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Abstract—Homodyne measurement with angle φ rotation
is considered in the scenario of quantum communications.
First, some essential characteristics of the homodyne mea-
surement with angle φ rotation are investigated in the cases
of coherent and squeezed states. Second, the homodyne
receiver with angle φ rotation is applied to the signal
detection problem of binary squeezed state signal.

I. INTRODUCTION

Homodyne measurement is one of the effective tech-

niques to detect light. The references [1], [2], [3], [4],

[5], [6] are early discussions on the quantum mechanical

treatment and the analysis of homodyne measurement

in the scenario of optical communications and precision

measurement of light. In quantum state tomography ([7],

[8], [9], [10], etc.), homodyne measurement is essential

in realizing it.

The squeezed state (once called the two-photon co-

herent state) is one of the fundamental states of light

([11], [12], [13], [14], etc.). From the viewpoint of

quantum information science, the squeezed states possess

several potential applications. For example, the reference

[11] pointed out that the transmission source and the

ideal amplifier for optical communications are valuable

applications. Early discussions on these issues by the

first generation of quantum information scientists can be

found in the references [2], [3], [4], [13], [15], [16]. These

issues have recently returned to the spotlight, and more

advanced research reports have emerged. For example,

the references [17], [18] discuss the basic properties of

the squeezed state-based quantum communication sys-

tems with phase-shift keying signal format. In addition,

the references [19], [20] report some propagation char-

acteristics of the squeezed light in fog toward future

applications such as free-space quantum communications

and quantum-enhanced target detection.

This paper discusses homodyne measurement with an-

gle φ rotation and how to apply it for detecting squeezed

state signals in the scenario of quantum communications.

Suppose that M -ary phase-shift keying squeezed state

signals are prepared, and the signals are divided into M/2
pairs, each consisting of the signals apart from π radian.

The problem treated in this paper is the discrimination

of the two signals in a pair by the homodyne receiver

that consists of a homodyne measurement scheme and

appropriate decision-making rule for signal detection.

At that time, the measurement angle in the homodyne

receiver must be adjusted according to the target pair

to avoid performance degradation due to a mismatch of

the signaling phase and measurement angle. Therefore,

we first investigate some essential characteristics of the

homodyne measurement with angle φ rotation in the cases

of coherent and squeezed states. After that, the homodyne

receiver with angle φ is applied to the detection problem

of binary squeezed state signal.

II. HOMODYNE MEASUREMENT WITH ANGLE φ
ROTATION

A. Coherent state case

For a single mode of the field with the annihilation

operator â and the creation operator â†, define the ob-

servables X̂c ≡ (â† + â)/2 and X̂s ≡ j(â† − â)/2,

where j =
√−1. These observables obey the relation

[X̂c, X̂s] = j/2. The eigenvectors |xc〉 of X̂c (i.e.,
X̂c|xc〉 = xc|xc〉) form an orthonormal basis {|xc〉}
of the Hilbert space corresponding to the mode under

consideration. Similarly, {|xs〉} is an orthonormal basis.

The xc- and xs-representations of the coherent state

|α′〉coh of complex amplitude α′ are respectively given

as follows (p.127 and p.255 of [1]):

〈xc|α′〉coh =

(
2

π

)1/4

exp[−x2
c + 2α′xc

−1

2
|α′|2 − 1

2
α′2], (1)

〈xs|α′〉coh =

(
2

π

)1/4

exp[−x2
s − 2jα′xs

−1

2
|α′|2 + 1

2
α′2]. (2)

Therefore, the probability density function (PDF) of mea-

surement outcome xc by the projection-valued measure
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Fig. 1. Coordinates (Xc, Xs) and (X,Y )

{|xc〉〈xc|} and that of xs by {|xs〉〈xs|} are respectively

given [1] as

p(xc|α′) =

√
2

π
exp[−2

(
xc − α′∗ + α′

2

)2

], (3)

p(xs|α′) =

√
2

π
exp[−2

(
xs − j

α′∗ − α′

2

)2

]. (4)

Next, define the observable X̂φ ≡ (â†ejφ + âe−jφ)/2,

X̂ ≡ X̂φ and Ŷ ≡ X̂φ+π/2, where φ is real. The com-

mutator of X̂ and Ŷ is [X̂, Ŷ ] = j/2. The geometrical

relation of the two coordinates (Xc, Xs) and (X,Y ) is

illustrated in Fig. 1.

Let |x〉 and |y〉 denote eigenstates of X̂ and Ŷ , respec-

tively. A simple way to find the x- and y-representations

of coherent state |α〉coh is to use the rotation operator

R̂(φ) = exp[−jφâ†â]. Since R̂(φ)X̂R̂†(φ) = X̂c, the

eigen equation X̂(R̂†(φ)|xc〉) = xc(R̂
†(φ)|xc〉) holds.

Therefore,

〈x|α〉coh = 〈xc|R̂(φ)D̂(α)|0〉
= 〈xc|D̂(e−jφα)R̂†(φ)|0〉
= 〈xc|D̂(e−jφα)|0〉
= 〈xc|e−jφα〉coh, (5)

where D̂(α′) = exp[α′â† − α′∗â] is the displacement

operator with complex amplitude α′ ∈ C. Similarly,

〈y|α〉coh = 〈xs|αe−jφ〉coh (6)

from R̂(φ)Ŷ R̂†(φ) = X̂s. Therefore,

〈x|α〉coh =

(
2

π

)1/4

exp[−x2 + 2αe−jφx

−1

2
|α|2 − 1

2
α2e−2jφ], (7)

〈y|α〉coh =

(
2

π

)1/4

exp[−y2 − 2jαe−jφy

−1

2
|α|2 + 1

2
α2e−2jφ]. (8)

Fig. 2. Homodyne of coherent state. (1) measurement angle. (2)
probability density function. φ = 0◦:red, 30◦:orange, 60◦:pink,
90◦:green, 120◦:magenta, 150◦:blue, 180◦:purple. Dot in (1) stands
for the complex amplitude α = 6.

