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Abstract—It is expected that quantum computers provide
very attractive capabilities for real applications, and our
common challenge is to realize them as real-world tech-
nologies. In the past, the prediction of functions in an ideal
environment has been prioritized, and issues at the imple-
mentation stage have not been much of a problem. Thus it
is necessary to study in detail whether an actual quantum
computer with the capability of cryptanalysis is feasible as
an extension of the present implementation technology. The
first task is to fully model and characterize the natures of
quantum noise in large-scale quantum CPUs. In this paper,
we presents a classification method of quantum noise from
an information-theoretic perspective, and introduces specific
physical phenomena of nonlinear and nonlocal errors, which
are unique quantum noise phenomena. Finally, as our main
results, we give a method of information-theoretic modeling
of these phenomena, showing several examples.

I. INTRODUCTION

Quantum computers are theoretically predicted to have
significantly higher computing power than conventional
computers [1], and the standardization of post-quantum
public key cryptography [2] has been started in con-
junction with the development of quantum computer.
Recent discussions on the demonstration of quantum
transcendence by Google and IBM have sparked public
interest in the real performance of quantum computers. A
quantum computer must realize a combinatorial circuit of
large number of quantum gates and quantum memories.
However, a mathematical proof called the threshold the-
orem [3] shows a prediction law comparable to Moore’s
law for classical computers. According to it, it will take
a similar evolutionary process to the classical computer
from the current small-scale quantum computer. However,
the situation is not so simple. That is, many researchers
are concerned about the current theoretical analysis of
the unavoidable quantum noise in the implementation
of large scale quantum CPUs for practical quantum
computers [4,5,6,7,8]. In particular, Nobel laureates in
physics, such as S. Haroche, have questioned the current
way of thinking on the implimentation of quantum CPU.
The concern is that existing theory is based on optimistic
reasoning based on a lack of accurate understanding of
quantum noise in quantum circuits of quantum computer
architecture. Thus, system architecture researchers and
others have specifically conducted research to confirm

their concerns. We are concerned with more general
theory on the quantum noise analysis. In this paper, we
firstly present the most general classification of errors by
quantum noise based on the results of considering the
standard mathematical models of quantum noise analy-
sis. It is defined by the information theoretic point of
view. From such a formulation, one can see that the
probability of error of a quantum bit depends on the
number of qubits in a quantum CPU. This is a new
type of noise come from the quantum nature. It will be
called “Nonlinear error”. Then, real physical phenomena
that cause errors in the such a case are introduced.
Based on the above theory, we propose an information-
theoretic modeling of such quantum-specific noise effects
and give several examples. Consequently, if the nonlinear
error occurs in quantum computer, the threshold theorem
cannot hold its claim. So we have to point out the fact
that the implementation of quantum computer with error
correcting function is impossible. Since such studies will
influence the development of post-quantum public key
cryptography and physical cryptography, we hope that
the contents of this paper will provide an appropriate
information to researchers in related fields.

Finally we emphasize that the quantum noise for
quantum computers is an essential issue in order to put
quantum computers into practical use at a truly useful
level. To cope with these difficulties, it is necessary to
bring together the wisdom of not only physicists but
also information theory / code theory researchers and
computer scientists who are not familiar with quantum
mechanics. Thus it is of great significance to build a
quantum computer noise model that can be understood
without the detailed physical phenomena, which this
paper is trying.

