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Abstract—A quantum tester is a powerful tool for formu-
lating quantum process discrimination problems, where a
process is a generalization of a quantum channel. The goal
of this paper is to introduce the basics of process discrim-
ination problems using quantum testers. For an intuitive
illustration, we will often use diagrammatic representations.

I. Introduction

Discrimination of quantum channels is a fundamental
problem in the field of quantum information theory. The
aim of this work is to distinguish between a given finite
set of known quantum channels as well as possible. Quan-
tum state discrimination, which is its special case, has
been extensively investigated [1]–[14], starting with the
seminal works of Helstrom, Holevo, and Yuen et al. [15]–
[17]. A more general quantum channel discrimination
problem has also been investigated [18]–[30]; however,
since it is usually harder to solve than a state discrimi-
nation problem, the properties of optimal discrimination
are not known except for some special cases. In the case
in which the channel can be used several times, optimal
discrimination may be adaptive, which is usually very
difficult to handle.

It is known that a quantum tester is a useful tool
for expressing quantum channel discrimination problems
mathematically and diagrammatically (e.g., [31], [32]).
A quantum tester can be interpreted as an extension of a
quantum measurement. In a quantum state discrimination
problem, the task is to optimize a measurement; similarly,
in a quantum channel discrimination problem, the task is
to optimize a tester [33]. Any discrimination allowed by
quantum theory, including the adaptive one, can be repre-
sented by a tester. In this paper, we deal with the discrim-
ination of quantum processes, which are generalizations
of quantum channels. Channels (with/without memory),
subchannels, and processes consisting of multiple time
steps are all special cases of processes.

Process discrimination problems can be mathematically
described by using the Choi-Jamiołkowski representa-
tions of processes and testers. However, such represen-
tations may actually suffer from the lack of an intuitive
grasp of the operational implications. In contrast, the
diagrammatic representations of them enable us to get

some intuitive insight almost without loss of represen-
tation power. In this paper, we introduce the basics
of process discrimination problems using diagrammatic
representations, which will help the readers in a better
understanding of the properties of optimal testers derived,
e.g., in Refs. [33], [34].

II. Quantum processes and testers

A. Preliminaries

First, we will give some notations. R+ and C denote,
respectively, the sets of all nonnegative real numbers
and complex numbers. Let NV be the dimension of a
system (i.e., a complex Hilbert space) V . In this paper,
we restrict our attention to finite-dimensional systems.
A one-dimensional system is identified with C. PosV

denotes the set of all positive semidefinite matrices on
V . Also, DenV stand for the set of all density matrices
(i.e., positive semidefinite matrices with unit trace) on V .
A positive semidefinite matrix is called pure if it has rank
one. Pos(V,W) and Chn(V,W) stand for, respectively, the
sets of all completely positive (CP) maps and all trace-
preserving CP maps from PosV to PosW . By abuse of no-
tation, we will assume Chn(C,V) = Chn(V,C) = DenV ,
Pos(C,V) = Pos(V,C) = PosV , and PosC = R+. Let IV

and V be, respectively, the identity maps on V and PosV .
Each single-step process is described by a CP map.

B. Diagrammatic representations

We attempt to provide an intuitive understanding of an
operational interpretation by using diagrammatic repre-
sentations. For details, we refer to the work of Coecke,
Abramsky, and others (see, e.g., [35]–[37]; one can also
see [38], [39]).

A quantum process is depicted by a combination of
single-step processes. Each single-step process has input
and output systems. A single-step process is called a state
if its input system is C. Similarly, a single-step process
is called an effect if its output system is C. A scalar
is a single-step process on C. In diagrammatic terms, a
single-step process f ∈ Pos(V,W), a state ρ ∈ Pos(C,V),
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an effect e ∈ Pos(V,C), and a scalar p ∈ R+ are depicted
as

f ρ, ,
e p
,V

W
V

V .