Note that Eqs. (7) and (8) can be derived directly from

the following differential equations:

∂

∂x
〈x|α〉coh = 2(αe−jφ − x)〈x|α〉coh, (9)

∂

∂y
〈y|α〉coh = 2(αe−j(φ+π

2 ) − y)〈y|α〉coh, (10)

which are established by evaluating 〈x|â|α〉coh and

〈y|â|α〉coh, respectively.

From the x-representation 〈x|α〉coh, the PDF of out-

come x by the projection-valued measure {|x〉〈x|} is

p(x|α) = |〈x|α〉coh|2

=

√
2

π
exp[−2 (x− X̄coh

)2
], (11)

where the mean and varicance are

X̄coh =
ejφα∗ + e−jφα

2
, σ2

X,one,coh =
1

4
. (12)

The PDF of y by {|y〉〈y|} is
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p(y|α) = |〈y|α〉coh|2

=

√
2

π
exp[−2 (y − Ȳcoh

)2
], (13)

where

Ȳcoh = j
ejφα∗ − e−jφα

2
, σ2

Y,one,coh =
1

4
. (14)

The means X̄coh and Ȳcoh depend on the measurement

angle φ, while the variances σ2
X,one,coh and σ2

Y,one,coh

are independent from φ. Fig. 2 shows p(x|α) for some

measurement angles at α = 6.

For the coherent state case, Robertson’s inequality [21]

is satisfied with minimal uncertainty, independent from φ:

σ2
X,one,cohσ

2
Y,one,coh =

1

16
=

1

4

∣∣∣[X̂, Ŷ ]
∣∣∣2. (15)

B. Squeezed state case

Let |β;μ, ν〉 denote a squeezed state having complex

parameters β, μ, and ν, where |μ|2 − |ν|2 = 1 (Basic

properties of the squeezed states are summarized accord-

ing to the reference [11] in Appendix A).

The following differential equations are obtained by

evaluating 〈x|b̂|β;μ, ν〉 and 〈y|b̂|β;μ, ν〉:(
β − Λ+[φ]x

)
〈x|β;μ, ν〉

=
1

2
Λ−[φ]

∂

∂x
〈x|β;μ, ν〉, (16)(

β − Λ+[φ+
π

2
]y
)
〈y|β;μ, ν〉

=
1

2
Λ−[φ+

π

2
]
∂

∂y
〈y|β;μ, ν〉, (17)

where

Λ−[φ] = μejφ − νe−jφ, (18)

Λ+[φ] = μejφ + νe−jφ (19)

(See also Appendix E). Solving the differential equa-

tions, the x- and y-representations of the squeezed state

|β;μ, ν〉 are respectively given as

〈x|β;μ, ν〉

=

(
2

π

)1/4 (
ejφ

Λ−[φ]

)1/2

× exp
[
−Λ+[φ]

Λ−[φ]
x2 +

2

Λ−[φ]
βx

−1

2
|β|2 − 1

2
· Λ

∗
−[φ]

Λ−[φ]
β2

]
, (20)

〈y|β;μ, ν〉

=

(
2

π

)1/4 (
ejφ

Λ+[φ]

)1/2

× exp
[
−Λ−[φ]
Λ+[φ]

y2 − j
2

Λ+[φ]
βy

−1

2
|β|2 + 1

2
· Λ

∗
+[φ]

Λ+[φ]
β2

]
. (21)

The PDF of outcome x by the projection-valued mea-

sure {|x〉〈x|} for the squeezed state |β;μ, ν〉 is

p(x|β;μ, ν) = 1√
2πσ2

X,one,sq

exp[− (x− X̄sq)
2

2σ2
X,one,sq

], (22)

where the mean and variance are

X̄sq =
Λ−[φ]β∗ + Λ∗

−[φ]β
2

, (23)

σ2
X,one,sq =

1

4

∣∣Λ−[φ]
∣∣2. (24)

Similarly, the PDF of y by {|y〉〈y|} for |β;μ, ν〉 is

p(y|β;μ, ν) = 1√
2πσ2

Y,one,sq

exp[− (y − Ȳsq)
2

2σ2
Y,one,sq

], (25)

where

Ȳsq = j
Λ+[φ]β

∗ − Λ∗
+[φ]β

2
, (26)

σ2
Y,one,sq =

1

4

∣∣Λ+[φ]
∣∣2. (27)

All of the statistics (23), (24), (26), and (27), depends on

measurement angle φ in the squeezed state case, while

only the means depend on in the coherent state case.

Here, let us evaluate Robertson’s inequality. If the

state parameters μ and ν and the measurement angle φ
satisfy the relation μejφ = cνe−jφ with a real number

c, the condition |μ|2 − |ν|2 = 1 is replaced to the

conditions (c2 − 1)|ν|2 = 1 and |c| ≥ 1. Once μejφ =
cνe−jφ holds for a real number c, then μej(φ+mπ/2) =
(−1)mcνe−j(φ+mπ/2) for an integer m. Even in this case,

(c2 − 1)|ν|2 = 1 still holds. Under these conditions, the

equality of Robertson’s inequality is established:

σ2
X,one,sqσ

2
Y,one,sq

=
1

16

∣∣Λ−[φ]
∣∣2∣∣Λ+[φ]

∣∣2
=

1

16

∣∣Λ−[φ+m
π

2
]
∣∣2∣∣Λ+[φ+m

π

2
]
∣∣2

=
1

16
(c2 − 1)2|ν|4 =

1

16
=

1

4

∣∣[X̂, Ŷ ]
∣∣2. (28)

The variances are

σ2
X,one,sq =

1

4
· c− 1

c+ 1
, (29)

σ2
Y,one,sq =

1

4
· c+ 1

c− 1
. (30)

If c > 1, then σ2
X,one,sq < σ2

Y,one,sq. Conversely, if c <
−1, then σ2

Y,one,sq < σ2
X,one,sq. Now, suppose the relation

μejφ = cνe−jφ holds for some c > 1 at measurement

angle φ. Take the measurement angle φ+mπ/2 + π/4,

σ2
X,one,sq =

1

4
· c

2 + 1

c2 − 1
= σ2

Y,one,sq. (31)

To illustrate the property of the uncertainty product

σ2
X,one,sqσ

2
Y,one,sq concretely, assume that μ = cosh r and
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ν = e2jθsq sinh r, where r > 0 and −π/2 < θsq ≤ π/2.