II. INFORMATION THEORETIC VIEW OF QUANTUM
ERROR

A. Phenomena of quantum noise in quantum computer

The quantum computer operates as a time evolution
of quantum states in Hibert space. However, we need a
method to mathematically model these quantum states,
including the possibility of their involuntary temporal
evolution. In this section, we classify the quantum noise
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effects on quantum states and discuss the corresponding
physical phenomena in order to make it easier for infor-
mation theorists to participate. This has been clarified in
2019 by the present author [9,10]. Let us surmarize the
concept. First of all, the quantum noise we are discussing
here refers to the phenomenon of decoherence to quantum
states. The following is a list of classifications as causes
of quantum noise, specific noise phenomenal classifica-
tions, and information-theoretic error forms, respectively.
First, the causal classification is as follows.
(1) Interaction with environment, (2) Interaction with
other qubits, (3) Imperfect gate, (4) Leakage.
The physical phenomena, on the other hand, are as
follows.
(1) Stochastic Pauli Noise: Corresponding to bit or phase
errors of a single qubit.
(2) Coherent Noise: No decoherence to a quantum state
occurs, but it becomes an unintended quantum state.
(3) Amplitude Damping: a specific example of decoher-
ence, especially derived from energy loss.
(4) Local correlated noise (Markov, non-Markov):
It is a statistically independent extension of Pauli noise,
in which several qubits around the errored qubits are
correlated to produce the error.
(5) Non-local correlated noise (Markov, non-Markov):
It also gives an error for every qubit in the system with
correlation.
Next, their effects can be categorized as follows.
(1) Individual error
(2) Coherent error : error that preserves unitary nature
(3) Burst error : many successive bits are in error at the
same time
(4) Synchronization avalanche error : destructive error
due to the avalanche phenomenon

Why it is necessary to consider the above issues in the
case of quantum computers is due to the following rea-
sons. In the classical system, the semiconductor elements
that make up a bit can be considered to be independent
of each other. Next, the noise is additive, and errors
in the execution of logical calculations are sufficiently
practical to be analyzed only by the stochastic properties
of the noise itself. As a result, almost all errors can be
considered to be each bit independent or, if correlated,
very local. On the other hand, in a quantum computer,
most qubits are coupled by quantum correlations such as
entanglements, so it can be special that only some qubits
make errors independently.

B. Calssification of quantum errors in information theory

In this section, we present an information-theoretic
classification of errors that occur in quantum computers,
which is the subject of this paper. In information theory,
the probability of the occurrence of an error is an impor-
tant parameter. Therefore, any physical phenomenon that
produces an error is acceptable, and as a result we classify
information errors according to what characteristics they

have.

(1) Linear individual error
Assume that N qubits are prepared. Errors shall occur
separately and independently of the quantum state of each
of its qubits. Let the basic error probability for each qubit
be p(error), and when this probability does not depend
on the number of qubits, we call it linear, and the single
and T error probability in N qubits are

p(error) ≡ ηj = η∗ ∀j ∈ N (1)

Pe(T ) ∝ η∗T (1− η∗)N−T (2)

(2) Linear local correlation and nonlocal correlation
error
Assume that N qubits are prepared, and if an error occurs
in the quantum state of one qubit with probability ηj , the
error or decay of T qubits is induced by correlation of
neighboring (local) or arbitrary (non-local) qubits of the
system. This is called a correlation error. Here, assuming
that the error probability ηj for each qubit does not
depend on the number of qubits, the correlation error
probability for a group of correlated qubits is

Pe(T ) = ηj = η∗ (3)

(3) Nonlinear individual error
We assume that N qubits are provided and that errors
occur separately and independently in the quantum states
of each qubit. However, if we assume that the probability
of error for each qubit depends on the number of qubits,
a single or T qubits error can be described as follows.

p(error) = ηj(N) = f(η∗, N) ∼ η∗Nα (4)
Pe(T ) ∝ ηj

T (N)(1− ηj(N))N−T (5)

where α is a real number for specific approximation. This
is called nonlinear error.
(4) Nonlinear local and nonlocal correlation error

Suppose that N qubits are prepared, and if an error occurs
in the quantum state of one qubit, the error occurs in the
neighborhood or the whole system with correlation. And
the probability of the error of a single qubit triggering it
depends on the number of qubits, as in Equation (4), and
it can be described by

p(error) = ηj(N) = f(η∗, N) ∼ η∗Nα (6)

(5) Avalanche error and accumulation error
If a correlation error occurs where the whole system loses
its quantum nature, it is called an “avalanche collapse”.
We also define a propagation-accumulation error as the
time when the first error propagates to the next step in
an iterative gate operation or an iterative calculation and
the error accumulates in the quantum circuit where the
various errors mentioned above occur.
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III. BASIS OF QUANTUM NOISE ANALYSIS

