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Abstract—We compute the random coding bound for
a continuous classical-quantum channel with unsqueezed
Gaussian states numerically. In addition we compare it
with that of discrete classical-quantum channel with PSK
coherent states under the same energy constraint.

I. INTRODUCTION

The reliability function performs an important role in
the classical-quantum channel coding theorem. It shows
the speed of the exponential decay of the error probability
at rates R below the capacity as the code length goes to
infinity. The reliability function of the discrete classical-
quantum channel was studied by Holevo and Burnashev
[1]. On the analogy from the classical case, they defined
the random coding bound and the expurgated bound based
on quantum channel coding and proved that these give
lower bounds for the reliability function truly in the
pure state case [1]. Then Holevo proved the expurgated
bound also holds in the mixed state case [5], while the
random coding bound for mixed states is yet to be proved.
Moreover, he extended these results to a continuous
channel with constrained inputs.

The computation of lower bounds for the reliability
function is itself a quite interesting and nontrivial prob-
lem, which involves optimization with respect to an a
priori probability distribution and so on. Kato derived
the optimal distributions of the random coding bound,
the expurgated bound and the zero-rate reliability function
for M-ary PSK coherent state signals analytically [6]. On
the other hand, lower bounds of the reliability function
of continuous classical-quantum channels with Gaussian
states were studied by Holevo, Sohma and Hirota. Holevo
calculated the expurgated bound for coherent states [3].
Holevo, Sohma and Hirota calculated the expurgated
bound for coherent states with thermal noise [5]. The
random coding bound cannot be computed analytically
even for coherent states.

In this paper we calculate the random coding bound of
continuous classical-quantum channel for coherent states
with thermal noise numerically. Although the random
coding bound for mixed states has not been proved, we
assume Holevo’s conjecture [5] holds and compute it. If
we consider only pure state signals, our results are valid
strictly. Furthermore, we compare the random coding

bound of the discrete classical-quantum channel with
M-ary PSK coherent states with that of the continuous
classical-quantum channel with coherent states under the
same energy constraint.

II. QUANTUM RELIABILITY FUNCTION

Let A = {1,2,...,M} be an input alphabet and
B = {p1,...,pn} a set of quantum states, which are
described by density operators in a Hilbert space /. Then
a discrete classical-quantum channel is characterized by
amap O : A >k — pr € B. We consider a codebook
W defined by

W ={w; = (a§-1),...,a(-n));j =1,....,M} (1)
and a decoding process II represented by a positive
operator valued measure(POVM)

M= I;00 >0, Y =1, 2)
J

where I is the identity operator on the n-th tensor of
the signal Hilbert space H®". Here the codeword w;
corresponds to a quantum state

Ofw;) =0 @ @ 6", 3)

(
J
through the classical-quantum channel ©. Then the min-
imum probability of decoding error is given by

RS I
P(n, M') = min -5 ;(1 = TrOw;[IL;). )
When the communication rate is fixed to R [nats/letter],
there is a relationship between the code length n and the
number of messages M’ such that M’ = e"*. Using the
minimum probability of decoding error (4), we introduce
the quantum reliability function

1

PRy O

1
E(R) = limsup — log
n

n— oo

The quantum reliability function should be estimated by
upper and lower bounds because it is difficult to compute
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it directly. One of lower bounds is known as the random

coding bound. It is expected that the inequality

n(p(m,s) — sR)) (6)
holds for 0 < s <1 [2], where

P(n,e™) < 2exp[—

M L q1l+s
pu(m,s) = —log Tr [Z Wf“] : ™
k=1

and m = (my,--+ ,7p) 1S an a priori probability distri-
bution on the input alphabet 4. Note that the inequality
(6) has been proved only in the pure state case [2]. The
random coding bound of a discrete classical-quantum
channel is defined by

EY(R) = max max|u(r,s) — sR] 8)