Single-step processes can be connected sequentially or
in parallel. The sequential composition of f ∈ Pos(V1,V2)
and g ∈ Pos(V2,V3) is also a process, denoted as g ◦ f ∈
Pos(V1,V3). Similarly, the parallel composition of f ∈
Pos(V1,V2) and h ∈ Pos(W1,W2) is a process, denoted as
f ⊗ h ∈ Pos(V1 ⊗W1,V2 ⊗W2). For example, for any f1 ∈
Pos(V1,V2), f2 ∈ Pos(V2,V3), g1 ∈ Pos(W1,W2), and
g2 ∈ Pos(W2,W3), ( f2⊗g2)◦ ( f1⊗g1) = ( f2 ◦ f1)⊗ (g2 ◦g1)
is diagrammatically depicted by

f1

f2

g1

g2
V2

V1

V3

W2

W1

W3

.

1) Discarding effects: The effect represented by IV ∈
Pos(V,C)1is called a discarding effect, which is denoted
by V , or simply . This is diagrammatically depicted
as

V .

V intuitively means that one performs a measurement
on system V and then discards its results.

2) Channels: A single-step process f ∈ Pos(V,W) is
called a channel if

=f
V

W
V

holds, which is equivalently written as f ◦ ρ ∈ ChnW for
any ρ ∈ ChnV . f can be expressed by a trace-preserving
CP map. Any normalized state (i.e., any state described
by a density matrix) can be regarded as a special case of
a channel.

3) Measurements: A quantum measurement Π on V
can be represented by a set of effects {Πm ∈ PosV }Mm=1
satisfying

∑M
m=1 Πm = V , which is often called a

positive operator-valued measure (POVM). In this paper,
M often denotes the number of elements of Π. Π is also
represented by

Π �
m=1

M

Πm

m
=

V

C
C

V ,

where C denotes a classical system, which is depicted as
the dotted line, and the state m denotes |m〉 〈m| ∈ DenC

1This can also be represented by the linear map PosV � ρ �→ Tr ρ ∈
R+.

({|1〉 , . . . , |M〉} is the standard orthonormal basis of C).
Each effect Πm, which is called a POVM element, satisfies

Πm
m

=
Π
V

C
V

.

One can easily verify

Π �
m=1

M

Πm

m
V

C
C

V

= �
m=1

M Πm
V

= = V

,

i.e., Π ∈ Chn(V,C).

C. Quantum processes

Let us consider a process, denoted by c, consisting of T
single-step processes {c(t) ∈ Pos(W ′t−1 ⊗ Vt,W′t ⊗Wt)}Tt=1,
where T is a natural number and W ′0 = W′T = C. For
example, in the case of T = 2, c is diagrammatically
depicted by

W1 W'1

V2
c(2)

c(1)
W1

V2

W2 W2

=

V1 V1

c

, (1)

where W′1, . . . ,W
′
T−1 are the internal systems of process

c. We will mathematically express this process c by

c � c(T ) ⊛ c(T−1) ⊛ · · ·⊛ c(1), (2)

where ⊛ denotes the connection of processes, which is
called the link product [31]. Note that only two systems
with the same label can be connected. For any t and t′

with t < t′, c(t′) is in the causal future of c(t), i.e., c(t)

can signal to c(t′) but not vice versa. A simple example
of a process is c = Λ⊛Λ, with Λ ∈ Chn(V,W), where
V1 = V2 = V , W1 = W2 = W, and W′1 = C. This process
is depicted as

ΛΛ

ΛΛ

W

V

W

V

W

V

W

V

=c

.

Let

⊛T
t=1 Pos(Vt,Wt) � Pos(VT ,WT )⊛ · · ·⊛Pos(V1,W1)

be the set of all quantum processes expressed in the form
of Eq. (2).