A quantum computation mechanism has a structure in
which all qubits in a quantum CPU are correlated and
a huge pure quantum state consisting of all qubits is
unitarily evolved according to a program using the corre-
lation. In other words, the whole CPU is considered to be
monolithic, so the interaction between the pure-state sys-
tem and the environment including the vacuum field will
inevitably cause the quantum states that carry information
to become undesired quantum states or to be destroyed.
Then, simple bit-flip and phase flip (Pauli-flip type) errors
similar to classical systems are rather exceptional, and
quantum-specific errors can be the main ones. Therefore,
in order to predict the realization of a large-scale quantum
computing mechanism, it is essential to elucidate the
exact features of the noise itself by rigorous quantum
noise analysis. The following is a starting point for this.
First, let X be a physical quantity representing a quantum
bit. Let the noise operator representing the noise for a
quantum bit be N . Here the interaction between qubits,
which are information, and the interaction between qubits
and noise is quite different from the classical system.
The analysis of the characteristics of these interactions is
called quantum noise analysis. The interaction is denoted
by the interaction Hamiltonian Hint, which consists of
X and N . The Hamiltonian of the entire system is as
follows.

H = HX +HN +Hint ≡ H0 +Hint (7)

The quantum state representing the information evolves
in time driven by the above Hamiltonian, but depending
on the situation, the equation is either the Schrödinger
equation on the extended Hilbert space, or the following
Lindblad equation

∂ρ

∂t
=

−i

ℏ
[H, ρ] +

N2−1∑
i=1

γi(LiρL
†
i − {L†

iLi, ρ}) (8)

where L is a Lindblad-decoherence operator. Currently,
this equation is the most frequently utilized. Assuming an
actual general-purpose program, further generalization to
include measurement systems is needed, not only models
of decoherence systems as described in the previous
section. As the generalization, it is necessary to introduce
the following Belavkin equation [11].

dψ = −(
1

2
L∗L+

i

ℏ
H)ψdt+ Lψdy (9)

y(t) =

∫ t

0

dy(r), (10)

We will discuss such a generalization in the next paper.

IV. PHYSICAL EXAMPLES OF QUANTUM NOISE

This section shows physical eaxamples [4,5,6] in the
error model categorized in section 2. These quantum

noises have been not assumed in the conventional thresh-
old theorem[3]. However, because physical phenomena
are so complex, we exclude physical rigor and emphasize
the logic that arrives at each error model. That is, the
main objective of this section is to show that the new
error models in Section 2 exist in reality, or rather, that
they can be the main noise.

A. Hutter-Loss recurrence effect

Consider a model in which a group of qubits coupled
by quantum correlations are interacted to the heat bath
of a considered environment. There are many physical
mechanisms out there, such as direct interactions be-
tween each qubit and the heat bath, and non-Markovian
interactions mediated by the heat bath. First, however,
we focus on the simplest of phenomena. That is, only
the bit-flip (σx) for X is subject to error, the heat
bath is in thermal equilibrium at the onset, and the
fundamental Hamiltonian at the time is that the heat bath
is HN =

∑
k ℏωka

†
kak, and the interaction Hamiltoniann

is

Hint =
∑
j

σx
j ⊗

∑
{k}

|k|r λ√
M

(eikRjak + e−ikRja†k)

(11)
Rj means the spatial position of the qubit, M is the total
number of modes, k is the wave number vector of modes,
r = 0,±1/2.　Here we introduce the analysis by Hutter-
Loss [6]. Let us consider how a given jth qubit evolves
as it interacts with the heat bath. If the initial state of
the system is ρS ⊗ ρN , then its decoherence evolution is
expressed as follows using the operation according to the
Lindblad equation.

ρS �−→ Φe(ρS) = TrN {e−iHt(ρS ⊗ ρN )eiHt} (12)

ρS is a density operator of all signal systems connected
by correlation. We add the operation in the measurements
of Stabilizer code, such as

ΨΠ(σ) =
∑
a

ΠaσΠa (13)

Then we have the density operator for jth qubit as
follows:

ρj(t) = Tr{k ̸=j} ◦ΨΠ ◦Ψe(ρS)

= (1− ηj(t,N))ρj + ηj(t,N)σx
j ρjσ

x
j (14)

where ηj(t,N) is the error probability of the jth single
qubit in a population of N qubits. From this formula,
we can derive the probability of error for each qubit
as a function of N and time, taking into account the
correlation with other qubits. That is, for a set with
quantum correlations, the influence from all other qubits
will result in the following properties.

