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Abstract—A simple detection scheme for a particular pair
of the quasi-Bell states was proposed in the literature [8].
This detection scheme consists of a half beam splitter and
photon counters and can realize error-free detection when
the states are pure [7]. In this paper, the performance of
this detection scheme in a lossy environment is analyzed.

I. INTRODUCTION

The term “entangled coherent state” was coined by
Sanders [1], [2]. Nowadays, a family of entangled co-
herent states is widely recognized as a potential resource
for quantum information processing [3]. The purpose of
our research is to develop and improve the coherent state-
based quantum information and communication technolo-
gies. In this paper, we focus on the so-called quasi-Bell
states of entangled coherent states.

The quasi-Bell states were introduced in the literature
[4]. The first remarkable application of the quasi-Bell
states is found in the study of quantum teleportation
[5], [6]. Through the study of quantum reading, Hirota
pointed out that a particular pair of the quasi-Bell states,
|α⟩|±α⟩ − |−α⟩|∓α⟩, can provide error-free detection
[7]. To implement such error-free detection, a simple
detection scheme was proposed in the literature [8]. The
proposed detection scheme is shown in Fig.1, which
consists of a half beam splitter (HBS) and two pho-
ton counters (PCs). In the literature [8], this scheme
was investigated only in the noiseless case, while the
corresponding optimal quantum receiver (the minimax
quantum receiver) was investigated not only in the noise-
less case but also in the case of a lossy environment.
Therefore, the analysis of the proposed detection scheme
in a lossy environment is still remaining. In this paper,
we analyze such a case.

II. DETECTION BY HBS AND PCS

Suppose an entangled coherent state

|H⟩AB = N
(
|α⟩A|α⟩B − |−α⟩A|−α⟩B

)
(1)

is prepared as a resource for information pro-
cessing, where N = 1/

√
2(1− κ2) and κ =

⟨α|−α⟩ = exp[−2|α|2]. This state can be generated
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Fig. 1. A detection scheme [8]

by a cat state |cat⟩ = N (|
√
2α⟩A − |−

√
2α⟩A)

and a HBS characterized [10] by |α′⟩A|β′⟩B →
|(α′ + β′)/

√
2⟩A|(α′ − β′)/

√
2⟩B. The basic idea of this

state generation technique was introduced by Yurke and
Stoler [9].

For the noiseless case, one can consider the following
binary states by phase-encoding for light in mode B of
the state |H⟩AB:

|signal 0⟩AB = N (|α⟩A|α⟩B − |−α⟩A|−α⟩B) , (2)
|signal 1⟩AB = N (|α⟩A|−α⟩B − |−α⟩A|α⟩B) . (3)

These two states — which are members of the quasi-Bell
states and form a binary phase-encoded signal —- are
orthogonal, and hence the average probability of detection
error can be zero [7].

Here we suppose optical paths between the light source
and the detector are placed in a lossy environment. As
shown in Fig. 1, output lights from the light source are
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traveling through the optical paths characterized by the
loss parameters ϵA and ϵB, respectively. When the light
of mode B reached to the modulator, it is phase-encoded
in accordance with classical data bit 0/1, while the light
of mode A is reflected at the mirror. After that, each light
is traveling through a lossy path having loss parameter ϵ′A
or ϵ′B towards the detectior. Therefore, the total loss of
each path between the light source to the detector is given
by ηA = ϵAϵ

′
A or ηB = ϵBϵ

′
B. Then the possible signal

states in front of the detector are expressed as follows
[8]:

ρ̂signal
0

= N 2

× |α√ηA⟩A⟨α
√
ηA| ⊗ |α√ηB⟩B⟨α

√
ηB|

−N 2κ1−ηAκ1−ηB

× |α√ηA⟩A⟨−α
√
ηA| ⊗ |α√ηB⟩B⟨−α

√
ηB|

−N 2κ1−ηAκ1−ηB

× |−α
√
ηA⟩A⟨α

√
ηA| ⊗ |−α

√
ηB⟩B⟨α

√
ηB|

+N 2

× |−α
√
ηA⟩A⟨−α

√
ηA| ⊗ |−α

√
ηB⟩B⟨−α

√
ηB|

(4)

and

ρ̂signal
1

= N 2

× |α√ηA⟩A⟨α
√
ηA| ⊗ |−α

√
ηB⟩B⟨−α

√
ηB|

−N 2κ1−ηAκ1−ηB

× |α√ηA⟩A⟨−α
√
ηA| ⊗ |−α

√
ηB⟩B⟨α

√
ηB|

−N 2κ1−ηAκ1−ηB

× |−α
√
ηA⟩A⟨α

√
ηA| ⊗ |α√ηB⟩B⟨−α

√
ηB|

+N 2

× |−α
√
ηA⟩A⟨−α

√
ηA| ⊗ |α√ηB⟩B⟨α

√
ηB|.

