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Abstract—This article concerns the Belavkin-weighted
square-root measurement (BWSRM) for binary pure state
ensembles. For given weights of the BWSRM, a closed-
form expression of the state distribution that makes the
BWSRM Bayes-optimal is derived. Conversely, a closed-
form expression of the optimal weights of the BWSRM is
derived for given probability distribution of the states.

I. INTRODUCTION

It is well known that quantum detection theory plays
an important role in quantum information science [1], [2].
This fundamental theory involves various types of deci-
sion strategies such as the Bayes strategy (which seeks
the optimal measurement to achive the minimal average
probability of error — or more generally, the minimum
average cost for decision — when prior probabilities of
the states are given), the minimax strategy (which is used
when the prior probabilities are unknown), and so on. The
development of quantum detection theory was initiated by
the pioneering works for establishing the Bayes strategy
in the framework of quantum measurement, which were
led by Helstrom [3], Yuen [5], [6], and Holevo [4]. In
parallel to their works, Belavkin introduced a constractive
method for finding quantum measurements [7], [8]. To-
day, Belavkin’s works related to this method is recognized
as early studies of the square-root measurement (SRM).

The family of the SRM [7], [8], [9], [10] provides
useful tools for analyzing various problems appeard in
quantum information theory (e.g. [11], [12], [13], [14],
[15], [16], [17]). In particular, the SRM is one of key parts
in the proof of the quantum channel coding theorems
[10], [18], [19]. The family of the SRMs is classfied into
several subgroups. In this article, we call a measurement
scheme given by the original description of Belavkin’s the
Belavkin-weighted square-root measurement (BWSRM)
(See [20]), and a simplified non-weighted one the SRM
simply.

The basic properties of the family of the SRMs have
been investigated by many authors so far (e.g. [20], [21],
[22], [23], [24], [25]), in which the main topics are its
asymptotic behavior and its relation to the Bayes strategy.
As for the relationship between the BWSRM and the
Bayes-optimal measurement, which is defined to be the
optimal measusmrent for achieving the minimal average
probability of error when the prior probabilities of the

states are given in this article, some remarkable results
related to the optimal weights of the BWSRM for given
probability distribution of the states [23] and the optimal
probabiliy distribution for given weights [20], [25] have
been reported. However, almost results are given in a
general description, not in a concrete case. By this reason,
we aim to give a small concrete example in this article, so
that the case of binary pure state ensembles is considered.

II. SQUARE-ROOT MEASUREMENT AND BELAVKIN
WEIGHTED SQUARE-ROOT MEASUREMENT

Suppose {|ψm〉 : m = 1, 2, . . . ,M} is a collection of
M linearly independent pure states. For each state |ψm〉,
we assign a prior probability pm > 0. The collection of
pairs (|ψm〉, pm) forms an M -ary pure state ensemble E .

The SRM Π◦ for E is defined as follows [9]:

Π◦ = {Π̂◦m = |μ◦m〉〈μ◦m| : m = 1, 2, . . . ,M} (1)

with

|μ◦m〉 =
(

M∑
�=1

|ψ�〉〈ψ�|
)−1/2

|ψm〉. (2)

Let wm > 0 for m = 1, 2, . . . ,M . The BWSRM Π•

for E is defined as follows [7], [8]:

Π• = {Π̂•m = |μ•m〉〈μ•m| : m = 1, 2, . . . ,M} (3)

with

|μ•m〉 =
(

M∑
�=1

w�|ψ�〉〈ψ�|
)−1/2

√
wm |ψm〉. (4)

III. BWSRM FOR BINARY PURE STATE ENSEMBLES

Suppose two non-orthogonal states |ψ1〉 and |ψ2〉 are
given, in which the inner product of the two states is
〈ψ1|ψ2〉 = ejθκ with 0 < κ < 1, 0 ≤ θ < 2π, and
j =

√−1. The measurement vectors |μ◦1〉 and |μ◦2〉 of the
SRM Π◦ for a binary pure state ensemble are respectively
given by

|μ◦1〉 = A◦|ψ1〉+B◦∗|ψ2〉, (5)
|μ◦2〉 = B◦|ψ1〉+A◦|ψ2〉, (6)
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with

