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Abstract—Classical wavelet transforms have been success-
fully applied in many fields of signal processing. Quantum
wavelet transforms, which are the quantum analogues of the
classical wavelet transforms, are expected to be a promising
tool for quantum information and quantum computation.
We propose an efficient implementation of any quantum
(decimated) orthogonal wavelet transform and its undeci-
mated version.

I. Introduction

Quantum Fourier transforms have been extensively

used in the field of quantum computing. In the signal

processing community, classical wavelet transforms have

been often used instead of classical Fourier transforms

[1], [2]. This implies that quantum wavelet transforms

have a great potential for quantum signal processing and

quantum computing. Although efficient implementations

of quantum orthogonal wavelet transforms (QOWTs)

have been proposed only for the Haar and Daubechies

filters [3]–[6], there are other commonly used orthogonal

wavelet filters, such as Symlet [7] and Coiflet [8]. To get

good performance for required tasks, the users need to

choose an appropriate wavelet filter. Thus, it is natural to

find a way of implementing QOWTs to cope with these

filters.

In this paper, we derive a new factorization of the

wavelet transform matrix for any QOWT, which leads

to an efficient quantum circuit. As well as the OWTs,

those undecimated versions have also been widely used

in classical signal processing, such as pattern recognition

and denoising, due to the advantage of the shift-invariant

property. We show that our approach can be easily ex-

tended to the implementation for the undecimated version

of the OWT (UWT).

II. Wavelet transforms (WTs)

A. Preliminaries

Let Um be the set of all unitary matrices of order m.

Matrices are written in upper-case letters, while vectors

are written in bold lower-case letters. The ( j+1, k+1)-th

element of a matrix M is denoted by Mj,k. Also, the ( j+1)-

th element of a vector v is denoted by v j. Note that the

indices j and k start from zero. Let Ik � {0, 1, . . . , k−1}.
Om and 0m, respectively, denote the m × m zero matrix

and the m-dimensional zero vector. In this paper, we

consider a complex-valued input signal with N � 2n

samples. When we write k ∈ IN in binary notation as

k = qn−1qn−2 · · · q0 (q0, . . . , qn−1 ∈ I2), which satisfies

k =
n−1∑
t=0

qt2
t,

the corresponding element |k〉 of the computational basis

{|k〉 : k ∈ IN} is given by the tensor products of the form

|k〉 = |qn−1〉 |qn−2〉 · · · |q0〉 .
B. Classical wavelet transforms

Before passing to the main topic, let us briefly review

classical orthogonal wavelet transforms (OWTs) (for de-

tails see [1], [2] and references therein). Let Ξ be the

number of levels in the transform. Let Nξ � 2−ξN for

each level, ξ ∈ IΞ, of decomposition. In the OWT, as

the level increases, more and more detailed information

is removed. Given an input vector x ∈ CN , the OWT

calculates the scaling coefficients, s(ξ+1) ∈ CNξ+1 , and the

wavelet coefficients, w(ξ+1) ∈ CNξ+1 , at different scales

ξ ∈ IΞ, using the following equation:

s(ξ+1)

k =

2L−1∑
t=0

ht s
(ξ)
2k+t, w(ξ+1)

k =

2L−1∑
t=0

gt s
(ξ)
2k+t, k ∈ INξ+1

,

(1)

where s(0) � x. {ht}2L−1
t=0 and {gt}2L−1

t=0 are, respectively,

the scaling and wavelet filters with length 2L (where

h2L−1 = g2L−1 = 0 is allowed). The scaling and wavelet

coefficients, respectively, correspond to low- and high-

frequency components. By convention, let ht = gt = 0

for any t � I2L. These filters must satisfy the perfect

reconstruction conditions:
∞∑

t=−∞
h∗t ht+2k =

∞∑
t=−∞

g∗t gt+2k = δk,0,

∞∑
t=−∞

h∗t gt+2k = 0, (2)
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where δa,b is the Kronecker delta. The output of the OWT

is [s(Ξ)T,w(Ξ)T, . . . ,w(1)T]T ∈ CN , where T is the transpose.
Given an even number M with M ≥ 2L, let HM ∈

C
M×M be a block circulant matrix defined as

HM �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(0) H(1) · · · H( M
2
−1)

H( M
2
−1) H(0)

. . .
...