Under this assumption,

σ2
X,one,sqσ

2
Y,one,sq

=
1

16

∣∣Λ−[φ]
∣∣2∣∣Λ+[φ]

∣∣2
=

1

16

(
cosh4 r + sinh4 r

−2 cos[4(θsq − φ)] cosh2 r sinh2 r
)
. (32)

A typical behavior of the product of variances is shown

in Fig. 3. If θsq − φ = mπ/2 for integer m, Robertson’s

inequality is satisfied with minimum uncertainty:

σ2
X,one,sqσ

2
Y,one,sq

∣∣
θsq−φ=mπ/2

=
1

16
=

1

4

∣∣[X̂, Ŷ ]
∣∣2.
(33)

Further, the ratio of the variances is calculated as

σ2
Y,one,sq

σ2
X,one,sq

=
(
cosh4 r + sinh4 r

−2 cos[4(θsq − φ)] cosh2 r sinh2 r
)

/
(
cosh[2r]

− cos[2(θsq − φ)] sinh[2r]
)2

. (34)

This ratio is illustrated in Fig. 4, and one can observe

that

σ2
X,one,sq =

1

4
e−2r < σ2

Y,one,sq =
1

4
e2r (35)

for θsq − φ = 0,±π,

σ2
X,one,sq =

1

4
e2r > σ2

Y,one,sq =
1

4
e−2r (36)

for θsq − φ = ±π/2, and

σ2
X,one,sq = σ2

Y,one,sq =
1

4
cosh[2r] (37)

for θsq − φ = ±π/4,±3π/4.

Fig. 3. 16σ2
X,one,sqσ

2
Y,one,sq vs. θsq−φ [rad] when μ = cosh r and

ν = e2jθsq sinh r.

Fig. 4. σ2
Y,one,sq/σ

2
X,one,sq vs. θsq − φ [rad] when μ = cosh r and

ν = e2jθsq sinh r.

I2

I1

I

â1

â2
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â′1
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|A
2
ejφ〉coh

HBS

Fig. 5. Balanced homodyne measurement with angle φ

Fig. 5 shows a physical set-up of {|x〉〈x|}, which is

known as the balanced homodyne measurement [5]. In

this scheme, the input-output relation of the half beam

splitter (HBS) is assumed to be

â′1 = (â1 − â2)/
√
2, (38)

â′2 = (â1 + â2)/
√
2. (39)

The photo current I1 is proportional to the photon number

â′†1 â
′
1. Hence we let Î1 = â′†1 â

′
1, assuming the quantum

efficiency is unity. With the same reason, Î2 = â′†2 â
′
2.

Therefore,

Î = Î2 − Î1 = â†1â2 + â1â
†
2 (40)

and

Î2 = â†21 â22 + â21â
†2
2

+â†1â1 + 2â†1â1â
†
2â2 + â†2â2. (41)

When the input state of port 1 is the squeezed state

|ψ1〉 = |β;μ, ν〉 and the local oscillator at port 2 is |ψ2〉 =
|(A/2)ejφ〉coh with A > 0, then

Ī = 〈Î〉
= A× Λ−[φ]β∗ + Λ∗

−[φ]β
2

, (42)

Σ2
I = 〈Î2〉 − 〈Î〉2

= A2 × 1

4

∣∣Λ−[φ]
∣∣2 + n̄1

≈ A2 × 1

4

∣∣Λ−[φ]
∣∣2, (43)
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where n̄1 = |μ∗β − νβ∗|2 + |ν|2 and where the ap-

proximation holds for sufficiently large A. Re-scaling

these statistics with A, Ī → X̄sq and Σ2
I → σ2

X,one,sq.

Thus, the balanced homodyne captures the mean X̄sq

and variance σ2
X,one,sq for the observable X̂ when the

oscillator phase is φ rad.

When the local oscillator light is changed to |ψ2〉 =
|(A/2)ej(φ+π/2)〉coh, the average photo current and its

variance are given as

Ī = A× j
Λ+[φ]β

∗ − Λ∗
+[φ]β

2
, (44)

Σ2
I ≈ A2 × 1

4

∣∣Λ+[φ]
∣∣2, (45)

for A � 1, where these are obtained by replacing φ
to φ + π/2 in Eqs. (42) and (43) (Appendix E). Hence

Ī → Ȳsq and Σ2
I → σ2

Y,one,sq by rescaling. Thus, the local

oscillator phase φ+ π/2 provides the mean and variance

of the observable Ŷ .

III. HOMODYNE MEASUREMENT FOR TWO

COMPONETS

The standard homodyne scheme for simultaneous de-

tection of two non-commutative components measures

X̂c and X̂s simultaneously, and it can be associated

with {|α〉coh〈α|/π : α ∈ C}, a positive operator-valued

measure (POVM).

In this section, a simultaneous detection scheme of

non-commutative components X̂ and Ŷ by homodyne

measurement with angle φ rotation is considered. Since

â = X̂c + jX̂s = ejφ
(
X̂ + jŶ

)
,

the main task in the following analysis is just a coordinate

change from (Xc, Xs) to (X,Y ) by angle φ rotation. In

other words, it means the corresponding POVM for the

simultaneous detection of X̂ and Ŷ does not change; the

POVM is {|α〉coh〈α|/π : α ∈ C}. Therefore, the PDF

of outcome (x, y) can be derived from the coordinate

change. It is given by

p(x, y|β;μ, ν)
=

1

2πσX,two,sqσY,two,sq

√
1− ζ2XY

× exp
[
− 1

2(1− ζ2XY )

×
{ (x− X̄sq)

2

σ2
X,two,sq

+
(y − Ȳsq)

2

σ2
Y,two,sq

−2ζXY
(x− X̄sq)(y − Ȳsq)