A process c is called a quantum comb if it is expressed
in the form of Eq. (2) with channels c(1), . . . , c(T ). Let
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an effect e ∈ Pos(V,C), and a scalar p ∈ R+ are depicted
as

f ρ, ,
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W
V
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Λ

Λ

W

V

W

V

W

V

W

V

=c

.

Let

⊛T
t=1 Pos(Vt,Wt) � Pos(VT ,WT )⊛ · · ·⊛Pos(V1,W1)

be the set of all quantum processes expressed in the form
of Eq. (2).

A process c is called a quantum comb if it is expressed
in the form of Eq. (2) with channels c(1), . . . , c(T ). Let

⊛T
t=1 Chn(Vt,Wt) be the set of all quantum combs ex-

pressed in the form of Eq. (2). In the case of T = 2, for
any comb c, there exists c1 ∈ Chn(V1,W1) satisfying

W1

V2

W2

V1

c

V2

c1
W1

V1

=

.

Indeed, we can easily check it by letting

W'1
c(1)

W1

V1

c1
W1

V1
=

and using Eq. (1). The converse also holds [31]. Similarly,
in the case of T = 3, c ∈ ⊛3

t=1Pos(Vt,Wt) is a comb if
and only if there exists c2 ∈ Chn(V1,W1)⊛Chn(V2,W2)
satisfying

W3

c

V3

=

W1

V2

V1

c2
W1

V2

W2

V1

V3

W2

c

.

c1 and c2 are uniquely determined by c. The discussion
can be easily extended to the case of T ≥ 4.

D. Quantum testers

A quantum comb Φ ∈ ⊛T
t=0 Chn(Wt,Vt+1) with W0 �

C and VT+1 � C is called a tester if it is expressed in the
form

Φ � Π⊛σT ⊛σT−1 ⊛ · · ·⊛σ1, (3)

where, for each t ∈ {1, . . . , T }, σt ∈ Chn(Wt−1 ⊗V ′t−1,Vt ⊗
V ′t ) is a channel, Π ∈ Chn(WT ⊗V ′T ,C) is a measurement,
and W0 = V ′0 = C. Let Tester(VT ,WT ; . . . ; V1,W1) (or
simply Tester) be the set of all testers expressed by
Eq. (3). In the case of T = 2, Φ of Eq. (3) can be depicted
by

V1

W1

V'1

V2 V'2

σ1

σ2

Π

=

C

W1

V2

W2

V1

C

Φ

W2

. (4)

For each tester Φ and m ∈ {1, . . . ,M}, the process Φm

defined as

W1

V2

V1

Φm =
W1

V2

V1

C

Φ

m

W2 W2

(5)

is called a tester element of Φ. A tester Φ is uniquely
determined by a set of its tester elements {Φm}Mm=1. A
tester can be regarded as an extension of a POVM
(recall that each POVM Π is uniquely determined by a
set of POVM elements {Πm}Mm=1). We assume, without
loss of generality, that the classical system C satisfies
NC = M. Since a tester Φ is a comb, there exists a
normalized state Φ(1) ∈ DenV1 and a process Φ(2) ∈
Pos(W1,V2)⊛Pos(C,V1) satisfying

=
W1

V2

W2

V1

C

Φ
W1

V2

W2

V1
,

V2

V1

W1

Φ(2)

W1

V1

=Φ(2)

Φ(1)

.

The second equation means that Φ(2) is also a comb.

E. Choi-Jamiołkowski representation
Quantum processes and testers can be conve-

niently mathematically expressed in the so-called Choi-
Jamiołkowski representations. We here give a brief
overview of it.