A◦ =
1

2

(
1√
1− κ

+
1√
1 + κ

)

=

√
1 +

√
1− κ2

2(1− κ2)
, (7)

B◦ = −1

2
ejθ
(

1√
1− κ

− 1√
1 + κ

)

= −ejθ

√
1−√

1− κ2

2(1− κ2)
, (8)

where ∗ stands for the complrex conjugate. As ex-
pected from a general nature of the SRM, the set
β◦ = {|μ◦1〉, |μ◦2〉} is a orthonormal basis of the space
H2 = span({|ψ1〉, |ψ2〉}), because κ �= 1. Based on
this fact, the states can be represented in the basis β◦

as follows:

|ψ1〉 = C◦|μ◦1〉+D◦∗|μ◦2〉, (9)
|ψ2〉 = D◦|μ◦1〉+ C◦|μ◦2〉, (10)

with

C◦ =
1

2

(√
1 + κ+

√
1− κ

)
, (11)

D◦ = −1

2
ejθ
(√

1 + κ−√
1− κ

)
. (12)

From these expressions, the corresponding density oper-
ators ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2| can be written
as

ρ̂1 = C◦2|μ◦1〉〈μ◦1|+ C◦D◦|μ◦1〉〈μ◦2|
+C◦D◦∗|μ◦2〉〈μ◦1|+ |D◦|2|μ◦2〉〈μ◦2|

=
1 +

√
1− κ2

2
|μ◦1〉〈μ◦1|+

κejθ

2
|μ◦1〉〈μ◦2|

+
κe−jθ

2
|μ◦2〉〈μ◦1|+

1−√
1− κ2

2
|μ◦2〉〈μ◦2|,

(13)

and

ρ̂2 = |D◦|2|μ◦1〉〈μ◦1|+ C◦D◦|μ◦1〉〈μ◦2|
+C◦D◦∗|μ◦2〉〈μ◦1|+ C◦2|μ◦2〉〈μ◦2|

=
1−√

1− κ2

2
|μ◦1〉〈μ◦1|+

κejθ

2
|μ◦1〉〈μ◦2|

+
κe−jθ

2
|μ◦2〉〈μ◦1|+

1 +
√
1− κ2

2
|μ◦2〉〈μ◦2|.

(14)

Hence the sum of the density operators — the Gram
operator — is

Ĝ = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2|
= |μ◦1〉〈μ◦1|+ κejθ|μ◦1〉〈μ◦2|

+κe−jθ|μ◦2〉〈μ◦1|+ |μ◦2〉〈μ◦2|
= 〈ψ1|ψ1〉|μ◦1〉〈μ◦1|+ 〈ψ1|ψ2〉|μ◦1〉〈μ◦2|

+〈ψ2|ψ1〉|μ◦2〉〈μ◦1|+ 〈ψ2|ψ2〉|μ◦2〉〈μ◦2|,
(15)

which explains that the matrix representation of Ĝ in the
basis β◦ is

[Ĝ]β◦ =

[
1 ejθκ

e−jθκ 1

]
. (16)

On the other hand, the measurement vectors |μ•1〉 and
|μ•2〉 of the BWSRM Π• for a binary pure state ensemble
are respectively given by

|μ•1〉 = A•1|ψ1〉+B•1 |ψ2〉, (17)
|μ•2〉 = B•2 |ψ1〉+A•2|ψ2〉, (18)

with

A•1 =

√
(1− κ2)w1 +

√
w2

√
1− κ2

√
w1 + w2 + 2

√
(1− κ2)w1w2

=

√
(1− κ2)q1 +

√
q2

√
1− κ2

√
1 + 2

√
(1− κ2)q1q2

, (19)

B•1 =
−e−jθκ

√
w2

√
1− κ2

√
w1 + w2 + 2

√
(1− κ2)w1w2

=
−e−jθκ

√
q2

√
1− κ2

√
1 + 2

√
(1− κ2)q1q2

, (20)