ηj(t,N + 1) = cos2(J1,N+1)ηj(t,N) +

sin2(J1,N+1)(1− ηj(t,N)) (15)
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where

Jm,n ∼ λ2

∫
dk

|k|2r

ω2
k

×

cos(k(Rm −Rn))(sin(ωkt)− ωkt) (16)

The above property comes from the recurrence phe-
nomenon, and the probability of error for jth qubit can
be described by

p(error) = ηj(t,N) ≡ f(t, η∗, N) (17)

When N is increased, the above error probability follows
the equations (15),(16).

B. Collective decoherence effect

Here we introduce collective decoherence such as
generalized Dicke super radiation given by Lemberger
and Yavus [4][5]. Let N atoms of a two-level system be
qubits. Then we discuss more general discussin than the
standard assumption that the wavelength of the radiation
field is longer than the size of the qubit population in
the interaction with the continuous mode field. Even
if we take the above assumption, the system can be
in the super-radiant region. Here, applying the Wigner-
Weisskopf theory, it is well known that the interacting
Hamiltonian such as generalized Dicke super radiation is

Hint = −
∑
j

∑
n

ℏκn(anσ
j
+ + a†nσ

j
−) (18)

σj
z = |e >jj< e| − |g >jj< g|,

σj
+ = |e >jj< g|, σj

− = |g >jj< e| (19)

where j is qubit number and n is the mode number.
Initially, the qubit system is assumed to be superimposed
and the field is assumed to be a vacuum. At this time,
the initial state of the two coupled systems is

|Ψ(t = 0) >=

2N−1∑
m=0

cm,0|m, 0 > (20)

From the Schrödinger equation in the extended Hilbert
space of the coupled system, the time evolution is

|Ψ(t) >=
2N−1∑
m=0

cm,0(t)|e−i(Nmωa)t|m, 0 > +

∑
j

2N−1∑
m′

cm′,n(t)e
−i(Nm′ωa+νn)t|m′, 1n > (21)

For simplicity, among N qubits, let N/2 + N̄ be the
excited state and N/2 − N̄ be the ground state. The
equation of motion for the stochastic amplitude of the
point of interest in the above equation is as follows [4,5].

dcm,0

dt
= −(

Γ

2
+ δω)(

N

2
+ N̄)(

N

2
− N̄ + 1)cm,0 (22)

where Γ and δ are the single decay rate and Lam shift,
respectively. From the above, the decay of the probability

amplitude of the representative point of interest is given
as follows [4,5].

|cm,0(t)|2 ∼ |cm,0(t = 0)|2e−(N2/4)Γt (23)

The above equation is applicable to the majority of
stochastic amplitudes and it represents a feature of super-
radiance.
Since super-radiance implies the simultaneous decay of
the majority of qubits, one can next consider the non-
locality of this super-radiance and analyze how the error
probability of only certain qubits is affected by other
qubits. In order to make the features easier to see, the
initial state is set as follows.

|ψ(t = 0) >=

2N−1−1∑
m=0

cm,0|g >j ⊗|m, 0 >

+
2N−1−1∑
m=0

dm,0|e >j ⊗|m, 0 > (24)

where m corresponds to an indicater of the quantum state
of a qubit of N − 1 other than jth qubit. If the density
operator on the composit space is ρ = |ψ >< ψ|, then
the density operator of jth qubit is obtained by tracing
this density operator over a qubit fraction of N − 1. The
result is

ρj =
2N−1−1∑
m=0

|cm,0|2|g >jj< g|

+
2N−1−1∑
m=0

|dm,0|2|e >jj< e|

+
2N−1−1∑
m=0

cm,0d
∗
m,0|g >jj< e|

+
2N−1−1∑
m=0

c∗m,0dm,0|e >jj< g| (25)

In the initial state, if the qubits of j are excited, N qubits
radiate at once. On the other hand, if it is on the grand,
the qubits of N − 1 radiate at the same time. As a result.