Let us consider the pure state ∪V ∈ PosV⊗V and the
pure effect ∩V ∈ PosV⊗V both of which are expressed by
|Ψ〉V 〈Ψ|V 2, where

|Ψ〉V �
NV∑
i=1

|i〉V ⊗ |i〉V ∈ V ⊗ V

and {|i〉V }NV
i=1 is the standard basis of system V . One can

easily verify

( V ⊗ ∩V ) ◦ (∪V ⊗ V ) = V = (∩V ⊗ V ) ◦ ( V ⊗ ∪V ),

or, diagrammatically,

= =
V

V

V

. (6)

2∩V can also be represented by the linear map PosV⊗V � ρ �→ Tr(ρ ·
|Ψ〉 〈Ψ|) = 〈Ψ|ρ|Ψ〉 ∈ R+.
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Using ∪V (or ∩V ), any process can be expressed by a
state (or an effect). Let us consider the map C that sends
a process c ∈ Pos(V1,W1)⊛Pos(V2,W2) expressed by
Eq. (1) to the state Cc ∈ PosW2⊗V2⊗W1⊗V1 defined by

V1 =
W1

V2

W2

V1

cW1V2W2

Cc

. (7)

C is an isomorphism from Pos(V1,W1)⊛Pos(V2,W2) to
PosW2⊗V2⊗W1⊗V1 , or more generally from ⊛T

t=1 Pos(Vt,Wt)
to PosWT⊗VT⊗···⊗W1⊗V1 . Let us also consider the map C̃
that sends a tester element Φm expressed by Eq. (5) to
the effect C̃Φm ∈ PosW2⊗V2⊗W1⊗V1 defined by

=
W1

V2

W2

V1

V1W1V2W2

C〜Φm Φm

. (8)

C̃ is also an isomorphism. It is easily seen from Eq. (6)
that

W1

V2

W2

V1

=c Φm V1W1V2W2

Cc

C〜Φm

holds. The right-hand side can be mathematically ex-
pressed by Tr(C̃Φm Cc). These maps are useful tools to
mathematically represent a process as a positive semidef-
inite matrix.

It follows from Eq. (7) that a process c ∈
⊛T

t=1 Pos(Vt,Wt) is a comb [i.e., c ∈ ⊛T
t=1 Chn(Vt,Wt)] if

and only if there exists a comb cT−1 ∈ ⊛T−1
t=1 Chn(Vt,Wt)

such that

TrWT Cc = IVT ⊗ CcT−1 . (9)

By recursively applying Eq. (9), we see that c ∈
⊛T

t=1 Pos(Vt,Wt) is a comb if and only if there exists
{ct ∈ ⊛t

t′=1Pos(Vt′ ,Wt′ )}T−1
t=1 such that

TrW1 Cc1 = IV1 ,

TrWt Cct = IVt ⊗ Cct−1 , ∀t ∈ {2, . . . , T − 1},
TrWT Cc = IVT ⊗ CcT−1 .

Similarly, it follows from Eq. (8) that a process Φ ∈
⊛T

t=0 Pos(Wt,Vt+1) with W0 � C and VT+1 � C is a
tester (i.e., Φ ∈ Tester) if and only if there exists a comb
Φ′ ∈ ⊛T−1

t=0 Chn(Wt,Vt+1) such that

M∑
m=1

C̃Φm = IC ⊗ C̃Φ′ ,

where Φm is defined by Eq. (5).

III. Process discrimination problems

A. Formulation

Let us consider the problem of discriminating M
quantum processes c1, . . . , cM ∈ ⊛T

t=1 Pos(Vt,Wt) using
a quantum tester. To simplify the discussion, assume that
we want to maximize the cost function given by

W1

V2

W2

V1

cm Φm�
m=1

M
P(Φ) =

, (10)

where Φ is a tester. The problem is formulated by the
following optimization problem:

maximize P(Φ)
subject to Φ ∈ Tester. (P)

A simple example of this problem is to find a tester that
maximizes the average success probability of discriminat-
ing M quantum channels Λ1, . . . ,ΛM ∈ Chn(V,W). Let
pm ∈ R+ be the prior probability of the channel Λm. In
the case in which two evaluations are made, the average
success probability of Φ is expressed by Eq. (10) with
Vt � V , Wt � W, and

W

V

W

V

W

V

W

V
cm pm

Λm

Λm

=

.