...
. . .

. . . H(1)

H(1) · · · H( M
2
−1) H(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where

H(k) �
[
h2k h2k+1

g2k g2k+1

]
. (4)

Note that H(k) = O2 holds for each k ≥ L. It is seen from

Eq. (2) that HMH†
M = IM holds (where † is the conjugate

transpose and IM is the identity matrix of order M), i.e.,

HM is a unitary matrix. At each level ξ, s(ξ+1) and w(ξ+1)

are obtained by

η(ξ+1) = HNξ s
(ξ),

where

η(ξ+1) � [s(ξ+1)

0
,w(ξ+1)

0
, s(ξ+1)

1
,w(ξ+1)

1
, . . . , s(ξ+1)

Nξ+1−1
,w(ξ+1)

Nξ+1−1
]T.

Let ΠM ∈ UM be the matrix whose ( j+1, k+1)-th element

is1

(ΠM) j,k � δ j,�k/2�+ν(M,k),

ν(M, k) �
⎧⎪⎨⎪⎩0, k is even,

M/2, k is odd,

where �x� is the greatest integer that is not greater than

x. For any x ∈ CM , ΠM satisfies

ΠM x = [x0, x2, . . . , xM−2, x1, x3, . . . , xM−1]T,

which can be interpreted that ΠM divides x into two dis-

joint sets of samples, even-indexed samples [x0, x2, . . . ]
and odd-indexed samples [x1, x3, . . . ]. The transform ma-

trix W ∈ UN of the OWT is expressed by

W � WΞ−1WΞ−2 · · ·W0, (5)

where

Wξ � (ΠNξ ⊕ IN−Nξ )(HNξ ⊕ IN−Nξ ).

W is completely characterized by the set of L matrices

{H(k)}L−1
k=0

. We can easily verify that

Wξ s(ξ) =

[
s(ξ+1)

w(ξ+1)

]

and

Wx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(Ξ)

w(Ξ)

...
w(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

1ΠM corresponds Π†M in Ref. [4].

Fig. 1. Quantum circuit for the QOWT with the transform matrix W.

Assume that the order of HNξ (i.e., Nξ) is not less than

4L − 2 for any ξ ∈ IΞ, which means that N ≥ 2Ξ(2L − 1)

holds; we can pad x with some values (e.g., zeros) to get

a sufficient number of samples.

C. Quantum wavelet transforms (QWTs)

Let us consider the following unitary transformation

represented by the unitary operator

Ŵ �
N−1∑
j=0

N−1∑
k=0

Wj,k | j〉 〈k| ,

where Wj,k is the ( j+1, k+1)-th element of the transform

matrix W given by Eq. (5). For an input quantum state

|x〉, Ŵ |x〉 can be represented as Wx, where x ∈ CN is the

column vector representation of |x〉 in the computational

basis, whose (k + 1)-th element is xk � 〈k|x〉. For

simplicity, Ŵ is identified with W.

III. Implementation of QOWTs

The QOWT with the transform matrix W can be im-

plemented in the quantum circuit shown in Fig. 1, which

operates on n input qubits. Each box with a vertical line

indicates a controlled gate, where the empty circle marks

the control qubit; the operation is applied if the state of

each control qubit is |0〉. It is known that ΠNξ ⊕ IN−Nξ can

be implemented in O(n) controlled-NOT gates [4]. In this

section, we show that HNξ ⊕ IN−Nξ can be implemented

with a complexity of O(n), which indicates that W can

be implemented with a complexity of O(Ξn).

Assume, without loss of generality, that hm and gm

satisfy

|h0|2 + |g0|2 � 0, H(L−1) � O2. (6)

The first equation indicates that at least either h0 or g0 is

not zero; the second equation indicates that at least either

h2L−2, h2L−1, g2L−2, or g2L−1 is not zero. Let QM ∈ UM be

the downshift permutation matrix, whose ( j+ 1, k + 1)-th

element is

(QM) j,k � δ( j+1) mod M,k,

where a mod b denotes the remainder in the division of a
by b. For any x ∈ CM , we have

QM x = [x1, . . . , xM−1, x0]T.
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Fig. 2. Quantum circuit for HM .