|cm,0(t)|2 ∼ |cm,0(t = 0)|2e−((N−1)2/4)Γt (26)

|dm,0(t)|2 ∼ |dm,0(t = 0)|2e−(N2/4)Γt (27)

Considering the above equation in the equation (25), the
longitudinal and transverse relaxation rates of the qubit
of jth are

1

T1
∼ 1

T2
∼ ΓNα (28)

From the above, the error probability of the jth qubit at
gate time δt is

p(error) = ηj(N) = f(η∗, N) ∼ ΓNαδt ≡ η∗Nα

(29)
This phenomenon is non-local, and the population deco-
herence causes a correlation error to the whole system
with the same probability as in the above equation.
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in the super-radiant region. Here, applying the Wigner-
Weisskopf theory, it is well known that the interacting
Hamiltonian such as generalized Dicke super radiation is

Hint = −
∑
j

∑
n

ℏκn(anσ
j
+ + a†nσ

j
−) (18)

σj
z = |e >jj< e| − |g >jj< g|,

σj
+ = |e >jj< g|, σj

− = |g >jj< e| (19)

where j is qubit number and n is the mode number.
Initially, the qubit system is assumed to be superimposed
and the field is assumed to be a vacuum. At this time,
the initial state of the two coupled systems is

|Ψ(t = 0) >=

2N−1∑
m=0

cm,0|m, 0 > (20)

From the Schrödinger equation in the extended Hilbert
space of the coupled system, the time evolution is

|Ψ(t) >=
2N−1∑
m=0

cm,0(t)|e−i(Nmωa)t|m, 0 > +

∑
j

2N−1∑
m′

cm′,n(t)e
−i(Nm′ωa+νn)t|m′, 1n > (21)

For simplicity, among N qubits, let N/2 + N̄ be the
excited state and N/2 − N̄ be the ground state. The
equation of motion for the stochastic amplitude of the
point of interest in the above equation is as follows [4,5].

dcm,0

dt
= −(

Γ

2
+ δω)(

N

2
+ N̄)(

N

2
− N̄ + 1)cm,0 (22)

where Γ and δ are the single decay rate and Lam shift,
respectively. From the above, the decay of the probability

amplitude of the representative point of interest is given
as follows [4,5].

|cm,0(t)|2 ∼ |cm,0(t = 0)|2e−(N2/4)Γt (23)

The above equation is applicable to the majority of
stochastic amplitudes and it represents a feature of super-
radiance.
Since super-radiance implies the simultaneous decay of
the majority of qubits, one can next consider the non-
locality of this super-radiance and analyze how the error
probability of only certain qubits is affected by other
qubits. In order to make the features easier to see, the
initial state is set as follows.

|ψ(t = 0) >=

2N−1−1∑
m=0

cm,0|g >j ⊗|m, 0 >

+
2N−1−1∑
m=0

dm,0|e >j ⊗|m, 0 > (24)

where m corresponds to an indicater of the quantum state
of a qubit of N − 1 other than jth qubit. If the density
operator on the composit space is ρ = |ψ >< ψ|, then
the density operator of jth qubit is obtained by tracing
this density operator over a qubit fraction of N − 1. The
result is

ρj =
2N−1−1∑
m=0

|cm,0|2|g >jj< g|

+
2N−1−1∑
m=0

|dm,0|2|e >jj< e|

+
2N−1−1∑
m=0

cm,0d
∗
m,0|g >jj< e|

+
2N−1−1∑
m=0

c∗m,0dm,0|e >jj< g| (25)

In the initial state, if the qubits of j are excited, N qubits
radiate at once. On the other hand, if it is on the grand,
the qubits of N − 1 radiate at the same time. As a result.

|cm,0(t)|2 ∼ |cm,0(t = 0)|2e−((N−1)2/4)Γt (26)

|dm,0(t)|2 ∼ |dm,0(t = 0)|2e−(N2/4)Γt (27)

Considering the above equation in the equation (25), the
longitudinal and transverse relaxation rates of the qubit
of jth are

1

T1
∼ 1

T2
∼ ΓNα (28)

From the above, the error probability of the jth qubit at
gate time δt is

p(error) = ηj(N) = f(η∗, N) ∼ ΓNαδt ≡ η∗Nα

(29)
This phenomenon is non-local, and the population deco-
herence causes a correlation error to the whole system
with the same probability as in the above equation.