(5)

For each state, the average numbers of signal photons of
each mode are given by

⟨n̂A⟩|signal,0 = ⟨n̂A⟩|signal,1
= 2N 2|α|2ηA(1 + κ2) (6)

and

⟨n̂B⟩|signal,0 = ⟨n̂B⟩|signal,1
= 2N 2|α|2ηB(1 + κ2). (7)

When the minimax quantum receiver is employed for
discriminating the signal states, the average probability
of error is given by [8]

P̄minmax
e =

1

2

(
1−

√
1− κ2ηA

1− κ2

√
1− κ2ηB

1− κ2

)
.(8)

In particular, when ηA = ηB, it becomes [8]

P̄minmax
e

∣∣
ηA=ηB

=
κ2ηA − κ2

2(1− κ2)
. (9)

III. PHOTON DISTRIBUTION AT PCS

Here we suppose the proposed detection scheme, which
is illustrated in Fig. 1, is employed for discriminating the
signal states. In this detection scheme, a two-mode light
in the state ρ̂signal0 or ρ̂signal1 is entering the HBS of the
detector first. The possible states that appear after passing
through the HBS of the detector and in front of the PCs
of the detector are given as follows:

ρ̂0 = N 2|σ⟩A⟨σ| ⊗ |τ⟩B⟨τ |
−N 2κ1−ηAκ1−ηB |σ⟩A⟨−σ| ⊗ |τ⟩B⟨−τ |
−N 2κ1−ηAκ1−ηB |−σ⟩A⟨σ| ⊗ |−τ⟩B⟨τ |
+N 2|−σ⟩A⟨−σ| ⊗ |−τ⟩B⟨−τ |

(10)

and

ρ̂1 = N 2|τ⟩A⟨τ | ⊗ |σ⟩B⟨σ|
−N 2κ1−ηAκ1−ηB |τ⟩A⟨−τ | ⊗ |σ⟩B⟨−σ|
−N 2κ1−ηAκ1−ηB |−τ⟩A⟨τ | ⊗ |−σ⟩B⟨σ|
+N 2|−τ⟩A⟨−τ | ⊗ |−σ⟩B⟨−σ|,

(11)

where the complex amplitudes σ and τ of component
coherent states are

σ =
1√
2
α(

√
ηA +

√
ηB), (12)

τ =
1√
2
α(

√
ηA −√

ηB). (13)

The average numbers of photons at PCs are respectively
given by

⟨n̂A⟩|for ρ̂0
= ⟨n̂B⟩|for ρ̂1

= N 2|α|2 (√ηA +
√
ηB)

2
(1 + κ2)

(14)

and

⟨n̂B⟩|for ρ̂0
= ⟨n̂A⟩|for ρ̂1

= N 2|α|2 (√ηA −√
ηB)

2
(1 + κ2),

(15)

and the photon distributions at PCs are respectively given
by

P (m,n|0) = A⟨m|B⟨n|ρ̂0|m⟩A|n⟩B
= 2N 2 exp[−R]

×
{
1− κ1−ηAκ1−ηB(−1)m(−1)n

}

×Sm

m!
· T

n

n!
(16)
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1√
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√
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ηB). (13)

The average numbers of photons at PCs are respectively
given by

⟨n̂A⟩|for ρ̂0
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= N 2|α|2 (√ηA +
√
ηB)
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(14)
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and the photon distributions at PCs are respectively given
by

P (m,n|0) = A⟨m|B⟨n|ρ̂0|m⟩A|n⟩B
= 2N 2 exp[−R]

×
{
1− κ1−ηAκ1−ηB(−1)m(−1)n

}

×Sm

m!
· T

n

n!
(16)

and

P (m,n|1) = A⟨m|B⟨n|ρ̂1|m⟩A|n⟩B
= 2N 2 exp[−R]

×
{
1− κ1−ηAκ1−ηB(−1)m(−1)n

}

×Tm

m!
· S

n

n!
, (17)

where

R = |α|2(ηA + ηB), (18)

S =
1

2
|α|2

(√
ηA +

√
ηB

)2
, (19)

T =
1

2
|α|2

(√
ηA −√

ηB
)2
, (20)

and where the convention 00 = 1 has been used.
When ηA = ηB, the two distributions of Eqs.(16) and

(17) overlap only at the case m = n = 0. This is
illustrated in Fig. 2. When ηA ̸= ηB, the overlap of the
two photon distributions is spread over all region. This is
illustrated in Fig. 3, where negligibly small probabilities
(< 10−12) are omitted.

IV. PERFORMANCE ANALYSIS

First, we assume ηA = ηB. In this case, the photon
distributions are reduced to the following forms.