B•2 =
−ejθκ

√
w1

√
1− κ2

√
w1 + w2 + 2

√
(1− κ2)w1w2

=
−ejθκ

√
q1

√
1− κ2

√
1 + 2

√
(1− κ2)q1q2

, (21)

A•1 =

√
w1 +

√
(1− κ2)w2

√
1− κ2

√
w1 + w2 + 2

√
(1− κ2)w1w2

=

√
q1 +

√
(1− κ2)q2

√
1− κ2

√
1 + 2

√
(1− κ2)q1q2

, (22)

where q1 and q2 are defined by

q1 =
w1

w1 + w2
, q2 =

w2

w1 + w2
. (23)

The vectors |μ•1〉 and |μ•2〉 form another orthonormal basis
for H2, β• = {|μ•1〉, |μ•2〉}. Therefore, we obtain another
representation of the states as follows:

|ψ1〉 = C•1 |μ•1〉+D•1 |μ•2〉, (24)
|ψ2〉 = D•2 |μ•1〉+ C•2 |μ•2〉, (25)

with

C•1 =

√
w1 +

√
(1− κ2)w2√

w1 + w2 + 2
√
(1− κ2)w1w2

=

√
q1 +

√
(1− κ2)q2√

1 + 2
√
(1− κ2)q1q2

, (26)
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D•1 =
e−jθκ

√
w2√

w1 + w2 + 2
√

(1− κ2)w1w2

=
e−jθκ

√
q2√

1 + 2
√

(1− κ2)q1q2

, (27)

D•2 =
ejθκ

√
w1√

w1 + w2 + 2
√

(1− κ2)w1w2

=
e−jθκ

√
q1√

1 + 2
√

(1− κ2)q1q2

, (28)

C•2 =

√
(1− κ2)w1 +

√
w2√

w1 + w2 + 2
√

(1− κ2)w1w2

=

√
(1− κ2)q1 +

√
q2√

1 + 2
√

(1− κ2)q1q2

. (29)

Then the density operators ρ̂1 and ρ̂2 can be written as

ρ̂1 = C•21 |μ•1〉〈μ•1|+ C•1D
•∗
1 |μ•1〉〈μ•2|

+C•1D
•
1 |μ•2〉〈μ•1|+ |D•1 |2|μ•2〉〈μ•2|

=

(
w1 + (1− κ2)w2

+2
√
(1− κ2)w1w2

)
w1 + w2 + 2

√
(1− κ2)w1w2

|μ•1〉〈μ•1|

+
ejθκ

(√
1− κ2 w2 +

√
w1w2

)
w1 + w2 + 2

√
(1− κ2)w1w2

|μ•1〉〈μ•2|

+
e−jθκ

(√
1− κ2 w2 +

√
w1w2

)
w1 + w2 + 2

√
(1− κ2)w1w2

|μ•2〉〈μ•1|

+
κ2w2

w1 + w2 + 2
√
(1− κ2)w1w2

|μ•2〉〈μ•2|,
(30)

and

ρ̂2 = |D•2 |2|μ•1〉〈μ•1|+ C•2D
•
2 |μ•1〉〈μ•2|

+C•2D
•∗
2 |μ•2〉〈μ•1|+ C•22 |μ•2〉〈μ•2|

=
κ2w1

w1 + w2 + 2
√

(1− κ2)w1w2

|μ•1〉〈μ•1|

+
ejθκ

(√
1− κ2 w1 +

√
w1w2

)
w1 + w2 + 2

√
(1− κ2)w1w2

|μ•1〉〈μ•2|

+
e−jθκ

(√
1− κ2 w1 +

√
w1w2

)
w1 + w2 + 2

√
(1− κ2)w1w2

|μ•2〉〈μ•1|

+

(
(1− κ2)w1 + w2

+2
√
(1− κ2)w1w2

)
w1 + w2 + 2

√
(1− κ2)w1w2

|μ•2〉〈μ•2|.
(31)

