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Abstract—Chernoff’s approach to statistical hypothesis
testing has influenced information theory considerably. This
review article focuses on Chernoff’s quantity proposed in 1952
in his influential work. Its quantitative relations to a quantity
better-known in information theory, i.e., the Kullback-Leibler
information, are presented in terms of inequalities and equal-
ities.

I. INTRODUCTION

Most of fundamental coding theorems in classical infor-

mation theory, which has been initiated by Shannon, can be

written in terms of Shannon entropy, H(P ), and Kullback-

Leibler information, D(P ||Q). The definitions of H and D
are given in what follows; they are functions of probability

distributions, denoted by P and Q here. For example, in the

source coding theorem, H(P ) appears as the limit of data

compression rate. Regarding channel coding, the mutual

information I(P,W ), which is a function of a probability

distribution P and a channel W , appears in the universal

channel coding theorem of Csiszar and Koerner [1], [2].

One should note that I(P,W ) can also be written with

D. This theorem shows that the decoding error of some

sequence of channel codes goes to zero exponentially in the

code-length, and it also gives a bound on the best exponent

in a large-deviation-theoretic manner.

Such a large-deviation-theoretic bound was obtained

earlier in [3], [4], [5], [6], [7], [8]. In particular, Gallager’s

work [5], [8] is famous for a simple proof of the attain-

ability of the bound. There, the channel coding theorem

is stated in a manner different from that of Csiszar and

Koerner. While Csiszar and Koerner have proved the result

in such a way that D and I appear directly, Gallager’s

approach resembles Chernoff’s [9]. They exploit moment

generating functions or their logarithms, called cumulant

generating functions.

The attainable error exponent, which may be interpreted

as speed of convergence, obtained in these two manners

look different, but they equal each other quantitatively [1].

The aim of this article is not to discuss such a specialized

matter in details, but to draw the reader’s attention to

some relationships among fundamental quantities that have

appeared in the results described above (or, at least, in their

underlying ideas). The importance of these quantities has

already been illustrated by the above examples. These seem

to be useful for diverse applications.

In this memorandum, we explain how Chernoff’s quan-

tity, specifically, the cumulant generating function sug-

gested in Chernoff’s work [9], is related to D(P ||Q).
We will focus on showing quantitative relations (in terms

of inequalities or equalities) among D and Chernoff’s

quantity, and only give brief references to specific pieces

of the literature for the reader who is interested in how

these quantities emerge in existing theories.

II. PRELIMINARIES

Throughout, we use natural logarithms, i.e., logarithms

are to base e. We only treat probability distributions on

some finite set. We use the following notation on the

method of types [1], [10], [11]. We denote by P(X ) the set

of all probability distributions on a set X [11]. We denote

the type of x ∈ Xn by Px. This means that the number of

appearances of u ∈ X in x ∈ Xn is nPx(u).
We follow the convention to denote by PX the proba-

bility distribution of a random variable X . The expectation

operation with respect to a random variable X taking

values in a set X is denoted by EX :

EXF (X) =
∑
u∈X

PX(u)F (u)

where F is a real-valued function on X . For a probability

distribution P ∈ P(X ), Pn denotes the product of n copies

of P defined by Pn(x1, . . . , xn) = P (x1) · · ·P (xn).
The classical Kullback-Leibler information (also called

relative entropy) [12], [13] is denoted by D and Shannon

entropy by H . Specifically, for probability distributions P
and Q on a finite set X , we define D(P ||Q) by

D(P ||Q) =
∑
u∈X

P (u) loge
P (u)

Q(u)

and H(Q) by H(Q) = −∑
u∈X Q(u) loge Q(u). Here, the

conventions 0 log 0 = 0, 0 log(0/0) = 0, and p log(p/0) =
+∞ for p > 0 should be understood.

A short straightforward calculation gives
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Fact 1: For Q ∈ P(X ) and x ∈ Xn,

Qn(x) = exp{−n[H(Px) +D(Px||Q)]}.
At this stage, H(P ) and D(P ||Q) have already appeared.

We will move on to relate D(P ||Q) with some known

quantity.

III. CHERNOFF’S QUANTITY

Now fix a set X = {a1, . . . , am}, where m ≥ 2, and

consider a pair of probability distributions P and Q ∈
P(X ). For simplicity, write pi = P (ai) and qi = Q(ai) for

i = 1, . . . ,m. To avoid cumbersomeness in presentation,

we assume pi > 0 and qi > 0 for i = 1, . . . ,m in what

follows.

