set of

real numbers (e.g., [5]). This represents the rotation about
v̂ by angle θ (through the homomorphism in Section III-B).
The matrices Ry(θ) and Rz(θ) denote the following special
cases of Rv̂(θ), respectively:

Ry(θ) := Rŷ(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
,

where
ŷ = (0, 1, 0)T,

and

Rz(θ) := Rẑ(θ) =

(
e−i θ2 0

0 ei
θ
2

)
,

where
ẑ = (0, 0, 1)T.

We put S2 = {v̂ ∈ R
3 | ‖v‖ = 1}. The set of 2 × 2

unitary matrices with determinant 1 and the set of 3 × 3
real orthogonal matrices with determinant 1 are denoted
by SU(2) and SO(3), respectively. They stand for the
special unitary group and the special orthogonal group,
respectively.

III. PRELIMINARIES

A. Standard Expressions for SU(2) Elements

In this section, standard parametric expressions of ele-
ments of SU(2) are reviewed. (Most expressions can be
found in [2], [5] unless another source is specified.)

A-1. Expression with (a, b) and Rv̂(θ): It is well-known
and easy to check that any matrix in SU(2) can be written
as

W (a, b) :=

(
a b
−b∗ a∗

)
(2)

with some complex numbers a and b with |a|2+|b|2 = 1 [2,
Chapter 15], and hence, as(

w + iz y + ix
−y + ix w − iz

)
= wI + i(xX + yY + zZ) (3)
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with some real numbers x, y, z and w with

w2 + x2 + y2 + z2 = 1. (4)

From this expression of an arbitrary matrix in SU(2), we
obtain another parameterization as follows.

Take a real number θ such that cos(θ/2) = w and
sin(θ/2) =

√
1− w2 =

√
x2 + y2 + z2; write x, y and

z as x = −vx sin(θ/2), y = −vy sin(θ/2) and z =
−vz sin(θ/2), where vx, vy, vz ∈ R and v2x + v2y + v2z = 1.
Thus, using real numbers θ, vx, vy, vz ∈ R with v2x + v2y +
v2z = 1, any matrix in SU(2) can be written (e.g., [5]) as

(cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ),

which is nothing but Rv̂(θ) in (1).
In (1), using spherical coordinates for parameterizing

v̂ ∈ S2, we have a parameterization of SU(2) as in [3,
Section III]. That expression was derived there from the
requirement that Rv̂(θ) act as a rotation on R

3.2

A-2. Expression with Euler angles Ry(α)Rz(β)Ry(γ):
Rewriting (2) or by a direct calculation, we obtain the
following expression of an SU(2) element. Any matrix in
SU(2) can be written as(

e−iη cos β
2 − eiζ sin β

2

e−iζ sin β
2 eiη cos β

2

)
(5)

and hence, as(
e−i γ+α

2 cos β
2 − ei

γ−α
2 sin β

2

e−i γ−α
2 sin β

2 ei
γ+α

2 cos β
2

)
, (6)

where η, ζ, α, β and γ are real numbers. This is another
parameterization for SU(2). Note the above matrix in (6)
equals Rz(α)Ry(β)Rz(γ). The parameters α, β and γ are
known as Euler angles.

B. Homomorphism from SU(2) onto SO(3)

The reader, if unfamiliar with the topic, may wonder
in what sense SU(2) is related to rotations in the three-
dimensional Euclidean space. This will be explained in this
section.

For U ∈ SU(2), we denote by F (U) the matrix of
the linear transformation on R

3 that sends (x, y, z)T to
(x′, y′, z′)T through3

U(xX + yY + zZ)U † = x′X + y′Y + z′Z. (7)

Namely, for any (x, y, z)T, (x′, y′, z′)T ∈ R
3 with (7),⎛

⎝x′

y′

z′

⎞
⎠ = F (U)

⎛
⎝x
y
z

⎞
⎠ .

2That parameterization in [3] does not seem standard. Mentioning this,
although it is not used in what follows, is for the following reason. In one
widely accepted definition, parameters ought to be independent variables.
The one in [3] is a parameterization in this strong sense. Still, (1) and (2)
are useful ‘parametric’ expressions.

3Note that in defining the homomorphism in [2], Wigner has used −Y
and−Z in place of our Y and Z , which causes a slight difference between
his homomorphism and ours, that is, F .

We also define

R̂v̂(θ) := F
(
Rv̂(θ)

)
, v̂ ∈ S2, θ ∈ R. (8)

Example. We have

R̂y(θ) := F (Ry(θ)) =

⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠ (9)

and

R̂z(θ) := F (Rz(θ)) =

⎛
⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠ . (10)

�
Thus, R̂y(θ) and R̂z(θ) represent rotations. It can be

seen that Rv̂(θ) with the general v̂ ∈ S2 also represents a
rotation (see, e.g., [5] or [3, Section III]).

IV. REGIONS OF PARAMETERS FOR EXPRESSING THE
WHOLE SU(2)

In this section, we will remark that the choice of
(α, β, γ) for expressing any given matrix in SU(2) is
unique if we restrict the region of (α, β, γ) appropriately.
Specifically, we define the following.