Therefore, the weighted sum of the density operators with
weights w1 and w2 is

w1ρ̂1 + w2ρ̂2 = w1 |μ•1〉〈μ•1|
+ejθκ

√
w1w2 |μ•1〉〈μ•2|

+e−jθκ
√
w1w2 |μ•2〉〈μ•1|

+w2 |μ•2〉〈μ•2|
=

√
w1〈ψ1|ψ1〉√w1 |μ•1〉〈μ•1|
+
√
w1〈ψ1|ψ2〉√w2 |μ•1〉〈μ•2|

+
√
w2〈ψ2|ψ1〉√w1 |μ•2〉〈μ•1|

+
√
w2〈ψ2|ψ2〉√w2 |μ•2〉〈μ•2|.

(32)

This means that the matrix representation of the weighted
sum of the density operators in the basis β• is

[w1ρ̂1 + w2ρ̂2]β• =

[
w1 ejθκ

√
w1w2

e−jθκ
√
w1w2 w2

]
.

(33)

Comparing the system of Eqs. (9) and (10) with that
of Eqs. (24) and (25), we have the following rules for the
change of cordinates.

|μ•1〉 = E|μ◦1〉+ F ∗|μ◦2〉, (34)
|μ•2〉 = −F |μ◦1〉+ E|μ◦2〉, (35)

and

|μ◦1〉 = E|μ•1〉 − F ∗|μ•2〉, (36)
|μ◦2〉 = F |μ•1〉+ E|μ•2〉, (37)

where

E =

√
1 + κ+

√
1− κ

2

×
√
w1 +

√
w2√

w1 + w2 + 2
√

(1− κ2)w1w2

=

√
1 + κ+

√
1− κ

2

×
√
q1 +

√
q2√

1 + 2
√

(1− κ2)q1q2

, (38)

F = ejθ
√
1 + κ−√

1− κ

2

×
√
w1 −√

w2√
w1 + w2 + 2

√
(1− κ2)w1w2

= ejθ
√
1 + κ−√

1− κ

2

×
√
q1 −√

q2√
1 + 2

√
(1− κ2)q1q2

. (39)

From the rules mentioned above, we see that the SRM
Π◦ and the BWSRM Π• for the same binary pure state
ensemble are identical if and only if w1 = w2.
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The average probability of error by the BWSRM Π•

for a binary pure state ensemble is

P̄ •e (p1, p2) =
(p1w2 + p2w1)κ

2

w1 + w2 + 2
√
w1w2(1− κ2)

=
(p1q2 + p2q1)κ

2

1 + 2
√
q1q2(1− κ2)

. (40)

(cf. Eq.(14) of [20]).

IV. BAYES-OPTIMAL MEASUREMENT AND BWSRM
IN THE CASE OF BINARY PURE STATE DISCRIMINATION

Given (p1, p2), the measurement vectors |μB
1 〉 and

|μB
2 〉 of the Bayes-optimal POVM ΠB = {Π̂B

1 =
|μB

1 〉〈μB
1 |, Π̂B

2 = |μB
2 〉〈μB

2 |} can be directly obtained by
solving the eigenvalue problem of a subtruction form of
the two density matrix representations of the correspong-
ing pure states in an arbitrarily chosen basis accoding
to the literatures [1], [3]. Here we take the following
expressions of the vectors |μB

1 〉 and |μB
2 〉 by means of

the SRM vectors |μ◦1〉 and |μ◦2〉 :

|μB
1 〉 = u11|μ◦1〉+ u12|μ◦2〉, (41)

|μB
2 〉 = u21|μ◦1〉+ u22|μ◦2〉, (42)

where

u11 =
Λ+ (1 + ζ)

√
1− κ2√

2Λ2 + 2(1 + ζ)Λ
√
1− κ2

= u22, (43)

u21 =
ejθκ(1− ζ)√

2Λ2 + 2(1 + ζ)Λ
√
1− κ2

= −u∗12, (44)

and

Λ =
√

(1 + ζ)2 − 4ζκ2, ζ = p1/p2. (45)