Similarly, if T evaluations are allowed, then the average
success probability is expressed as in Eq. (10) with
cm � pmΛ

⊛ T
m ∈ ⊛T

t=1 Pos(V,W). Note that there exist at
least several important process discrimination problems
that cannot be expressed in the form of Problem (P).
To overcome this limitation, one can consider a more
general setting (see [34]), in which case the diagrammatic
representation described in this paper is also useful.
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following optimization problem:
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V

W

V

W

V

W
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.

Similarly, if T evaluations are allowed, then the average
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It is worth noting that P(Φ) can also be expressed by
[39]

W1

V2

W2

V1

c ΦP(Φ) =

,

where

W1

V2

W2

V1

c =
W1

V2

W2

V1

cm�
m=1

M

m
.

B. Special types of testers

Any tester Φ allowed by quantum theory can be
expressed as in Eq. (4). Using this expression, we can
depict the connection of cm and Φ as

V1

W1

V'1

V2 V'2

σ1

σ2

Π
C

W2

cm

. (11)

For a better understanding, let us consider two special
types of quantum testers. The first type is discrimination
without entanglement between the input and ancillary
systems, which can be diagrammatically represented in
the form

W1

V2
σ2

Π
C

W2

cm

V1 C1
σ1

C2

.

This can be regarded as a special case of Eq. (11) in
which two systems C1 � V ′1 and C2 � V ′2 are classical.
This discrimination can be adaptive; indeed, the state of
W1 may be used to adaptively control the state of V2. The

second type is nonadaptive discrimination (but unlimited
entanglement is available), which can be depicted in the
form

V1

W1

V2

Π
C

W2

σ1

σ2

V''1

cm

.

This is a special case of Eq. (11) in which V ′1 = V2 ⊗V ′′1 ,
V ′2 = W1 ⊗ V ′′1 , and σ2 = ×W1,V2 ⊗ V ′′1 hold, where ×V,W

is the process that swaps two systems V and W.

C. Dual problems

Assume that Problem (P) is given and let us consider
the following optimization problem:

minimize D(χ)
subject to χ ∈

⊗T
t=1 PosWt⊗Vt ,

χ ≥ cm (∀m ∈ {1, . . . ,M})
(DP)

where χ ≥ cm denotes Cχ ≥ Ccm (i.e., Cχ−Ccm is positive
semidefinite) and

W1

V2

W2

V1

χ Φm�
m=1

M
D(χ) = max

Φ ∊ Tester

.

Let Φ and χ be, respectively, feasible solutions to Prob-
lems (P) and (DP); then, one can easily see that

W1

V2

W2

V1

χ Φm�
m=1

M
D(χ)

W1

V2

W2

V1

cm Φm�
m=1

M

≤ ≤

P(Φ) =

27



always holds. This implies that the optimal value of
Problem (P) is upper bounded by that of Problem (DP).
Using the Choi-Jamiołkowski representation of Φm (i.e.,
C̃Φm ), we can reformulate Problem (P) as a semidefinite
programming problem. It follows that Problem (DP) is
its dual problem and the strong duality holds (for details,
see [34]). We can also derive that there exists an optimal
solution to Problem (DP) that is proportional to some
quantum comb. Note that Chiribella [33] derived another
type of dual problem, in which the solution is restricted
to be proportional to some comb. Problem (DP) can
often be used to investigate the properties of optimal
discrimination [34].

IV. Conclusion

We have shown a diagrammatic representation of quan-
tum process discrimination problems, which give us an
intuitive understanding of quantum processes and testers.
A quantum tester can represent any kind of discrimination
permitted by quantum theory, including the adaptive one.
The problem of finding an optimal tester for process
discrimination and its dual problem were outlined. The
diagrammatic approach provides an insightful operational
interpretation for process discrimination.
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