P (m,n|0)|ηA=ηB

=




κ2ηA − κ2(−1)m

κηA(1− κ2)
× Sm

m!
, for n = 0;

0, for n ̸= 0
(21)

and

P (m,n|1)|ηA=ηB

=




κ2ηA − κ2(−1)n

κηA(1− κ2)
× Sn

n!
, for m = 0;

0, for m ̸= 0.
(22)

Since the two distributions overlap only at the case m =
n = 0, the average probability of error is given by

P̄e

∣∣
ηA=ηB

=
1

κηA
× κ2ηA − κ2

2(1− κ2)
, (23)

where the classical minimax criterion has been used for
determining the decision regions. A quantitative behavior
of the average probability of error for the case of ηA =
ηB is shown in Fig. 4. Comparing P̄e of Eq. (23) with
P̄minimax
e of Eq. (9), we see that P̄e is rapidly degraded in

accordance with loss parameter ηA bacause of the factor
1/κηA .

Next, we assume ηA ̸= ηB. In this case, the overlap of
the two disctributions is spread to all region. Note that
P (m,n|0) and P (m,n|1) are symmetric with respect to
m and n, that is, P (m,n|0) = P (n,m|1). The likelihood
of the two distributions is

P (m,n|1)
P (m,n|0)

∣∣∣∣
ηA ̸=ηB

=

(√
ηA −√

ηB√
ηA +

√
ηB

)2(m−n)

, (24)

and hence the average probability of error is given by

P̄e

∣∣
ηA ̸=ηB

=
∑
n

∑
m<n

P (m,n|0) + 1

2

∑
n

P (n, n|0),

(25)
where the relation (

√
ηA − √

ηB)
2 ≤ (

√
ηA +

√
ηB)

2

has been used for determining the threshold line in
accordance with the classical minimax criterion. Figure 5
shows a typical numerical behavior of P̄e, together with
the corresponging error probability by the minimax quan-
tum receiver. From this, we see that the performance is
affected by the difference of loss parameters,

√
ηA−

√
ηB.

A large difference of the loss paremeters degrades the
performance.

V. CONCLUSION

A simple detection scheme proposed in the literature
[8] for the binary phase-encoded quasi-Bell state signal
was analyzed in the case of a lossy environment. From
the performance analysis above, it was clarified that the
proposed detection scheme is fairly sensitive to the loss
parameters of optical paths from the light source to the
detector, despite that it can realize error-free detection for
the noiseless case.

In the sense of the minimum error criterion, the
proposed scheme does not indicate better performance.
However, it shows an interesting property when the loss
parameters of the optical paths are identical. In that case,
the photon distributions overlap only at the outcome
n = m = 0. This property may offer other useful
applications of the proposed detection scheme, because it
can be regarded as error-free detection by discarding the
overlap outcome. We will discuss this problem elsewhere.
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Fig. 2. [color online] P (m,n|0) — blue — and P (m,n|1) — orange
— at α = 2. (i) ηA = ηB = 1.0. (ii) ηA = ηB = 0.9. (iii) ηA =
ηB = 0.5. (iv) ηA = ηB = 0.1.
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Fig. 3. [color online] P (m,n|0) — blue — and P (m,n|1) — orange
— at α = 2. (i) ηA = 0.6 and ηB = 0.4. (ii) ηA = 0.7 and ηB = 0.3.
(iii) ηA = 0.8 and ηB = 0.2. (iv) ηA = 0.9 and ηB = 0.1.
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Fig. 2. [color online] P (m,n|0) — blue — and P (m,n|1) — orange
— at α = 2. (i) ηA = ηB = 1.0. (ii) ηA = ηB = 0.9. (iii) ηA =
ηB = 0.5. (iv) ηA = ηB = 0.1.
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Fig. 3. [color online] P (m,n|0) — blue — and P (m,n|1) — orange
— at α = 2. (i) ηA = 0.6 and ηB = 0.4. (ii) ηA = 0.7 and ηB = 0.3.
(iii) ηA = 0.8 and ηB = 0.2. (iv) ηA = 0.9 and ηB = 0.1.

(i)

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

Avg Num Photon

lo
g1
0(
Pe

)

(ii)

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

Avg Num Photon

lo
g1
0(
Pe

)

(iii)

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

Avg Num Photon

lo
g1
0(
Pe

)

(iv)

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

Avg Num Photon

lo
g1
0(
Pe

)

(v)

Fig. 4. [color online] P̄e versus n̄A + n̄B when ηA = ηB. Red line
stands for P̄e of Eq. (23) and blue dashed line for P̄minimax

e of Eq.
(8). The average number of photons is given by Eqs. (14) and (15). (i)
ηA = ηB = 0.999. (ii) ηA = ηB = 0.99. (iii) ηA = ηB = 0.9. (iv)
ηA = ηB = 0.5. (v) ηA = ηB = 0.1.
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(iv)

Fig. 5. [color online] P̄e versus n̄A + n̄B when ηA ̸= ηB. Red line
stands for P̄e of Eq. (25) and blue dashed line for P̄minimax

e of Eq.
(8). (i) ηA = 0.6 and ηB = 0.4. (ii) ηA = 0.7 and ηB = 0.3. (iii)
ηA = 0.8 and ηB = 0.2. (iv) ηA = 0.9 and ηB = 0.1.
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