Substituting Eqs. (5) and (6) into Eqs. (41) and (42),

|μB
1 〉 = (u11A

◦ + u12B
◦)|ψ1〉

+(u11B
◦∗ + u12A

◦)|ψ2〉, (46)
|μB

2 〉 = (u21A
◦ + u22B

◦)|ψ1〉
+(u21B

◦∗ + u22A
◦)|ψ2〉. (47)

Further, Eqs. (36) and (37) yield

|μB
1 〉 = (u11E + u12F )|μ•1〉

+(−u11F ∗ + u12E)|μ•2〉, (48)
|μB

2 〉 = (u21E + u22F )|μ•1〉
+(−u21F ∗ + u22E)|μ•2〉, (49)

which are the expressions of the vectors |μB
1 〉 and |μB

2 〉
by means of the BWSRM vectors |μ•1〉 and |μ•2〉.

The POVM ΠB = {|μB
1 〉〈μB

1 |, |μB
2 〉〈μB

2 |} of course
provides the well-known formula of the minimum average
probability of error for the discrimination of two pure
states in accordance with the Bayes strategy [1], [3]:

P̄B
e (p1, p2) =

1

2

(
1−

√
1− 4p1p2κ2

)
. (50)

This is independent from the choise of the basis to express
the vectors |μB

1 〉 and |μB
2 〉. Letting

p1 =
1

2
+
ε

2
, p2 =

1

2
− ε

2
, (51)

with −1 < ε < 1, Eq. (50) is arranged to the form

P̄B
e (ε) =

1

2

(
1−

√
1− (1− ε2)κ2

)
. (52)

A. Case for given (w1, w2)

According to Mochon [23], the probability distribution
that makes the BWSRM Bayes-optimal is formaly given
by

p′m =
C

〈ψm|
(∑M

�=1 w�|ψ�〉〈ψ�|
)−1/2

|ψm〉
,

(53)

where C is a constant for normalization.
For a binary pure state ensemble, the optimal proba-

bilites are given by

p′1 =
1

2
+

Δ

2
, p′2 =

1

2
− Δ

2
(54)

with

Δ =

√
1− κ2(w1 − w2)√

1− κ2(w1 + w2) + 2
√
w1w2

=

√
1− κ2(q1 − q2)√
1− κ2 + 2

√
q1q2

. (55)

In fact, this distribution (p′1, p
′
2) for given weights w1 and

w2 analytically leads to

u11E + u12F = −u21F ∗ + u22E = 1, (56)
−u11F ∗ + u12E = u21E + u22F = 0, (57)

(See APPENDIX A) and hence

|μB
1 〉 = |μ•1〉, |μB

2 〉 = |μ•2〉, (58)

for (p′1, p
′
2). Therefore, we have

P̄ •e (p
′
1, p

′
2) = P̄B

e (p′1, p
′
2), (59)

as expected.
Here let us verify Eqs. (54) and (55) numerically. Fig.

1 shows the error probability by Eq. (40) with Eqs.
(54) and (55) at κ = 0.3 and 0.7, together with the
corresponding minimum average probaility of error of
Eq. (50). Fifty random samples generated from Eqs. (40),
(54), and (55) are plotted for each κ, in which w1 and w2

are independetly chosen at random in the range (0, 100].
A solid line is drawn by Eq. (50). All sample point is
just on the mimimum average probability of error, which
illustrates the optimality of p′1 and p′2 when w1 and w2

are given.
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Fig. 1. Case for given (w1, w2). κ = 0.3:top. κ = 0.7:bottom.