σX,two,sqσY,two,sq

}]
, (46)

where

X̄sq =
Λ−[φ]β∗ + Λ∗

−[φ]β
2

, (47)

σ2
X,two,sq =

1

4

(∣∣Λ−[φ]
∣∣2 + 1

)
, (48)

Ȳsq = j
Λ+[φ]β

∗ − Λ∗
+[φ]β

2
, (49)

σ2
Y,two,sq =

1

4

(∣∣Λ+[φ]
∣∣2 + 1

)
, (50)

ζXY = j
Λ∗
−[φ]Λ+[φ]− Λ−[φ]Λ∗

+[φ]

2

√(∣∣Λ−[φ]
∣∣2 + 1

)(∣∣Λ+[φ]
∣∣2 + 1

) .
(51)

This can be arranged to the following form by means of

the covariant matrix:

p(x, y|β;μ, ν)
=

1

2π
√
det(K)

exp[−1

2
(x−m)tK−1(x−m)],

(52)

where x = [x, y]t, m = [X̄sq, Ȳsq]
t and

K =

[
K11 K12

K21 K22

]
, (53)

det(K) = K11K22 −K12K21, (54)

K−1 =
1

det(K)

[
K22 −K21

−K12 K11

]
, (55)

K11 = σ2
X,two,sq, (56)

K12 = ζXY × σX,two,sq × σY,two,sq

= j
1

8

(
Λ∗
−[φ]Λ+[φ]− Λ−[φ]Λ∗

+[φ]
)

= K21, (57)

K22 = σ2
Y,two,sq. (58)

IY IX

π/2

â1

â′2

â4

â′′2

â2

â′′′2

â′4

â′′4

â3

â′′3

â′3 â′1

â′′1

I4

I1

I2

I3

|0〉

|0〉 |Aejφ〉coh

|β;μ, ν〉
HBS

HBS

HBSHBS

Fig. 6. homodyne with angle φ for two-component detection

Fig. 6 shows a physical set-up of the eight-port homo-

dyne measurement. The input-output relation of the half

19



beam splitters is assumed as follows (See also [22]):

â′1 =
1√
2
(â1 − â3), â′3 =

1√
2
(â1 + â3), (59)

â′2 =
1√
2
(â2 − â4), â′4 =

1√
2
(â2 + â4), (60)

â′′1 =
1√
2
(â′1 − â′4), â′′4 =

1√
2
(â′1 + â′4), (61)

â′′′2 =
1√
2
(â′′2 − â′3), â′′3 =

1√
2
(â′′2 + â′3), (62)

where â′′2 = ejπ/2â′2 = jâ′2. Moreover,

â′′1 =
1

2
(â1 − â2 − â3 − â4), (63)

â′′′2 =
1

2
(−â1 + jâ2 − â3 − jâ4), (64)

â′′3 =
1

2
(â1 + jâ2 + â3 − jâ4), (65)

â′′4 =
1

2
(â1 + â2 − â3 + â4). (66)

Photo currents at photo detectors are defined to be Î1 =
â′′†1 â′′1 , Î2 = â′′′†2 â′′′2 , Î3 = â′′†3 â′′3 , and Î4 = â′′†4 â′′4 . The

final output currents ÎX and ÎY are

ÎX = Î4 − Î1

=
1

2

(
â†1â2 + â†2â1 + â†1â4 + â†4â1

−â†2â3 − â†3â2 − â†3â4 − â†4â3
)

(67)

and

ÎY = Î3 − Î2

= j
1

2

(
â†1â2 − â†2â1 − â†1â4 + â†4â1

−â†2â3 + â†3â2 − â†3â4 + â†4â3
)
. (68)

Further,

Î2X =
1

4

(
â†21 â22 + â21â

†2
2

+2â†1â1 + 2â†1â1â
†
2â2 + 2â†2â2 + R̂1

)
(69)

and

Î2Y = −1

4

(
â†21 â22 + â21â

†2
2

−2â†1â1 − 2â†1â1â
†
2â2 − 2â†2â2 + R̂2

)
,(70)

where the terms R̂1 and R̂2 vanish when the modes â3
and â4 are in the vacuum state |0〉.

When the state of port 1 is |β;μ, ν〉 and the local

oscillator at port 2 is |Aejφ〉coh with A > 0, then

ĪX = 〈ÎX〉
= A× Λ−[φ]β∗ + Λ∗

−[φ]β
2

, (71)

ĪY = 〈ÎY 〉
= A× j

Λ+[φ]β
∗ − Λ∗

+[φ]β

2
. (72)

The variances and covariance of IX and IY are

Σ2
X = 〈Î2X〉 − 〈ÎX〉2

= A2 × 1

4

(∣∣Λ−[φ]
∣∣2 + 1

)
+

n̄1

2

≈ A2 × 1

4

(∣∣Λ−[φ]
∣∣2 + 1

)
, (73)

Σ2
Y = 〈Î2Y 〉 − 〈ÎY 〉2

= A2 × 1

4

(∣∣Λ+[φ]
∣∣2 + 1

)
+

n̄1

2

≈ A2 × 1

4

(∣∣Λ+[φ]
∣∣2 + 1

)
, (74)

ΣXY = 〈ÎX ÎY 〉 − 〈ÎX〉〈ÎY 〉
= A2

{
j
1

8
(Λ∗

−[φ]Λ+[φ]− Λ−[φ]Λ∗
+[φ])

}
,

(75)

where n̄1 = |μ∗β − νβ∗|2 + |ν|2 and where the approx-

imation holds when A is large enough. Re-scaling these

statistics by A, ĪX → X̄sq, ĪY → Ȳsq, Σ2
X → σ2

X,two,sq,

Σ2
Y → σ2

Y,two,sq, and ΣXY /(ΣXΣY )→ ζXY .