QM can be implemented with a complexity of O(log2 M)

[4], [9].

We show the following theorem.

Theorem 1: For any HM ∈ UM with M ≥ 4L − 2

expressed in the form of Eq. (3), there exists a set of

L matrices {Ak ∈ U2}L−1
k=0

satisfying

HM = (I M
2
⊗ AL−1)QM(I M

2
⊗ AL−2)QM

× · · · × QM(I M
2
⊗ A0). (7)

A circuit for the implementation of HM based on

Eq. (7) is shown in Fig. 2, which has a complexity of

O(L log2 M).

To prove this theorem, we can use the following lemma

(proved later).

Lemma 2: Assume L > 1. For any HM ∈ UM with

M ≥ 4L − 2 expressed in the form of Eq. (3), there exist

two matrices A ∈ U2 and C ∈ UM satisfying

HM = (I M
2
⊗ A)QMC,

C j,k �
⎧⎪⎨⎪⎩c(k− j) mod M , j is even,

d(k− j+1) mod M , j is odd,
(8)

where cm = dm = 0 (∀m ≥ 2L − 2) holds and at least

either c2L−4 or c2L−3 is not zero.

The matrix C in Lemma 2 is the block circulant matrix

expressed by

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(0) C(1) · · · C( M
2
−1)

C( M
2
−1) C(0)

. . .
...

...
. . .

. . . C(1)

C(1) · · · C( M
2
−1) C(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

with

C(k) �
[
c2k c2k+1

d2k d2k+1

]
,

where C(k) = O2 holds for any k ≥ L − 1.

Proof of Theorem 1 . The case L = 1 is obvious, since

HM = I M
2
⊗H(0) holds. In the case of L > 1, by iteratively

substituting C into HM in Eq. (8) and applying Lemma 2,

we obtain Eq. (7). �

We now prove Lemma 2.

Proof of Lemma 2 . Let us express A ∈ U2 as

A =
[
a0 a1

b0 b1

]
.

Let D � QMC. It is easily seen that D can be expressed

by

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(0) D(1) · · · D( M
2
−1)

D( M
2
−1) D(0)

. . .
...

...
. . .

. . . D(1)

D(1) · · · D( M
2
−1) D(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

D(k) �
[

d2k d2k+1

c(2k−2) mod M c(2k−1) mod M

]
.

From Eqs. (3) and (8), HM = (I M
2
⊗ A)D is equivalent to

H(k) = AD(k), k ∈ I M
2
. (10)

Since the product of unitary matrices is also unitary, one

can easily see that C = Q−1
M (I M

2
⊗ A−1)HM is unitary if

A ∈ U2 holds. Thus, it suffices to show that there exist

A ∈ U2 and {ck, dk}2L−3
k=0

satisfying Eq. (10).

Substituting k = 0 into Eq. (10) gives H(0) = AD(0),

i.e., [
a0 a1

b0 b1

] [
d0 d1

0 0

]
=

[
h0 h1

g0 g1

]
.

where we use cM−2 = cM−1 = 0, which follows from

Eq. (8). Since A is unitary, d0, d1, a0, and b0 are expressed

by

d0 = γR, d1 = sd0, a0 = h0d−1
0 , b0 = g0d−1

0 ,(11)

where R �
√|h0|2 + |g0|2 (note that R > 0 holds from

Eq. (6)), γ is a complex number with unit modulus, and

s = h−1
0 h1 if h0 � 0, and s = g−1

0 g1 otherwise.