C. Leak from decoherence free subspace
Here we give a definition of decoherence free subspace

(DFS) [12]. In a system that interacts with a heat bath,
the evolution equation for the density operator that is
taken the partial trace with respect to the heat bath is
the Lindblad equation of the equation (8). Let the Hilbert
space of the system of quantum bits be HS and all density
operators on it be D(HS).
Definition: a decoherence free subspace : HDFS is a
subspace of HS in which all density operators ρ ∈
D(HDFS) defined in that space satisfy the following
equation.

∂ρ

∂t
=

−i

ℏ
[H, ρ] ∀t (30)

In other words, it is equivalent to the absence of the effect
of the Lindblad operator in the equation (8). The quantum
states of the N qubits coupled in this space are given by
the tensor product of the singlet state as follows.

|Ψ >DFS= (
1√
2
)N/2 ⊗N/2

j=1 (|g > |e > −|e > |g >)j

(31)
If an error occurs in one of the quantum bits, the
phenomenon in the equation (23) occurs. The decay rate
of the stochastic amplitude at this time is interpreted as
the rate at which the system leaks from the decoherence
free subspace into a large extended Hilbert space [4,5].
As a result, the leak probability is regarded as follows.

p(Leak) ∼ ΓN2δt (32)

This is also nonlinear error, because the error probability
depends on the number of qubit.

V. INFORMATION THEORETIC MODEL ANALYSIS OF
QUANTUM ERRORS

A. A model of quantum bit array structure
In the above sections, we have explained the serious

phenomena on quantum noise in quantum computer.
When a group of qubits is placed in a given environ-
ment, an increase in the number of qubits enhances the
probability of error of one of its components. Here,
we attempt to describe such quantum phenomena using
only information-theoretic concepts [13], leaving out the
physical processes. In this case, we can think of a qubit
as just a bit, and model a two-dimensional arrangement
of bits xi,j and the interaction of error factors ei,j from
the environment with the qubits as follows.



x(1,1)

⊕
e(1,1), . . . x(1,L)

⊕
e(1,L)

x(2,1)

⊕
e(2,1), . . . x(2,L)

⊕
e(2,L)

... . . .
x(L,1)

⊕
e(L,1), . . . x(L,L)

⊕
e(L,L)


 (33)

where x(i,j) is the information bit of the spatial position
(i, j) and e(i,j) is the error bit for that information bit.
Here we emphasize the fact that only the probabilistic
nature of the error is essential factor in the information
theory. In the following, we devote to analyse such issues.

B. Nonlinear and local correlation errors by recurrence
phenomena

If there is only one quantum bit, the probability of
an error occurring in that qubit is η∗. Suppose here that
Nsub1 = 5 of qubits are set in a region. Let the latent
probability of an error-induced in pairwise with the center
and one of four qubits be 0 ≤ p∗1 ≤ 1/2. In this case,
the error probability of the central qubit (j) with subset
(Nsub1) is given by the following:

ηj(Nsub1) = η∗
∑

q:even

4!

q!(4− q)!
(p∗1)

q(1− p∗1)
4−q

+(1− η∗)
∑
q:odd

4!

q!(4− q)!
(p∗1)

q(1− p∗1)
4−q

=
1

2
− 1

2
(1− 2η∗)(1− 2p∗1)

4

=
1

2
− 1

2
(1− 2η∗)Λ1 (34)

where Λ1 = (1 − 2p∗1). From the recurrence phenom-
ena, when four new qubits are set, the probability of
an error for a single qubit in the center takes the initial
probability given by the equation (34) from η∗. Here we
set η(Nsub1) = η∗1 , and p1 is replaced by p2. Then we
get the following

ηj(Nsub2) = η∗1
∑

q:even

4!

q!(4− q)!
(p∗2)

q(1− p∗2)
4−q

+(1− η∗1)
∑
q:odd

4!