B. Case for given (p1, p2)

According to the literatures [20] and [25], the optimal
weights for given dstribution of the states are given by

w′m = 〈ψm|Π̂B
m|ψm〉p2m. (60)

For a binary pure state ensemble, we have

w′1 =

(
1

2
+

(1 + ζ)− 2κ2

2Λ

)
p21, (61)

w′2 =

(
1

2
+

(1 + ζ)− 2ζκ2

2Λ

)
p22. (62)

Like in the previous case, these weights w′1 and w′2 yield

|μB
1 〉 = |μ•1〉|w′

1,w
′
2
, |μB

2 〉 = |μ•2〉|w′
1,w

′
2
, (63)

and
P̄ •e (p1, p2)

∣∣
w′

1,w
′
2
= P̄B

e (p1, p2), (64)

when (p1, p2) is given.
Fig. 2 shows a numerical calculation result of the error

probability by Eq. (40) with Eqs. (61) and (62) at κ =
0.3 and 0.7, together with that of the minimum average
probability of error of Eq. (50). Fifty random samples are
plotted for each κ. This illustrates the optimality of w′1
and w′2 when p1 and p2 are given.

V. CONCLUSION

We investigated some relationship among the square-
root measurement (SRM), the Belavkin-weighted square-
root measurement (BWSRM), and Bayes-optimal mea-
surement in the case of binary pure state ensembles.
Based on Mochon’s result, a closed-form expression of
the state distribution that makes the BWSRM Bayes-
optimal was derived when the weights of the BWSRM

Fig. 2. Case for given (p1, p2). κ = 0.3:top. κ = 0.7:bottom.

are given. Conversely, a closed-form expression of the
optimal weights of the BWSRM was derived when the
probability distribution of the states is given, with the
help of the preceding works by Tyson and by Łuczak and
Wieczorek. These results give simple concrete examples
of relation between the BWSRM and the Bayes-optimal
measurement. More general analysis for seeking closed-
form expressions such that for multiple state cases having
more than three states ramains for future work.
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APPENDIX

A. Outline of the verification of Eqs. (56) and (57)

Both (57) and (56) can be obtained from some lengthy
but straightforward algebra. Here we give a brief ouline
of the verification of Eqs. (56) and (57).

First let us consider Eq. (56). Substituting Eq. (55) into
u11E+u12F and −u21F ∗+u22E, which are coefficients
appeared in Eqs. (51) and (52), we have

u11E + u12F = −u21F ∗ + u22E =
N1

D1
,

where

N1 = (
√
1 + κ+

√
1− κ)

×(1 +
√
1− (1−Δ2)κ2)

×(
√
w1 +

√
w2 )

−κ(√1 + κ−√
1− κ)

×((1−Δ)
√
w1 + (1 +Δ)

√
w2

)
,

D1 = 2
√
2
(
1− (1−Δ2)κ2

) 1
4

×
√√

1− κ2 +
√

1− (1−Δ2)κ2

×
√
w1 + w2 + 2

√
(1− κ2)w1w2.

After lengthly algebra, we obtain

N1

D1
=

√
1 + κ+

√
1− κ√

2 + 2
√
1− κ2

= 1.

In the middle, we have used the following facts to
simplify the form of N1/D1:(√

1− κ2(w1 + w2)2
√
w1w2

)2
−4κ2

√
w1w2

×
(√

1− κ2(w1 + w2) + (2− κ2)
√
w1w2

)
=

(√
1− κ2(w1 + w2) + 2(1− κ2)

√
w1w2

)2
and

√
1− κ2(w1 + w2) + 2(1− κ2)

√
w1w2 > 0.

Next we consider Eq. (57). Substituting Eq. (55) into
−u11F ∗+u12E and u21E+w22F , respectively, we have

ejθ(−u11F ∗ + u12E) = e−jθ(u21E + w22F ) =
N2

D2
,

where

N2 = Δκ
(√

1 + κ+
√
1− κ

)(√
w1 +

√
w2

)
−(√1 + κ−√

1− κ
)

×(√1− κ2 +
√
1− (1−Δ2)κ2

)
×(√w1 −√

w2

)
,

D2 = 2
√
2

√
1− (1−Δ2)κ2

+
√

(1− κ2)(1− (1−Δ2)κ2)

×
√
w1 + w2 + 2

√
(1− κ2)w1w2.

Since 0 < 1 −Δ2 < 1, we observe D2 > 0. Therefore,
our task is to verify whether N2 vanishes or not. But, the
straitforward calculation yields N2 = 0.
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