Substituting k = L − 1 into Eq. (10) yields H(L−1) =

AD(L−1), i.e.,[
a0 a1

b0 b1

] [
0 0

c2L−4 c2L−3

]
=

[
h2L−2 h2L−1

g2L−2 g2L−1

]
.

where we use dM−2 = dM−1 = 0, which follows

from Eq. (8). Let R′ �
√|h2L−1|2 + |g2L−1|2 and R′′ �√|h2L−2|2 + |g2L−2|2. In the case of R′ � 0, c2L−3, c2L−4,

a1, and b1 are given by

c2L−3 = γ
′R′, c2L−4 = sc2L−3,

a1 = h2L−1c−1
2L−3, b1 = g2L−1c−1

2L−3, (12)

where γ′ is a complex number with unit modulus and

s′ = h−1
2L−1h2L−2 if h2L−1 � 0, s′ = g−1

2L−1g2L−2 otherwise.

In the case of R′ = 0 (in which case R′′ � 0 holds from

Eq. (6)), c2L−3, c2L−4, a1, and b1 are given by

c2L−3 = 0, c2L−4 = γ
′′R′′,

a1 = h2L−2c−1
2L−4, b1 = g2L−2c−1

2L−4, (13)

9



where γ′′ is a complex number with unit modulus. Note

that γ, γ′, and γ′′ can be any complex number with unit

modulus.

From Eqs. (11), (12), and (13), we obatin A, D(0), and

D(L−1). From A ∈ U2 and Eq. (10), D(k) with 0 < k < L−1

can be obtained from D(k) = A−1H(k), from which we

obtain C.

To complete the proof, it suffices to verify A ∈ U2.

(Note that if A ∈ U2, then C = [(I M
2
⊗ A)QM]−1HM ∈

UM obviously holds.) Since HM ∈ UM holds, we have

H†
MHM = IM . Substituting Eq. (3) into this equation and

using M ≥ 4L − 2, we have [H(0)]†H(L−1) = O2, which

gives h∗0h2L−1+g∗0g2L−1 = 0. From this equation, we easily

verify A†A = I2, i.e., A ∈ U2. �

Note that the transform matrix W given by Eq. (5)

corresponds to the QOWT based on a pyramid algorithm

(PYA). The QOWT based on a packet algorithm (PAA),

whose transform matrix WPAA is given by

WPAA � W ′
Ξ−1W ′

Ξ−2 · · ·W ′
0,

W ′
ξ � IN/Nξ ⊗ (ΠNξHNξ ),

can be implemented more efficiently than based on a

PYA, while PYAs are more commonly used than PAAs in

classical signal processing. Our results also readily apply

to an efficient implementation for a PAA.

A. Example

As an example, we show the decomposition of the

transform matrix HM of the so-called Coiflet-6 wavelet

[8]. This matrix has L = 3 and the scaling and wavelet

filters with

h0 = −0.072733, h1 = 0.337898, h2 = 0.852572,

h3 = 0.384865, h4 = −0.072733, h5 = −0.015656,

and gt = (−1)th5−t (t ∈ I6). H(k) of Eq. (4) is

H(0) =

[−0.072733 0.337898

−0.015656 0.072733

]
,

H(1) =

[
0.852572 0.384865

0.384865 −0.852572

]
,

H(2) =

[−0.072733 −0.015656

0.337898 0.072733

]
,

H(k) = O2, k ∈ {3, . . . ,M/2 − 1}.
Theorem 1 says that HM with M ≥ 10 can be decom-

posed as in Eq. (7). From the proof of Lemma 2, we

obtain

A2 =

[−0.977609 −0.210431

−0.210431 0.977609

]
,

A1 =

[
0.935414 0.353553

0.353553 −0.935414

]
,

A0 =

[
0.977609 0.210431

0.210431 −0.977609

]
.

Indeed, HM can be decomposed by HM = (I M
2
⊗ A2)QMC

[see Eq. (8)], where C is expressed by Eq. (9) with

C(0) =

[
0.196840 −0.914469

0.074398 −0.345637

]
,

C(1) =

[
0.345637 0.074398

−0.914469 −0.196840

]
,

C(k) = O2, k ∈ {2, . . . ,M/2 − 1}.
C is also decomposed by C = (I M

2
⊗ A2)QM(I M

2
⊗ A1).