Definition 1: For S, T, S0, T0 ∈ R,

AS,T := {(α, β, γ) | 0 < β < π, S ≤ γ + α < S + 4π,

T ≤ γ − α < T + 4π},
BS,T0 := {(α, 0, γ) | S ≤ γ + α < S + 4π, γ − α = T0},
CS0,T := {(α, π, γ) | γ + α = S0, T ≤ γ − α < T + 4π}
and

DS,T ;S0,T0 := AS,T ∪BS,T0 ∪ CS0,T .

A typical choice for the constants S, T, S0, T0 would be
T = S = −2π (or = 0) and T0 = S0 = 0.

Example.

A−2π,−2π := {(α, β, γ) | 0 < β < π, −π ≤ γ+α
2 < π,

−π ≤ γ−α
2 < π},

B−2π,0 := {(α, 0, γ) | −π ≤ γ+α
2 < π, γ − α = 0}

and

C0,−2π = {(α, π, γ) | γ + α = 0, −π ≤ γ−α
2 < π}.

�
Definition 2: A function V : R

3 → SU(2) is defined
by

V (α, β, γ) =

(
e−i γ+α

2 cos β
2 − ei

γ−α
2 sin β

2

e−i γ−α
2 sin β

2 ei
γ+α

2 cos β
2

)
.

As usual, the restriction of a function g : D → C to B,
where B ⊂ D, is denoted by g|B , which is the function
g|B : B → C such that g(x) = g|B(x) for x ∈ B. Then,
the mapping V |D : D → SU(2), where D = DS,T ;S0,T0 ,
is a bijection. Namely, we have the following.
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Fact 1: For any S, T, S0, T0 ∈ R, the function V |D :
D → SU(2), where D = DS,T ;S0,T0 , is one-to-one and
V |D(D) = SU(2).

This is easy from the mathematical viewpoint. Therefore,
the author thought it unnecessary for those working in
any fields that indispensably need mathematics when he
first wrote this as a personal memorandum. However, he
recently learned that many famous textbooks on quantum
physics contained an error, which could have been avoided
if the authors of these had considered the matter carefully
to notice the above fact (see Section VI).

In view of this history, we shall mention that this fact
is easy to see using the transformation between (α, γ) and
(η, ζ) specified by

η =
γ + α

2
and ζ =

γ − α

2
, (11)

which has been used for rewriting (5) as (6). In fact,
define the function Ṽ (β, η, ζ) such that Ṽ (β, η, ζ) =
V |D(α, β, γ), where the domain of Ṽ is the one trans-
formed from D = DS,T ;S0,T0 with (11). Then, we see that
Ṽ is a bijection. This implies that the map V |D is also a
bijection.

To sum up the above arguments, note the matrix in (6)
equals Rz(α)Ry(β)Rz(γ). We have seen that any matrix
in SU(2) can be decomposed into Rz(α)Ry(β)Rz(γ),
(α, β, γ) ∈ DS,T ;S0,T0 , in a one-to-one manner.

V. PARAMETERIZATIONS WITH TRIPLES OF ANGLES

The material of this section up to Corollary 1, to be
given, is from [1].

First, for a natural presentation of the result, we give
a slightly more general form of the parameterization
Rz(α)Ry(β)Rz(γ), replacing the y-axis and z-axis with
a pair of orthogonal axes for rotation, as follows.

Lemma 1: Let l̂, m̂ ∈ S2 be vectors with l̂Tm̂ = 0.
Then, for any U ∈ SU(2), there exist some α, γ ∈ R and
β ∈ [0, π] such that

U = Rm̂(α)Rl̂(β)Rm̂(γ). (12)

If a proof is needed, see [1].
Now, we will present the conversion between two pa-

rameterizations through two lemmas and a corollary.
Lemma 2: [1]. Given any δ ∈ R and l̂, m̂ ∈ S2 such that

l̂Tm̂ = 0, put

n̂ = (sin δ)l̂ × m̂+ (cos δ)m̂. (13)

For an arbitrary U ∈ SU(2), choose parameters α′, β′, γ′ ∈
R such that

Rl̂(−δ)U = Rm̂(α′)Rl̂(β
′)Rm̂(γ′). (14)

Then,
U = Rn̂(α

′)Rl̂(β
′ + δ)Rm̂(γ′). (15)

Remark 1: Conversely, under the assumption (13), if U
satisfies (15) for parameters α′, β′, γ′ ∈ R, then (14) holds.

Remark 2: In the lemma, restricting (α′, β′, γ′) to
DS,T ;S0,T0 , S, T, S0, T0 ∈ R, as in Section IV, we see
(15) gives a one-to-one parameterization of SU(2).