Some quantity, which may be viewed as a measure of

closeness of P and Q, is known [9]:

Cα(P,Q) = − log

m∑
i=1

pαi q
1−α
i , (1)

where α ∈ R.

Fact 2: [
dCα(P,Q)

dα

]
α=0

= D(Q||P )

and [
dCα(P,Q)

dα

]
α=1

= −D(P ||Q).

Note that Cα(P,Q) = 0 for α = 0, 1, and Cα(P, P ) =
0.

Fact 3: Cα(P,Q) is a concave function of α. If P �= Q,

then Cα(P,Q) is a strictly concave.

We can also define

C∗
α(P,Q) =

1

1− α
Cα(P,Q) (2)

for α �= 1.

Fact 4:
lim
α→1

C∗
α(P,Q) = D(P ||Q).

Fact 5: Assume P �= Q. Then, C∗
α(P,Q) is a monoton-

ically increasing function of α.

Hence, for α ≤ 0,

C∗
α(P,Q) ≤ 0, (3)

for 0 ≤ α < 1,

0 ≤ C∗
α(P,Q) ≤ D(P ||Q), (4)

and for α > 1,

C∗
α(P,Q) ≥ D(P ||Q). (5)

These facts presented in this section are taken from [14,

Chapter 2, Exercises], so that proofs may be left to the

reader as suggested exercises. However, the next section is

helpful to understand these facts easily based on general

backgrounds.

IV. MOMENT GENERATING FUNCTION

In this section, we show that Chernoff’s quantity is

obtained by applying some general notion to a special case.

For a random variable Z , which takes values in some

finite subset Z of R, we can define a function

M(t) = EZ{exp[tZ]}, t ∈ R, (6)

which is known as the moment generating function of Z .

The quantity

logM(t) (7)

is called the cumulant generating function of Z .

Then, given P and Q ∈ P(X ), as in the previous section,

for a random variable X taking values in X and satisfying

PX = Q, the moment generating function of

Z = log
P (X)

Q(X)
(8)

is calculated as

M(t) =

m∑
i=1

qi exp

[
t log

pi
qi

]
=

m∑
i=1

ptiq
1−t
i .

Thus,

Cα(P,Q) = − logM(α)

for a moment generating function M(α) of Z in (8),

where PX = Q.1 In other words, the cumulant generating

function of Z in (8) is −Cα(P,Q). Note also that

C∗
α(P,Q) =

−Cα(P,Q) − [−C1(P,Q)]

α− 1
, (9)

so that C∗
α(P,Q) is the slope of the line passing through

the points (1, 0) = (1,−C1(P,Q)) and (α,−Cα(P,Q)) in

the Cartesian plane.

Now one can see that each of those facts listed in the

previous section either trivially follows or easily follows

from the general properties of cumulant (or moment) gen-

erating functions, in particular, that the cumulant generating

functions are convex. See a short text [15, Chapter 1,

Section 9, pp. 145–152], which treats cumulant generating

functions and Chernoff’s result with an application to

hypothesis testing.

The reader may wish to know how these quantities

D(P ||Q) and Ct(P,Q) appear in theories on statistical

hypothesis testing or information. See the aforementioned

text [15, Chapter 1, Section 9] for a readable exposi-

tion. See also the original paper [9], or [10, pp. 43–

44], [16]. In information theorists’ texts [17, Chapter 12],

[18, Chapter 11], one may find a theorem (attributed to

Chernoff) comparable to coding theorems. This is based

on a result called Stein’s lemma [17, Theorem 12.8.1] or

the Chernoff-Stein Lemma [18, Theorem 11.8.3]. Kullback

and Leibler [12] called D(P ||Q) the mean information for

discrimination between the two hypotheses with P and Q
per observation from P .

1In fact, Chernoff’s suggestion [9] is to use infα∈(0,1) M(α) or
− log infα∈(0,1) M(α).
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As for channel coding, the approach taken by Gal-

lager [4], [5], [6], [7] to derive exponential bounds on the

best decoding error probabilities of channel codes resem-

bles Chernoff’s. In particular, he began with arguments in

the case of two code words in [8]. This is understood to

be an argument on hypothesis testing.

V. CONCLUDING REMARKS

This review article has introduced a classical quantity

of Chernoff’s and described its relation to the Kullback-

Leibler information (mean information for discrimination

between two hypotheses). These quantities have appeared

in treatments on statistical hypothesis testing. Issues on

hypothesis testing have already been extended to quantum

settings. Similarly to the classical case, hypothesis testing

in quantum settings [19], [20, Chapter 8], [21] would be

fundamental.
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