IV. Implementation of undecimated QWTs

A. Formulation

We now turn our attention to the UWT using the same

scaling and wavelet filters as in an OWT (for details see,

e.g., [2]). For each scale ξ ∈ IΞ, the UWT calculates

the scaling coefficients s(ξ+1) and the wavelet coefficients

w(ξ+1) using the following equation:

s(ξ+1)

k =
1√
2

2L−1∑
t=0

ht s
(ξ)

k+2ξ t, w(ξ+1)

k =
1√
2

2L−1∑
t=0

gt s
(ξ)

k+2ξ t,

k ∈ IN ,

where s(0) � x. In the UWT, s(ξ+1) and w(ξ+1) are

undecimated and belong to CN , whereas in the OWT these

coefficients are decimated by a factor of two [see Eq. (1)].

The output of the UWT is [w(1)T, . . . ,w(Ξ)T, s(Ξ)T]T ∈
C

N(Ξ+1). The UWT has the advantage of being shift-

invariant, which means that if [w(1)T, . . . ,w(Ξ)T, s(Ξ)T]T

is obtained by the UWT of the input signal x, then

[Q†
Nw(1)T, . . . ,Q†

Nw(Ξ)T,Q†
N s(Ξ)T]T is obtained by the UWT

of Q†
N x, where

Q†
N x = [xN−1, x0, . . . , xN−2]T.

Shift invariant property is well known to provide good

performance in various signal processing tasks. The uni-

tary transformation represented by the transform matrix

of the UWT is called a quantum UWT (QUWT).

At each level ξ, the undecimated transform is expressed

by

η(ξ+1)
q =

1√
2

HNξ s
(ξ)
q ,

η(ξ+1)

q+2ξ
=

1√
2

HNξQNξ s
(ξ)
q (14)

for each q ∈ I2ξ , where

η(ξ+1)
q � [s(ξ+1)

q ,w(ξ+1)
q , s(ξ+1)

q+2ξ+1 ,w
(ξ+1)

q+2ξ+1 , s
(ξ+1)

q+2·2ξ+1 ,w
(ξ+1)

q+2·2ξ+1 , . . . ]
T,

s(ξ)
q � [s(ξ)

q , s
(ξ)

q+2ξ
, s(ξ)

q+2·2ξ , . . . ]
T,

η(ξ+1)
q , η(ξ+1)

q+2ξ
, s(ξ)

q ∈ CNξ holds. Equation (14) can be

rewritten as ⎡⎢⎢⎢⎢⎢⎣η
(ξ+1)
q

η(ξ+1)

q+2ξ

⎤⎥⎥⎥⎥⎥⎦ = H̃2Nξ

[
s(ξ)

q
0Nξ

]
,

H̃2Nξ �
1√
2

[
HNξ X1

HNξQNξ X2

]
, (15)
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Fig. 3. Quantum circuit for W̃.

where X1 and X2 are any square matrices of order Nξ
such that H̃2Nξ ∈ U2Nξ .

B. Implementation of QUWTs

Since the output of QUWT, [w(1)T, . . . ,w(Ξ)T, s(Ξ)T]T ∈
C

N(Ξ+1), has N(Ξ + 1) elements, we can assume, without

loss of generality, that the QUWT operates on nex �
�log2 N(Ξ + 1)� = n + �log2(Ξ + 1)� qubits, where �x� is

the smallest integer that is not less than x. Let Nex � 2nex .

The QUWT is represented by the unitary matrix W̃ ∈
UNex

, whose input signal is x̃ � x ⊕ 0Nex−N ∈ CNex . After

some simple computation, we can see that W̃ is expressed

by

W̃ � W̃Ξ−1W̃Ξ−2 · · · W̃0,

where

W̃ξ �

⎧⎪⎪⎨⎪⎪⎩
Γ

(3)
ξ Γ

(2)Γ(1)Φξ, ξ < Ξ − 1,

Γ(2)Γ(1)Φξ, ξ = Ξ − 1,

Γ
(3)
ξ � Π

†
2ξ+2 ⊗ IN/2ξ+1 ⊕ IE ,

Γ(2) � R ⊗ IN ,

Γ(1) � Π2N ⊕ IE ,

Φξ � I2ξ ⊗ H̃2Nξ ⊕ IE (16)

and E � Nex − 2N. R ∈ CNR×NR (NR � Nex/N) denotes

the permutation matrix whose ( j + 1, k + 1)-th element is

Rj,k �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δk,0, j = 0,

δk, j+1, 0 < j < NR − 1,

δk,1, j = NR − 1.

