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Abstract—We propose a diagrammatic notation for ma-
trix differentiation. Our new notation enables us to derive
formulas for matrix differentiation more easily than the
usual matrix (or index) notation. We demonstrate the
effectiveness of our notation through several examples.

I. Introduction

Matrix differentiation (or matrix calculus) is widely

accepted as an essential tool in various fields includ-

ing estimation theory, signal processing, and machine

learning. This is also utilized in many fields of quantum

information theory (e.g., quantum tomography [1], [2],

the optimal control of quantum systems [3], and the per-

turbative analysis of entanglement negativity [4]). Matrix

differentiation provides a convenient way to collect the

derivative of each component of the dependent variable

with respect to each component of the independent vari-

able, where the dependent and independent variables can

be a scalar, a vector, or a matrix. However, the usual

matrix (or index) notation often suffers from cumbersome

calculations and difficulty in the intuitive interpretation of

the final results.

It is known that diagrammatic representations using

string diagrams can be successfully applied in linear

algebra (see [5] and references therein). In this paper,

we provide a simple diagrammatic approach to derive

useful formulas for matrix differentiation. Note that pos-

itive semidefinite matrices and completely positive maps,

which can respectively represent quantum states and

quantum processes, are regarded as vectors and matrices

in the real Hilbert space of Hermitian matrices.

Here we mention some related work. In Ref. [6], the

way of graphically representing the del operator (i.e.,

∇) is presented, in which calculations are limited to the

case of three-dimensional Euclidean space. Reference [7]

presents a diagrammatic notation for manipulating tensor

derivatives with respect to one parameter. We adopt a

similar notation to those given in these references.

II. Definition of matrix differentiation

Let R be the set of all real numbers and Rm×n be the

set of all m × n real matrices. Also, let {|i〉}mi=1
denote

the standard basis of Rm. We are concerned only with

finite-dimensional real Hilbert spaces. Given a map f
from Rm×n to R and a matrix X ∈ Rm×n of independent

variables, we denote the m × n real matrix with (i, j)-th

component ∂
∂Xi, j

f (X) by ∂
∂X f (X), where Xi, j � 〈i|X| j〉 is

the (i, j)-th component of X. We have

∂

∂X
f (X) =

m∑
i=1

n∑
j=1

∂

∂Xi, j
|i〉 〈 j| f (X)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂X1,1

f (X) ∂
∂X1,2

f (X) · · · ∂
∂X1,n

f (X)
∂
∂X2,1

f (X) ∂
∂X2,2

f (X) · · · ∂
∂X2,n

f (X)

...
...

. . .
...

∂
∂Xm,1

f (X) ∂
∂Xm,2

f (X) · · · ∂
∂Xm,n

f (X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(1)

In the special case of n = 1, X is a column vector, which

is denoted by |x〉. In this case, we have

∂

∂ |x〉 f (|x〉) =
m∑

i=1

∂

∂xi
|i〉 f (|x〉) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

f (|x〉)
∂
∂x2

f (|x〉)
...

∂
∂xm

f (|x〉)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where xi � 〈i|x〉.
A similar notation is used when f is a map from Rm×n

to Rm′×n′ . For such f , ∂
∂X f (X) is an m×n×m′ ×n′ fourth-

order tensor with components { ∂
∂Xi, j
〈i′| f (X)| j′〉}i, j,i′, j′ . This

can be written as the following mm′ × nn′ matrix:

∂

∂X
f (X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂X1,1

f (X) ∂
∂X1,2

f (X) · · · ∂
∂X1,n

f (X)
∂
∂X2,1

f (X) ∂
∂X2,2

f (X) · · · ∂
∂X2,n

f (X)

...
...

. . .
...

∂
∂Xm,1

f (X) ∂
∂Xm,2

f (X) · · · ∂
∂Xm,n

f (X)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where, for each i and j, ∂
∂Xi, j

f (X) is the m′ × n′ matrix

whose (i′, j′)-th component is ∂
∂Xi, j
〈i′| f (X)| j′〉.