IV. DETECTION OF BPSK SQUEEZED STATE SIGNAL

Consider a binary phase-shift keying (BPSK) squeezed

state signal:

|signal 0〉 = |−β;μ, ν〉, (76)

|signal 1〉 = |β;μ, ν〉. (77)

Applying the homodyne measurement corresponding to

{|x〉〈x|}, the means of p(x|signal b), b = 0, 1, are

X̄1 =
Λ−[φ]β∗ + Λ∗

−[φ]β
2

= −X̄0 (78)

and the variances are

σ2
1 =

1

4

∣∣Λ−[φ]
∣∣2 = σ2

0 . (79)

The signal-to-noise ratio (SNR) is defined by

SNR =
(Λ−[φ]β∗ + Λ∗

−[φ]β)
2∣∣Λ−[φ]

∣∣2 . (80)

The average number of signal photons is

N̄0 = |μβ∗ − ν∗β|2 + |ν|2 = N̄1. (81)

Suppose X̄1 > 0. Letting D0 = (−∞, 0) be the

decision region for |signal 0〉 and D1 = [0,∞) for

|signal 1〉. The conditional probability of detecting sig-

nal 0 (or 1) when signal 1 (or 0) was sent is

P (0|1) =

∫
D0

p(x|β;μ, ν)dx

=
1

2
erfc[

X̄1

σ1
√
2
]

=
1

2
erfc[

Λ−[φ]β∗ + Λ∗
−[φ]β√

2
∣∣Λ−[φ]

∣∣2 ]

=
1

2
erfc[

√
SNR

2
]

= P (1|0) ≡ ε, (82)
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where erfc[·] is the complementary error function.

Since the complementary error function is a mono-

tonically decreasing function, the maximum SNR yields

the minimum average probability of error. Therefore, the

maximization problem of SNR with respect to (β, μ, ν)
is considered under the following constraints:

N̄0 = N̄1 ≤ N, (83)

|μ|2 − |ν|2 = 1, (84)

μejφ = cνe−jφ, c > 1, (85)

where the third constraint determines the homodyning

angle φ.

Introducing μ̃ = μejφ and ν̃ = νe−jφ, the third

constraint becomes μ̃/ν̃ = c > 1. Hence |μ̃| > |ν̃| and

arg(μ̃) = arg(ν̃). As a result, the problem is rewritten as

follows:

Maximize

SNR =
(ν̃β∗ + ν̃∗β)2

|ν̃|2 , (86)

subject to

|μ̃β∗ − ν̃∗β|2 + |ν̃|2 ≤ N, (87)

|μ̃|2 − |ν̃|2 = 1, (88)

μ̃ = cν̃, c > 1. (89)

Using the method of Lagrange multipliers, the optimum

values of β, μ̃, and ν̃ are derived as follows:

β◦ =
√

N(N + 1), (90)

μ̃◦ =
N + 1√
2N + 1

, (91)

ν̃◦ =
N√

2N + 1
. (92)

The SNR of randomly generated parameters is numer-

ically examined for simple verification of the optimality

of the parameters above. In the numerical simulation,

parameters β, μ̃, ν̃ are randomly generated in accordance

with the constraint of Eqs. (87)-(89) for given N . The

result is shown in Fig. 7, which includes the cases of

N = 10, 5, and 1 (See also Appendix B). In each

case, the total number of trials is more than 5000. The

graphs indicate that any SNR of randomly generated

parameters (blue dot) does not exceed the SNR of the

optimal parameters β◦, μ̃◦, ν̃◦ (red line).

Therefore, the optimum parameters for the original

problem are

β◦ =
√
N(N + 1), (93)

μ◦ =
N + 1√
2N + 1

e−jφ, (94)

ν◦ =
N√

2N + 1
ejφ, (95)

and the maximum of the SNR is

SNR◦ = 4N(N + 1). (96)

Fig. 7. Optimality of Eqs. (90)-(92).

The means and variances of the PDFs p(x|signal 0)
and p(x|signal 0) are respectively

X̄◦
1 =

√
N(N + 1)

2N + 1
= −X̄◦

0 (97)

and

σ◦2
0 =

1

4(2N + 1)
= σ◦2

1 . (98)

Therefore, the average probability of error by the φ-

rotated homodyne receiver based on the one-component

measurement is

P̄e,hom,one = ε

=
1

2
erfc[

√
2N(N + 1)]

≈ 1

2
√
2πN(N + 1)

exp[−2N(N + 1)],

(99)

for N � 1.

Here let us consider the case of the two-component

measurement type homodyne receiver. For the BPSK

squeezed state signal of |signal 0〉 = |−β◦;μ◦, ν◦〉
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and |signal 1〉 = |β◦;μ◦, ν◦〉, the PDFs possess the

following parameters:

Λ−[φ] =
1√

2N + 1
, Λ+[φ] =

√
2N + 1, (100)

and

X̄1 =

√
N(N + 1)

2N + 1
= −X̄0, (101)

σ2
X,1 =

N + 1

4N + 2
= σ2

X,0, (102)

Ȳ1 = 0 = Ȳ0, (103)

σ2
Y,1 =

N + 1

2
= σ2

Y,0, (104)

ζXY,1 = 0 = ζXY,0. (105)

Hence,

p(x, y|signal b)

=
1

2πσX,bσY,b

× exp
[
− (x− X̄b)

2

2σ2
X,b

− y2

2σ2
Y,b

]
, (106)

for b = 0, 1. Fig. 8 shows the graphical images in the

standard coordinate (Xc, Xs) and in the rotated coordi-

nate (X,Y ) with angle φ. In this figure, the red points

stand for the signal 0 and the blue points the signal 1.

(See also Appendix F).

Letting

D0 = {(x, y) : −∞ < x < 0,−∞ < y <∞},
(107)

D1 = {(x, y) : 0 ≤ x <∞,−∞ < y <∞}, (108)

the conditional probabilities of erroneous detection are

P (0|1) =

∫
D0

p(x, y|signal 1)dxdy

=
1

2
erfc[

√
γ

2
] = P (1|0) (109)

where

γ =
X̄2

1

σ2
X,1

= 2N. (110)

Hence

P̄e,hom,two =
1

2
erfc[

√
N ] ≈ 1

2
√
πN

exp[−N ] (111)

Finally, the minimum average probability of error

by the optimal quantum receiver, so-called the Hel-

strom bound, for the BPSK signal of |signal 0〉 =
|−β◦;μ◦, ν◦〉 and |signal 1〉 = |β◦;μ◦, ν◦〉 is given by

P̄e,oqr =
1

2

(
1−

√
1− exp[−4N(N + 1)]

)
≈ 1

4
exp[−4N(N + 1)] (112)

for N � 1 (See also [3] and Appendix D).