The scaling and wavelet coefficients are obtained by

the matrix Φξ ∈ CNex×Nex . Γ
(3)
ξ ,Γ

(2),Γ(1) ∈ CNex×Nex are

permutation matrices, which are used to rearrange the

coefficients. Similar to W, W̃ is also completely char-

acterized by the set of matrices {H(k)}L−1
k=0

. The QUWT

with the transform matrix W̃ can be implemented in the

quantum circuit shown in Fig. 3, where the circuit for W̃ξ
is shown in Fig. 4. As an example, Table I shows x̃, W̃0 x̃,

W̃1W̃0 x̃, and W̃ x̃ = W̃2W̃1W̃0 x̃ for N = 8 and Ξ = 3, in

which case Nex = 32 holds. From Eq. (16), if there exists

an efficient implementation for Φξ (i.e., H̃2Nξ ), then the

QUWT can be efficiently implemented.

Fig. 4. Quantum circuit for W̃ξ (with ξ < Ξ − 1).

Fig. 5. Quantum circuit for H̃2Nξ .

We show that Φξ can be implemented with a com-

plexity of O(nex). Let us substitute X1 � HNξQ
†
Nξ

and

X2 � −HNξ into Eq. (15); we obtain

H̃2Nξ �
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
HNξ HNξQ

†
Nξ

HNξQNξ −HNξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

We can easily verify H̃2Nξ ∈ U2Nξ . H̃2Nξ can be expressed

by

H̃2Nξ = (I2 ⊗ HNξ )(Q
†
Nξ
⊕ INξ )(M ⊗ INξ )(QNξ ⊕ INξ ),

where M � 1√
2

[
1 1
1 −1

]
. Thus, H̃2Nξ can be efficiently

implemented as shown in Fig. 5, which implies that Φξ
can be implemented with a complexity of O(nex).

V. Conclusion

We proposed an efficient implementation of any

QOWT and its undecimated version. The main result of

this paper is that the block circulant matrix HM can be

decomposed into L−1 permutation matrices and L single-

qubit unitary matrices, which allows us to implement

the QOWT with a complexity of O(n). We also showed

an implementation of the QUWT with a complexity of

O(nex).

Acknowledgment

I am grateful to O. Hirota for support. This work

was supported by JSPS KAKENHI Grant Number

JP19K03658.

11



TABLE I
The QUWT for N = 8 and Ξ = 3.

vectors
rows

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

x̃ x0 x1 x2 x3 x4 x5 x6 x7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W̃0 x̃ s(1)
0

s(1)
2

s(1)
4

s(1)
6

0 0 0 0 s(1)
1

s(1)
3

s(1)
5

s(1)
7

0 0 0 0 0 0 0 0 0 0 0 0 w(1)
0

w(1)
2

w(1)
4

w(1)
6

w(1)
1

w(1)
3

w(1)
5

w(1)
7

W̃1W̃0 x̃ s(2)
0

s(2)
4

0 0 s(2)
2

s(2)
6

0 0 s(2)
1

s(2)
5

0 0 s(2)
3

s(2)
7

0 0 w(1)
0

w(1)
2

w(1)
4

w(1)
6

w(1)
1

w(1)
3

w(1)
5

w(1)
7

w(2)
0

w(2)
4

w(2)
2

w(2)
6

w(2)
1

w(2)
5

w(2)
3

w(2)
7

W̃ x̃ s(3)
0

s(3)
4

s(3)
2

s(3)
6

s(3)
1

s(3)
5

s(3)
3

s(3)
7

w(1)
0

w(1)
2

w(1)
4

w(1)
6

w(1)
1

w(1)
3

w(1)
5

w(1)
7

w(2)
0

w(2)
4

w(2)
2

w(2)
6

w(2)
1

w(2)
5

w(2)
3

w(2)
7

w(3)
0

w(3)
4

w(3)
2

w(3)
6

w(3)
1

w(3)
5

w(3)
3

w(3)
7
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