0<s<1

for 0 < R < C. Here C' is the channel capacity given by

M
(Z wm) - mH (pk)l O
k=1

where H(p) = —Trplogp is the von Neumann entropy
for a density operator p. Then using the inequality (6) we
have

= sup

EY(R) > EX(R). (10)

In this paper we consider a continuous classical-
quantum channel and consider its quantum reliability
function. We take as the input alphabet a finite dimen-
sional Euclidean space R%. Then the continuous classical-
quantum channel is described by a weakly continuous
map © : R 5 2 — p, € &(H), where &(H) is the
set of all quantum states. We consider a codebook Wy,
defined by

Wy, = {w; = @V, al”) =1, M), A

where we impose an energy constraint on the codeword
wy as

Zs ) < nN, (12)

with a predetermined energy function £. The decoding
process II represented by the POVM (2). The codeword
w; corresponds to a quantum state

Ow;] = Oz ® - © O[z{"] (13)

through the continuous classical-quantum channel ©.
Then the minimum probability of decoding error is given
by
| M "
Y= min — 1-T (m)y.,
P(n,M") Wr?vmn Y Zl( rO[w;|IL).  (14)
i=

The random coding bound for the continuous classical-
quantum channel is defined as follows [2],

E.(R) = (hax, max iré%))i(u(ﬂ', s,p) —sR)  (15)

for 0 < R < C. Here

1 1+s
M(7T737p) = —logTr |:/eg[5(3?)—1\/s]p%+bﬂ-<dx)

(16)
is the quantum Gallager function and P; is the set of
probability distributions 7 that satisfy

/g (dz) < N, a7

and the channel capacity C' is given by

0= sup [ [ portan)) ~ [ poetan].
(18)

As in the discrete case, it is proved that
E(R) > E,(R) (19)
for pure states.
III. LOWER BOUNDS OF QUANTUM RELIABILITY

FUNCTION FOR GAUSSIAN STATES

As a continuous classical-quantum channel, we con-
sider a classical-quantum Gaussian channel, which is
defined by a channel map © : R? > m — p,,, € &(H),
where p,, is single-mode quantum Gaussian state given

by mean m = 21 and the fixed correlation matrix
2
a = (a“ a12> [3]. The energy function of the
12 Q22
quantum Gaussian state is given by
1
E(m) = 5 (mi +m3). (20)

In the following we restrict ourselves to an unsqueezed
Gaussian state, which has a correlation matrix given by

A0 1
(0 Ah)’ )\—§+N7 (21)
where 7 is the Dirac constant and N corresponds to a

thermal noise. It is known that the Gallager function for
such quantum Gaussian states is calculated as follows

(mo, 8,p) = (14 s)log f1_(A) +p(1 + )N, /2
B(s,p)'*],

+ log[A(s,p)'+* —

where 7, represents the optimal a priori probability
distribution which is assumed to be a normal distribution

(22)

. . . s 0
with the correlation matrix g 0 N.h and the mean
0. The functions included in Eq. (22) are given by
fs(t)=(t+ 1/2; (t—1/2)
+(t=1/2)°

N (trl)e
95(t) = 3 i1

A(s,p) = (A9 (A) +1/2) (1 = pNs/2) + N,
B(s,p) = (A9 (N) —1/2) (1 =pNs/2) + N,

The expression (22) holds for A(s,p) > B(s,p) or

2
0<p< —. 23
_p_NS (23)



When the communication rate R is close to the channel
capacity C, the random coding bound is closer to the
reliability function than the expurgated bound. It is known
that when the communication rate is

3}
R S 5”(7707 1ap(NS>)7 (24)
s
where 12 20(N./g)
_ 22 2UNs/9)
p(Ns) = p + N, N, (25)
with 9(t) = 1+7v2t2+1 and ¢ = Agi(A), the random

coding bound is a straight line with a slope of —1 [5].
Then, E,.(R) is given by

ET(R) = M(ﬂ-oa 17p(N8)) - R. (26)
Note that the channel capacity is given by

C=(Ns+ N +1)log(Ns + N +1)
— (Ns + N)log(Ns + N) 27
— (N +1)log (N +1) + Nlog(N).