Corollary 1: [1]. Besides the premise of Lemma 2, as-
sume β′ ∈ [0, π] and U = Rm̂(α)Rl̂(β)Rm̂(γ) for some
α, β, γ ∈ R. Then, β′ is given as β′ = f(α, β, δ), where
the function f : R3 → [0, π] is defined by

f(α, β, δ) := 2 arccos
[
cos2 β

2 cos2 δ
2 + sin2 β

2 sin2 δ
2

+ 2 cosα sin β
2 sin δ

2 cos
β
2 cos δ

2

] 1
2 .

Proof. Note Rl̂(δ)Rm̂(α′)Rl̂(−δ) = Rn̂(α
′), which

is equivalent to Ry(δ)Rz(α
′)Ry(−δ) = Rv(α

′), where
v̂ = (sin δ, 0, cos δ)T (see [1, Lemma 3.4] if one needs
a proof; see also Fig. 1 therein), and therefore, can be
checked easily by a direct calculation. Using this equation,
we can rewrite (14) as U = Rn̂(α

′)Rl̂(β
′ + δ)Rm̂(γ′),

which is (15). This completes the proof of the lemma
and Remark 1. The corollary follows from another direct
calculation ([1, p. 10], or Lemma 3 below). �

The corollary can be obtained via the following lemma,
where we use the expression with (a, b) in (2).

Lemma 3: Given any δ ∈ R and U ∈ SU(2), let a, b be
the complex numbers such that

Ry(−δ)U = W (a, b). (16)

If U = Rz(α)Ry(β)Rz(γ), where α, β, γ ∈ R, then,

a = cos
δ

2
cos

β

2
e−i γ+α

2 + sin
δ

2
sin

β

2
e−i γ−α

2 ,

b = sin
δ

2
cos

β

2
ei

γ+α
2 − cos

δ

2
sin

β

2
ei

γ−α
2 .

Proof. A short direct calculation shows the lemma. �
Note that β′ in Corollary 1 is obtained as β′ =

f(α, β, δ) = 2 arccos |a|. The other parameters α′ and γ′ in
Lemma 2, under the assumption U = Rz(α)Ry(β)Rz(γ),
can be obtained similarly from a, b. Namely, α′ and γ′ are
obtained as

α′ = − arg(−b)− arg a and γ′ = arg(−b)− arg a,
(17)

respectively.4

Thus, we have elucidated a relation between the two
parameterizations in

Rẑ(α)Rŷ(β)Rẑ(γ) = Rv̂(α
′)Rŷ(β

′ + δ)Rẑ(γ
′),

where v̂ = (sin δ, 0, cos δ)T, δ ∈ R, or a conversion from
(α, β, γ) into (α′, β′, γ′); the relation holds true if ŷ, ẑ and
v̂ are replaced with l̂, m̂ ∈ S2 and

n̂ = (sin δ)l̂ × m̂+ (cos δ)m̂,

respectively, where l̂Tm̂ = 0.

4We follow the convention that the real number arg 0 can be chosen
arbitrarily. For c �= 0, arg c is unique up to differences modulo 2π. If
the complete uniqueness is preferred, one can use Fact 1.
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VI. DISCUSSIONS

Lemma 2 is a secondary part of Proposition 4.7 in [1].
A parameterization in the form R̂n̂(α

′)R̂l̂(β
′′)R̂m̂(γ′) for

SO(3), where l̂ is perpendicular to both n̂ and m̂ as in
Lemma 2, has been known in the literature (see [6] for a
history). One may wonder if a similar parameterization is
possible when we remove the restriction on n̂, l̂, m̂ ∈ S2.
This is impossible (unless we give up expressing the whole
set of rotations). In fact, from [6, Theorem 3] (or by
another way not presented here), it follows that the matrix
Rn̂(α

′)Rl̂(β
′′)Rm̂(γ′) with the parameters α′, β′′, γ′ ∈ R

exhausts the whole group SU(2) if and only if l̂ is perpen-
dicular to both n̂ and m̂.5

The relation among the parameters α, β, γ, β′ ∈ R in
Lemma 2 and Corollary 1 was found by this author [1]. The
present article supplements this result to give the relation
among the whole parameters α, β, γ, α′, β′, γ′ ∈ R. (Note
that the chief achievement of [1] is an algorithm for
constructing a sequence of rotations of the minimum length
that constitute an arbitrary target rotation; the full relation
presented above was not pursued there.)

Advantages of Lemma 2 would be illustrated by its
implications Remark 2, Corollary 1 and (17) as well as
the constructive results of [1].

Regarding the error mentioned in Section IV, it is
related to an orthogonality relation, which is fundamental
in representation theory. This has been pointed out in [7],
where they have presented what is denoted by A0,−2π in
the present article. As they pointed out, using this region
for integration, we have a correct orthogonality relation
while many authors misunderstood that a smaller region
was enough for this purpose. Here, A denotes the closure
of A. Now that we have Fact 1, we see that the correct
orthogonality relation holds when we use AS,T as the
integration region for any S, T ∈ R.

VII. SUMMARY

A conversion between two parameterizations for SU(2)
was presented. This conversion was, in part, already used
in [1] in order to obtain a constructive optimal result, i.e.,
an algorithm for giving an optimal solution to an issue of
constructing an arbitrary rotation.
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