III. Diagrammatic notation

In diagrammatic terms, a matrix is represented as a

box with an input wire at the bottom and an output wire

at the top. Column vectors, row vectors, and scalars are

regarded as special cases of matrices. For example, A ∈
R

m×n, |x〉 ∈ Rm � Rm×1, |y〉 ∈ Rm∗ � R1×m, and p ∈ R are

diagrammatically depicted as

.

The Hilbert space Rm is represented by the wire with

label m, while the Hilbert space R is represented by
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‘no wire’. For a scalar, the box will be omitted. Matrix

multiplication and tensor products are represented as the

sequential and parallel compositions, respectively. The

identity matrix � ∈ Rm×m is depicted as

.

We often use a special column vector |∪n〉 ∈ Rn ⊗ Rn,

called a cup, and a special row vector 〈∩n| ∈ Rn∗ ⊗ Rn∗,
called a cap. The cup |∪n〉 is depicted as

.

The cap 〈∩n| is the transpose of |∪n〉, which is depicted

as

.

We have that, for any X ∈ Rm×n,

. (2)

Indeed, the left equality is obtained from

,

and the same argument works for the right equality. Equa-

tion (2) implies that the transpose acts diagrammatically

by rotating boxes 180◦. Substituting X = � with Eq. (2)

yields

. (3)

The trace of X ∈ Rm×m satisfies Tr X = 〈∩|X ⊗ �|∪〉, i.e.,

.

We also use the swap matrix ×n,m, depicted by

,

and the matrix called “spider”, depicted by

.

For details regarding the properties of these matrices, see,

e.g., Ref. [5].

We write ∂
∂X f (X) with a map f : Rm×n → Rm′×n′ as

.

From Eq. (1), we have

.

IV. Basic formulas

We review some basic formulas that we shall frequently

use later.

A. Derivatives of A and X

For any matrix A that is independent of X, ∂
∂X A = 0,

i.e.,

(4)

holds, where 0 is the zero matrix of size mk × nl.
In what follows, we assume that matrices A, B, . . . are

independent of X, unless otherwise mentioned. Also, from
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∂
∂Xi, j

Xk,l = δi,kδ j,l (where δi,k is the Kronecker delta), we

have ∂
∂X X = |∪m〉 〈∩n|, i.e.,

. (5)

B. Rules for sums and products

The following sum rule holds:

∂

∂X
[ f (X) + g(X)] =

∂

∂X
f (X) +

∂

∂X
g(X),

which is diagrammatically represented as

.

As for matrix multiplication and tensor products, we have

∂

∂X
f (X)g(X) =

[
∂

∂X
f (X)

]
g(X) + f (X)

[
∂

∂X
g(X)

]
,

∂

∂X
f (X) ⊗ h(X) =

[
∂

∂X
f (X)

]
⊗ h(X) + f (X) ⊗

[
∂

∂X
h(X)

]
,

which are depicted as

(6)

and

.

(7)

Note that we assume that the order of wires does not

matter in a diagram.

C. Chain rules

Given a matrix X ∈ Rm×n, a map Y : Rm×n → Rm′×n′ ,

and a map f : Rm′×n′ → Rk×l, the derivative of f [Y(X)]

with respect to Xi, j satisfies

∂

∂Xi, j
f [Y(X)] =

k∑
i′=1

l∑
j′=1

∂ f [Y(X)]

∂Yi′, j′

∂Yi′, j′

∂Xi, j
,

where Yi′, j′ � 〈i′|Y(X)| j′〉. Thus, ∂
∂X f [Y(X)] can be

diagrammatically represented by

. (8)

All the formulas presented in this paper can be obtained

using the above-mentioned equations. It is noteworthy

that this paper is focused on the matrix differentiation,

but our notation can be easily extended to the case of

high-order tensors.

V. Other basic formulas

We derive several basic formulas.

A. Derivatives of matrix multiplication and tensor prod-
ucts

We immediately obtain

(4)
(7)
(6)

. (9)

B. Derivative of XT

Since XT is represented by

, (10)

we have

(3)(5)

(9)
(10)

.