Let us calculate the random coding bound by optimiz-
ing s and p of u(m,, s, p) —sR. We adopt a very primitive
optimization technique where we discretize 0 < s < 1
and 0 < p < & in As = 1072 and Ap = 107?
increments respectively, and find the maximum value.
Finding the maximum value of u(m,,s,p) with respect
to p, we obtain

m(s) = max u(m,,s,p) — sR. (28)
0§p<1\%
Fig. 1 shows graph of m(s) for the average photon
number of signal state Ny = 0.5 and the thermal noise
N = 0.1, where R = 0.723 [nats/letter] is the value of
capacity C.
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Fig. 1. m(s) for Ny =0.5,N =0.1.

Maximizing m(s) with respect to s, we obtain the
random coding bound. Fig. 2 shows the optimal values
of s and p for a given communication rate R. Fig. 2-
(a) shows the optimal values of s and p for Ny = 0.5
and N = 0.1. Fig. 2-(b) shows the optimal values of s
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Fig. 2. (a) The optimal values of s and p for the random coding bound
in the case of Ns = 0.5, N = 0.1; (b) The optimal values of s and p
for the random coding bound in the case of Ng =1, N = 0.1.

and p for N, = 1 and N = 0.1. Fig. 3 shows graphs
of the random coding bound. Here we consider two
subparameters, N, and N. Fig. 3-(a) shows graphs of the
random coding bound for the average photon number of
signal state Ny = 0.5, 1, 2 and the thermal noise N = 0.1.
Fig. 3-(b) shows graphs of the random coding bound for
the average photon number of signal state N, = 0.5 and
the thermal noise N = 0.1,0.2,0.5.

We compare the random coding bound E,.(R) for the
continuous channel with the random coding bound E¢(R)
for the discrete channel. In the discrete channel we use
M-ary PSK coherent state signals [6],

ok~ 1),
T]}, k=1, ,M}

(29)
Every signal |¢;) in B has the same amplitude |c|?, and
the average photon number of these signals is given by
|2, which is independent of any a priori distribution.
So we consider the continuous classical-quantum channel
with coherent states of the average photon number Ny =
.

5= {lvn) = laex
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Fig. 3. The random coding bounds for continuous classical-quantum
channels with unsqueezed state signals:(a)N = 0.1,Ns = 0.5,1,2;
(b)Ns = 0.5, N =0.1,0.2,0.5.

Fig. 4 shows the random coding bounds E, (R) for the
continuous channel and the random coding bound E%(R)
for M-ary PSK states, where the average photon number
is Ny = 0.5,1. Fig. 4-(a) compares E,.(R) and E%(R)
at M = 2,4,32. In this case, the random coding bound
EX(R) for M = 4 and M = 32 are nearly equal. Fig.
4-(b) compares E,.(R) and E4(R) at M = 2,4,8,32. In
this case, the random coding bound E?(R) for M = 8
and M = 32 are nearly equal. When N, = 0.5, E4(R)
is nearly equal to F,.(R) at M = 8. On the other hand,
when N, = 1, the random coding bound E¢(R) does not
achieve E,(R). Therefore we need to find another signal
states other than M -ary PSK states to achieve the random
coding bound of the continuous channel.

IV. CONCLUSION

We have computed the random coding bound F,(R)
for a continuous classical-quantum channel with un-
squeezed Gaussian states. We have compared it with the
random coding bound E¢(R) of the discrete channel with
M-ary PSK coherent states. We will find another signal
set BB of the discrete classical-quantum channel which has
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Fig. 4. (a) Comparison of the random coding bounds for continuous
and discrete channels in the case of Ns = 0.5, N = 0: (b) Comparison
of the random coding bounds for continuous and discrete channels in
the case of Ngs =1, N = 0.

the random coding bound achieving F/(R) asymptotically
when N, > 1, in the future work.
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