Fig. 8. BPSK signal image in the homodyne detection by two-
component measurement. (a) Measurement angle 0 — coordinate
(Xc, Xs). (b) Measurement angle φ = π/6 — coordinate (X,Y ).

The average probability of error P̄e,hom,one is plotted

in Fig. 9, together with the cases of the optimal quantum

receiver, P̄e,oqr, and the two-component measurement

homodyne receiver, P̄e,hom,two. In this figure, one can

observe that the one-component measurement homodyne

receiver follows the optimal quantum receiver keeping

almost 1.6 dB degradation in power. However, the two-

component measurement homodyne receiver does not

behave so.

V. CONCLUSION

Homodyne measurement with angle φ rotation was

discussed in the scenario of quantum communications.

First, the probability density functions of measurement

outcomes for squeezed states and homodyne measure-
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Fig. 9. Pe vs. N for BPSK squeezed state signal. P̄e,hom,one: solid
red line, and its approximation: dotted red line. P̄e,hom,two: solid blue
line, and its approximation: dotted blue line. P̄e,oqr: solid black line,
and its approximation: dotted black line.

ment with angle φ rotation were derived. The physical

implementation schemes corresponding to the rotated

homodyne measurements were investigated. Second, the

homodyne receiver with angle φ rotation was applied to

the signal detection problem of the BPSK squeezed state

signal. The homodyne receiver of the one-component

measurement follows the optimal quantum receiver keep-

ing almost 1.6 dB degradation in power. However, the

homodyne receiver of the two-component measurement

does not behave so; the required power to achieve the

given error probability relatively rises than that of the one-

component measurement homodyne in the case of two-

component measurement homodyne as the error probabil-

ity becomes small. This constant degradation property is

an advantage of the one-component measurement homo-

dyne receiver against the two-component measurement

homodyne. This performance difference may be helpful

in cryptographic systems like the quantum stream cipher

Y-00 [24], [25]. Detailed analysis and discussions on the

application to quantum cryptographic systems will be

given elsewhere.
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APPENDIX

A. Squeezed states

This appendix summarizes some basic properties of the

squeezed states of light that are used in this article, based

on Yuen’s formulation [11].

Consider a single mode of the field with photon

annihilation operator â and creation operator â†, and

define b̂ = μâ + νâ†, where the complex prameters μ
and ν satisfy |μ|2 − |ν|2 = 1 (Eqs. (3.1) and (3.2) of

[11]). Then [b̂, b̂†] = 1 (Eq. (3.3) of [11]). The squeezed

states |β;μ, ν〉 are defined to be engenstates of b̂, i.e.,
b̂|β;μ, ν〉 = β|β;μ, ν〉, where β ∈ C is the eigenvalue

of |β;μ, ν〉 and 〈β;μ, ν|β;μ, ν〉 = 1 (Eq. (3.10) of [11]).

The squeezed states are mutually non-orthogonal,

〈β′;μ, ν|β;μ, ν〉 = exp[β′∗β − |β
′|2
2
− |β|

2

2
],

and satisfy the overcompleteness relation,

1

π

∫
|β;μ, ν〉〈β, μ, ν|d2β = 1̂.

(Eqs. (3.14) and (3.13) of [11]). From b̂ = μâ+ νâ† and

b̂† = μ∗â† + ν∗â, â = μ∗b̂ − νb̂† and â† = μb̂† − ν∗b̂
(Eq. (3.27) of [11]). Therefore,

〈â〉 = 〈β;μ, ν|â|β;μ, ν〉 = μ∗β − νβ∗,
〈â†〉 = μβ∗ − ν∗β,
〈â2〉 = (μ∗β − νβ∗)2 − μ∗ν,
〈â†2〉 = (μβ∗ − ν∗β)2 − μν∗,
〈â†â〉 = |μ∗β − νβ∗|2 + |ν|2,

〈(Δâ)2〉 = 〈(â− 〈â〉)2〉 = −μ∗ν,
〈(Δâ)†2〉 = −μν∗,

〈(Δâ)†(Δâ)〉 = |ν|2

(Eqs. (3.28) and (3.29) of [11]).

Let â ≡ X̂c + jX̂s, X̂c = X̂†
c and X̂s = X̂†

s (Eq. (2.5)

of [11]). Hence X̂c = (â†+ â)/2, X̂s = j(â†− â)/2, and

[X̂c, X̂s] = j/2 (Eq. (3.33) of [11]). For X̂c and X̂s,

〈X̂c〉 =
(μ− ν)β∗ + (μ∗ − ν∗)β

2

〈X̂s〉 = j
(μ+ ν)β∗ − (μ∗ + ν∗)β

2

〈(ΔX̂c)
2〉 =

1

4
|μ− ν|2

〈(ΔX̂s)
2〉 =

1

4
|μ+ ν|2

〈(ΔX̂c)(ΔX̂s)〉 = j
1

4
(μ∗ν − μν∗ + 1)

〈(ΔX̂s)(ΔX̂c)〉 = j
1

4
(μ∗ν − μν∗ − 1)

(Eqs. (3.28) and (3.29) of [11]).

Define the eigenstates |xc〉 by X̂c|xc〉 = xc|xc〉 and

〈xc|xc〉 = 1. Then the collection {|xc〉〈xc| : xc ∈ R}
is a projection-valued measure. The xc-representation of

|β;μ, ν〉 is

〈xc|β;μ, ν〉 =

(
2

π

)1/4 (
1

μ− ν

)1/2

× exp[−μ+ ν

μ− ν
x2
c +

2

μ− ν
βxc

−1

2
|β|2 − 1

2
· (μ− ν)∗

μ− ν
β2]

(Eq. (3.24) of [11]). Therefore, the probability density

function of measurement outcome xc by {|xc〉〈xc|} is

p(xc|β, μ, ν)
=

∣∣〈xc|β;μ, ν〉
∣∣2

=

√
2

π|μ− ν|2 exp
[− 2

|μ− ν|2

×
(
xc − (μ− ν)β∗ + (μ∗ − ν∗)β

2

)2]
.