(11)
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C. Derivatives of Hadamard products

The Hadamard product of A ∈ Rm×n and B ∈ Rm×n,

denoted by A ◦ B, is the component-wise product, i.e.,

A ◦ B �
m∑

i=1

n∑
j=1

〈i|A| j〉 〈i|B| j〉 |i〉 〈 j| ,

which is diagrammatically depicted as

.

From Eq. (11), we can readily verify

.

(12)

VI. Examples

We will give some concrete examples that are directly

derived from the above basic formulas.

A. Derivatives with respect to column vectors

1)
∂

∂ |x〉 〈a|x〉 = |a〉:

Substituting n = 1 into Eq. (5) gives

. (13)

Thus, we have

(13)

. (14)

Note that 〈a|T = |a〉 holds since |a〉 is a real column vector.

2)
∂

∂ |x〉 〈x|A|x〉 = (A + AT) |x〉:

Substituting n = 1 into Eq. (11) gives

, (15)

and thus

(2)

(13)
(15)

(16)

holds.

3) Other important examples:

We can easily obtain the following formulas (the proofs

are left to the readers) 1:

∂

∂ |x〉 ‖A |x〉 − |b〉 ‖
2
2 = 2AT(A |x〉 − |b〉),

∂

∂ |x〉 ‖ |x〉 − |b〉 ‖2 =
|x〉 − |b〉
‖ |x〉 − |b〉 ‖2 .

B. Derivatives with respect to matrices

1)
∂

∂X
〈a|X|b〉 = |a〉 〈b|:

(5)

.

1We remind that ‖ |v〉 ‖2 = 〈v|v〉 holds. The second line follows from
substituting u � ‖ |x〉 − |b〉 ‖2

2
into

∂

∂ |x〉
√

u =
∂u
∂ |x〉

∂
√

u
∂u
=
∂u
∂ |x〉 ·

1

2
√

u
,

which is immediately obtained by the chain rule, and using ∂u
∂|x〉 =

2(|x〉− |b〉), which is obtained from substituting A = � into the first line.
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2)
∂

∂X
Tr(AX) = AT:

(2)(5)

.

3)
∂

∂X
Tr(XXT) = 2X:

(2)

(11)
(5)

.

4)
∂

∂X
Tr(AXBX) = ATXTBT + BTXTAT:

(2)

(5)

.

5)
∂

∂X
X−1 = −(� ⊗ X−1) |∪〉 〈∩| (� ⊗ X−1):

Letting Z � ∂
∂X X−1 and differentiating X−1 = X−1XX−1

with respect to X gives Z = Z + X−1 ∂X
∂X X−1 + Z. Thus, we

have

(5)

.(17)

6)
∂

∂X
Tr[(X + A)−1] = −[(X + A)−2]T:

Letting Y � X + A and using the chain rule, we obtain

(2)

(17)
(5)

(8)

.

7)
∂

∂X
Tr(A ◦ X) = A ◦ �:

(5)
(12)

.
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8)
∂2

∂ |x〉 ∂ 〈x| (〈x|A|x〉 + 〈b|x〉) = A + AT:

(3)
(13)

(14)
(16)

.

This formula shows that the Hessian matrix of the

quadratic function 〈x|A|x〉 + 〈b|x〉 + c with A ∈ Rm×m,

|b〉 ∈ Rm, and c ∈ R is A + AT.

9) Other important examples:

We can easily obtain the following formulas (the proofs

are left to the readers):

∂

∂X
Tr(AXB) = ATBT,

∂

∂X
Tr(X ⊗ X) = (2 Tr X)�,

∂

∂X
〈a|XTCX|b〉 = CX |b〉 〈a| +CTX |a〉 〈b| ,
∂

∂X
Tr(Xk) = k(Xk−1)T,

∂

∂X
Tr(AXk) =

k−1∑
s=0

(XsAXk−1−s)T,

∂

∂X
Tr(AX−1B) = −(X−1BAX−1)T,

where k is a natural number.

VII. Conclusion

We introduced a diagrammatic notation for matrix

differentiation. We demonstrated through some interesting

examples that our notation makes it possible to easily and

intuitively calculate matrix differentiation.
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