q!(4− q)!
(p∗2)

q(1− p∗2)
4−q

=
1

2
− 1

2
(1− 2η∗1)(1− 2p∗2)

4 (35)

From the equation (34) and Λ2 = (1− 2p∗2)
4, the above

becomes as follows:

ηj(Nsub2) =
1

2
− 1

2
(1− 2η∗)Λ1Λ2 (36)

In addition, if we substitute the initial probability into the
same formula as the above formula, we get the following

p(error) = ηj(NsubK) =
1

2
− 1

2
(1− 2η∗)

K∏
l=1

Λl (37)

where Λl = (1− 2p∗l )
4, and l = {1, 2, . . . ,K}.

Thus, as the number of qubits increases, the error
probability of each qubit alone increases. Thus this in-
formation theoretic modeling can visualize the following
physical phenomena. Despite the nature of the quantum
noise from the environment is being invariant, the proba-
bility of its own error increases when qubits are clustered
together. As a special case, we have

p(error) = ηj(NsubK) = η∗ p∗l = 0 ∀l (38)

p(error) = ηj(NsubK) → 1

2
p∗l �= 0, N > 1(39)

In the model shown here, if the propagation of the error
does not happen to occur in other qubits, it is a simple
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nonlinear independent error, and if the error propagates
to all qubits connected by quantum correlations between
neighboring qubits, it is a nonlinear and local correlation
error.

C. Nonlinear and non-local correlation errors by collec-
tive decoherence

Let us discuss first the nonlinear effect. When the jth
qubit in some space interacts with one other qubit, let
the collapse rate of jth qubit due to the effect of that
interaction be χj,k. The error probability of jth qubit due
to its interaction is a function of χj,k:

p(error) = f(χj,k) (40)

Then the collapse rate of the jth qubit due to the
interaction between the jth and all the existing qubits
is the sum of each collapse rate as follows:

χj(N) =

N−1∑
k=1

χj,k (41)

In this case, the error probability of a single jth qubit in
a N qubits system is

p(error) = ηj(N) = f(

N−1∑
k=1

χj,k) = f(χj(N)) (42)

The specific form of the above equation depends on
physical phenomena, but it can be approximated and
considered in the following form.

p(error) = ηj(N) ∼= η∗Nα (43)

The above model gives a different nonlinear effect in the
error performance of that in the former section. In the
above discussins, we have asuumed that the whole qubits
have a correlation based on the collective decoherence
theory such as Dicke super radiation.

Then we have the clusterd noise effect by such col-
lective decoherence, and it stimulates the burst error, in
which the whole qubits are destroyed simultaneously with
the following probability from the equation (43):

Pe(N) = ηj(N) ∼= η∗Nα (44)

Thus, from our formulation, it is clear that the conven-
tional quantum error correction code cannot hold the
function of error correction for these error phenomena.

VI. COUNTERMEASURE RESEARCH

We have explained new quantum noise phenomena
which cause a serious error in quantum computers. In
general, these quantum error cannot be eliminated by
the conventional design theory. In order to cope with
the quantum errors described in this paper, or to break
this situation, one way is to establish a new way to
physically suppress such error, and to further develop
the conventional quantum error correction theory [14,15]
based on the quantum noise analysis. Both are extremely
challenging problems.

VII. CONCLUSION

The amazing capabilities of quantum computers are
made possible by making the best use of the features
of quantum mechanics. However, in real-world environ-
ments, performance limits are caused by noise, but the
properties of that noise have been treated as a quantum
version of classical noise. If the computational process
makes use of all quantum effects, then we should also as-
sume noise with all quantum effects. However, so far the
very simple quantum noise such as Pauli noise has been
modeled. In this paper, we have clarified how to model
all possible quantum noise in an information-theoretic
manner. Especialy, the nonlinear error by the recurrence
effect of entanglement and the collective decoherence
have been analyzed, which has no correspondence in the
classical computers. In the next paper, we will investi-
gate a synchronization quantum error based on Belavkin
equation [11] or quantum van der Pole equation [16][17]
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to its interaction is a function of χj,k:

p(error) = f(χj,k) (40)

Then the collapse rate of the jth qubit due to the
interaction between the jth and all the existing qubits
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