Recall that the coherent states |α〉coh form a positive

operator-valued measure, {|α〉coh〈α|/π : α ∈ C}. The

wave function by the coherent state |α〉coh is

coh〈α|β;μ, ν〉
=

1√
μ
exp

[
−1

2
|α|2 − 1

2
|β|2

− ν

2μ
α∗2 +

ν∗

2μ
β2 +

1

μ
α∗β

]
(113)

(Eq. (3.20) of [11]). Therefore, the probability density

function of measurement outcome α = xc + jxs by
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{|α〉coh〈α|/π} is

p(xc, xs|β;μ, ν)
=

1

π
|coh〈α|β;μ, ν〉|2

=
1

π|μ| exp
[
−(1− 2C1)(xc − X̄c,sq)

2

−(1 + 2C1)(xs − X̄s,sq)
2

+4C2(xc − X̄c,sq)(xs − X̄s,sq)
]

where xc = (α∗ + α)/2, xs = j(α∗ − α)/2,

X̄c,sq =
(μ− ν)β∗ + (μ∗ − ν∗)β

2
,

X̄s,sq = j
(μ+ ν)β∗ − (μ∗ + ν∗)β

2
,

C = − ν

2μ
≡ C1 + jC2,

C1 = − 1

4|μ|2 (μ
∗ν + μν∗),

C2 = j
1

4|μ|2 (μ
∗ν − μν∗).

(Eq. (3.38) of [11]). This can be written in the standard

Gaussian form,

p(xc, xs|β;μ, ν)
=

1

2πσc,two,sqσs,two,sq

√
1− ζ2cs

× exp
[
− 1

2(1− ζ2cs)

×
{ (xc − X̄c,sq)

2

σ2
c,two,sq

+
(xs − X̄s,sq)

2

σ2
s,two,sq

−2ζcs (xc − X̄c,sq)(xs − X̄s,sq)

σc,two,sqσs,two,sq

}]
, (114)

where

σ2
c,two,sq =

1 + 2C1

2(1− 4|C|2) =
1

4

(
|μ− ν|2 + 1

)
,

σ2
s,two,sq =

1− 2C1

2(1− 4|C|2) =
1

4

(
|μ+ ν|2 + 1

)
,

ζcs =
2C2√
1− 4C2

1

= j
μ∗ν − μν∗√

(|μ− ν|2 + 1)(|μ+ ν|2 + 1)
,

and in the following form by the covariant matrix K,

p(xc, xs|β;μ, ν)
=

1

2π
√
det(Kcs)

× exp[−1

2
(xcs −mcs)

tK−1
cs (xcs −mcs)],

where xcs = [xc, xs]
t, mcs = [X̄c, X̄s]

t,

xcs =

[
xc

xs

]
, mcs =

[
X̄c

X̄s

]

Kcs =
1

4

[ |μ− ν|2 + 1 j(μ∗ν − μν∗)
j(μ∗ν − μν∗) |μ+ ν|2 + 1

]
,

det(Kcs) =
1

4
|μ|2,

K−1
cs =

1

|μ|2
[ |μ+ ν|2 + 1 −j(μ∗ν − μν∗)
−j(μ∗ν − μν∗) |μ− ν|2 + 1

]
(Eq. (3.43) of [11]).

In terms of the complex measurement outcomes

(α∗, α), the probability density function p(xc, xs|β, μ, ν)
can be rewritten as

p(α∗, α|β;μ, ν)
=

1

2π
√
det(Kamp)

× exp[−1

2
(xamp −mamp)

†K−1
amp(xamp −mamp)],

where

xamp = Ωamp
cs xcs =

1√
2

[
α
α∗

]
,

mamp = Ωamp
cs mcs =

1√
2

[
X̄c + jX̄s

X̄c − jX̄s

]
,

=
1√
2

[ −νβ∗ + μ∗β
μβ∗ − ν∗β

]
,

Kamp = Ωamp
cs Kcs(Ω

amp
cs )−1

=
1

4

[ |μ|2 + |ν|2 + 1 −2μ∗ν
−2μν∗ |μ|2 + |ν|2 + 1

]
,

det(Kamp) =
1

4
|μ|2,

K−1
amp

=
1

|μ|2
[ |μ|2 + |ν|2 + 1 2μ∗ν

2μν∗ |μ|2 + |ν|2 + 1

]
,

and

Ωamp
cs =

1√
2

[
1 j
1 −j

]
,

(Ωamp
cs )

−1
=

1√
2

[
1 1
−j j

]
= (Ωamp

cs )
†

(Eq. (3.49) of [11]).

The Weyl characteristic function is

χw(ξ1, ξ2)

= 〈β;μ, ν|eξâ†−ξ∗â|β;μ, ν〉
= exp

[
−1

2
|μ+ ν|2ξ21 −

1

2
|μ− ν|2ξ22

+j(μ∗ν − μν∗)ξ1ξ2
+
{
(μ+ ν)β∗ − (μ∗ + ν∗)β

}
ξ1

+j
{
(μ− ν)β∗ + (μ∗ − ν∗)β

}
ξ2

]
= exp[jξtcsmcs − 1

2
ξtcsK̃csξcs],
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where

ξcs =

[
2ξ2

−2ξ1
]
, ξ = ξ1 + jξ2,

K̃cs =
1

4

[ |μ− ν|2 j(μ∗ν − μ ∗ ν∗)
j(μ∗ν − μ ∗ ν∗) |μ+ ν|2

]
.

In terms of the complex parameters (ξ∗, ξ), it becomes

χw(ξ
∗, ξ) = exp[jξ†cpxmcpx − 1

2
ξ†cpxK̃cpxξcpx],

where

ξcpx = Ωcpx
cs ξcs =

√
2

[
ξ
ξ∗

]
,

mcpx = Ωcpx
cs mcs = j

1√
2

[
X̄c + jX̄s

−X̄c + jX̄s

]

= j
1√
2

[ −νβ∗ + μ∗β
−μβ∗ + ν∗β

]
,

K̃cpx = Ωcpx
cs K̃cs(Ω

cpx
cs )−1

=
1

4

[ |μ|2 + |ν|2 2μ∗ν
2μν∗ |μ|2 + |ν|2

]
,

and

Ωcpx
cs =

1√
2

[
j −1

−j −1
]
.

The Wigner function is given by

W (xc, xs)

=
1

π2

∫
χw(ξ

∗, ξ)eξ
∗α−ξα∗

d2ξ

=
2

π
exp

[
−2|μ+ ν|2x2

c − 2|μ− ν|2x2
s

+4j(μ∗ν − μν∗)xcxs

+2
{
(μ+ ν)β∗ + (μ∗ + ν∗)β

}
xc

+2j
{
(μ− ν)β∗ − (μ∗ − ν∗)β

}
xs

−2|β|2
]
,

which satisfies

p(xc|β, μ, ν) =

∫ ∞

−∞
W (xc, xs)dxs

p(xs|β, μ, ν) =

∫ ∞

−∞
W (xc, xs)dxc

B. Some example data in Fig. 7

(Small SNR case) For N = 10,

β = −0.036791 + 0.53594j,

μ̃ = 1.96644 + 1.60260j,

ν̃ = 1.80720 + 1.47283j

were generated in a trial. These parameters numeri-

cally satisfy the conditions |μ̃β∗ + ν̃∗β|2 + |ν̃|2 = N ,

|μ̃|2 − |ν̃|2 = 1, and μ̃/ν̃ = 1.08811 > 1. Then

SNR = 0.384549� SNR◦ = 440.

(Moderate SNR case) For N = 5,

β = 3.84034 + 0.029892j,

μ̃ = 2.14668 + 0.112682j,

ν̃ = 1.90025 + 0.099747j,

μ̃/ν̃ = 1.12968 > 1,

and SNR = 58.8787 < SNR◦ = 120.

(Large SNR case) For N = 1,

β = −1.07011− 0.889929j,

μ̃ = −0.867301− 0.690319j,

ν̃ = −0.374213− 0.297851j,

μ̃/ν̃ = 2.31767 > 1,

and SNR = 7.74489 � SNR◦ = 8.

C. Wingner function in (X,Y )

In the coordinate X,Y , the Wigner function of |β;μ, ν〉
is calculated as

W (x, y)

=
2

π

∫ ∞

−∞
〈x+ x′|β;μ, ν〉〈β;μ, ν|x− x′〉e−4jyx′

dx′

=
2

π
exp[−2∣∣Λ+[φ]

∣∣2x2 − 2
∣∣Λ−[φ]

∣∣2y2
+2j

(
Λ∗
−[φ]Λ+[φ]− Λ−[φ]Λ∗

+[φ]
)
xy

+2
(
Λ+[φ]β

∗ + Λ∗
+[φ]β

)
x

+2j
(
Λ−[φ]β∗ − Λ∗

−[φ]β
)
y − 2|β|2]. (115)

This provides

p(x|β;μ, ν) =

∫ ∞

−∞
W (x, y)dy, (116)

p(y|β;μ, ν) =

∫ ∞

−∞
W (x, y)dx. (117)

Further, the matrix representation of |β;μ, ν〉 is

〈x+ x′|β;μ, ν〉〈β;μ, ν|x− x′〉
=

∫ ∞

−∞
W (x, y)e4jyx

′
dy, (118)

〈y + y′|β;μ, ν〉〈β;μ, ν|y − y′〉
=

∫ ∞

−∞
W (x, y)e−4jy′xdx. (119)

D. Helstrom bound

For binary phase-shift keying (BPSK) squeezed state

signal,

|signal 0〉 = |−β;μ, ν〉, (120)

|signal 1〉 = |β;μ, ν〉, (121)

the minimum of the average probability of error by the

optimal quantum receiver, so-called the Helstrom bound,

is given by

P̄ quant
e (β;μ, ν) =

1

2

(
1−

√
1− exp[−4|β|2]

)
. (122)
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Then the minimization of P̄ quant
e (β;μ, ν) with constraint

|μβ∗ − ν∗β|2 + |ν|2 ≤ N (123)

for given N determines the optimal values of the param-

eters [3] (See also [23]):

β◦ =
√

N(N + 1), (124)

μ◦ =
N + 1√
2N + 1

, (125)

ν◦ =
N√

2N + 1
. (126)

Hence

P̄ quant
e (β◦;μ◦, ν◦)

=
1

2

(
1−

√
1− exp[−4N(N − 1)]

)
. (127)

E. Some properties of Λ− and Λ+

Λ∗
−[φ]Λ+[φ] + Λ−[φ]Λ∗

+[φ] = 2,

Λ∗
−[φ]Λ+[φ]− Λ−[φ]Λ∗

+[φ]

= 2(μ∗νe−2jφ − μν∗e2jφ),

Λ−[φ+
π

2
] = jΛ+[φ],

Λ+[φ+
π

2
] = jΛ−[φ].

F. Numerical simulation method for PDF

Suppose U1 and U2 are independent random variables

uniformly distributed on the interval (0, 1). If

V1 =
√
−2 lnU1 cos(2πU2), (128)

V2 =
√
−2 lnU1 sin(2πU2), (129)

then V1 and V2 obeys the normal distribution N (0, 1).
This generation method is called Box-Muller method

[26]．
Suppose V1 and V2 are independent normal random

variables with mean 0 and variance 1. If

W1 = W̄1 + σ1V1, (130)

W2 = W̄2 + σ2(ζV1 +
√
1− ζ2V2), (131)

then W1 and W2 are dependent random variables, dis-

tributed as two-dimensional normal distribution with

means W̄1,W̄2, variances σ2
1 , σ2

2，and correlation coeffi-

cient ζ [27].
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