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Abstract—We compute the expurgated bound for
a continuous classical-quantum channel with squeezed
states numerically.

I. Introduction

The reliability function E(R) is known as an index
of asymptotical channel performance. It is a function
of the communication rate R representing the speed
of exponential decay of the error probability at the
rate. That is, the error probability can be approx-
imated by exp(—nFE(R)) when code length n takes
a sufficiently large value. Quantum coding theorems
for the reliability function were established by Holevo.
On the analogy from the classical case, Holevo defined
the random coding bound E,.(R) and the expurgated
bound E.;(R) based on the quantum channel coding,
and proved that these give the lower bounds for
the reliability function E(R) truly [1]. Then Holevo
proved the expurgated bound also holds in the mixed
state case [4]. Moreover he extended these results
to a continuous channel with constrained inputs. In
addition the expurgated bound for coherent states
with classical white Gaussian noise was computed
analytically [5].

In this paper we compute the expurgated bound
for a classical-quantum channel with squeezed states
numerically. The expurgated bound has good perfor-
mance at low rates compared to the random coding
bound. The effect of using squeezed state on com-
munication has been evaluated in several papers. In
[3], we computed the capacity of the communication
using squeezed states and showed that it cannot
exceed the capacity in the case of using coherent
states. On the other hand we found the optimal a
priori distribution 7y achieving the zero rate exponent
E(+0) for squeezed states and computed E(+0)
analytically [5]. As a result it was shown that usage
of squeezed states is effective in terms of the zero rate
exponent. In addition we obtained the lower bound
E..(R) of E..(R) analytically by restricting the a
priori probability distribution in the optimization to
7o, and found that squeezing is effective at low rates
in terms of expurgated bound [6]. In this paper we
compare the expurgated bound E..(R) obtained by

numerical computation with its lower bound E., (R)
and see how well the latter can approximate the
former.

II. Expurgated bound for squeezed state channel

The classical-quantum channel with squeezed states
is defined by a channel map © : m — p,,, where p,,
is a squeezed state given as a single-mode quantum
Gaussian state with mean

()
m =
mao
and the fixed correlation matrix
e=2/2 0
a=at)=n(Ty Bl,) W

The energy function of the quantum Gaussian state
is given by

Flm) = 5 (it +m3) &)

Note that we impose an energy constraint

> f(m(i)r) < hnE,
k=1

when mapping a message j to a codeword
(m(4)1,...,m(j)n). Then the expurgated bound is
given [2] by

E = i -
e (R) r{lgf(glggﬁ%fu(m&p) sR),  (3)

where P; is the set of probability distribution =
satisfying
/f(m)w(dm) < hE, (4)

and

A, 8,p) = —slog//ep[f(m)+f(n)—2nE]

(Try/Bons/Pm) * (dm)(dn)

()
is called a Gallager function. The expurgated bound
can be obtained analytically for coherent states (y =
0) as follows:
when R < logd(2E),

Eex(R) - QE(l -Vi- e_R)’ (6)
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and otherwise
E..(R) =2E+2—29(2E) + log9(2E) — R (7)

with
1+vVa2+1
5 )

III. Gallager function for squeezed state channel

I(x) =

We compute Eq. (5) for the classical-quantum
channel with squeezed states. Like the classical case,
we assume the a priori distribution is Gaussian

n(dm) 5, (s)

1
- 2my/det B P

E, 0
satisfying £ = (Ey + E3)/2. Then we can restrict
the region of p to make optimization easier. To see
this, let us briefly review the calculations in the paper
[5], where explanation of this restriction is omitted.

Further calculation of Eq. (5) using the formula for
the Gaussian state yields the following [5]:

1
- _ —2phE
A, s,p) = —Slog//e i m'

exp [—; (ZZ) 4 (’:)] dmn,

A= (g ﬁ), (11)

A= (2561 5(0)a)™ — ply + B,
B = —(25Gy j5(a)a) .

Here Gy /2(cv) takes a simple form

where

with

gl/Q(OZ) = gl/Q (\/ det a/h) I2
with the 2 x 2 identity matrix I and

1 (d+1/2)5 + (d—1/2)°
T 2d(d+1/2)5 — (d—1/2)°

gs(d)

as we consider the single mode case now. In Eq. (10),
we can assume the matrix A is positive definite and
hence all its eigenvalues are positive, because if this
condition is not satisfied, the integral in Eq. (10)
diverges to infinity and the value of fi(m, s, p) becomes
—00, which will not lead to the optimal solution. Since

\M,—A -B
—B  A,-A
= det(My — A — B)det(\, — A+ B),

det(Aly — A) = det ( (13)

we find the eigenvalues of A are given by

1 1 1
)\ = — 7}\ = — RS
L= TP e T TP e Y 14)
1 1 1
)\ = — 7A = — _— _—
8= TP M T TP e T s

with g1 = €¢727/2 and go = €27/2. Since \; > 0 (i =
1,2,3,4), it is found that we may restrict the region
of parameter p in Eq.(3) as

0<p< ! 0<p< ! (15)
=PSwEr TSP Ry

Under these constraints we can compute Eq. (10) as
a(m, s,p) = 2pshE + glog det 32 det A. (16)
Substituting Eq. (11), we obtain
a(m, s,p) = 2pshE+
5 logdet [(I = pB) (I — pB + (sG1/2(@)a) ' B)] .
(17)
which can be written as
a(m, s,p) = 2pshE+
E;

5gi

- (18)
5 log [ = prE:) (1 - phE; +

i=1
using Egs. (1) and (9).

))

IV. Computation of Expurgated bound for
Squeezed State Channel

We compute the expurgated bound (3) for squeezed
states using Eq. (18). It is difficult to solve the
optimization in Eq. (3) analytically. However, if we
give up on optimizing with respect to the probability
distribution 7 and fix it to the Gaussian one
given by Eq. (8) with Ey = 2F and E; = 0, the
optimization with respect to s and p can be done
analytically, and we have a lower bound, EEI(R)7 of
E..(R) as follows [6]:
when R < log¥(4Ee*7),

E..(R) =2Ee*"(2 — /1 — e2R) (19)
and otherwise

E..(R) =2Ee® +1—9(Ee®) + % log ¥(4Ee®") — R.
(20)
Now let us compute the expurgated bound F.,(R)
for squeezed states numerically and compare it with
EA’W(R). Note that we may replace the parameter p
by p/h without loss of generality and then we can
remove £ from Egs. (15) and (18). In the following
we consider not only the signal energy E but also the
squeezing energy

h h
B, = 8pa() — 5. (21)



and we fix the total energy E; = E + E,. Figure
1 represents lower bounds of the reliability function
when E; = 1. Here the solid line and the dotted line
represent the graphs of E..(R), E..(R) for squeezed
states with v = 0.2 respectively, and the dashed
line that of E.,(R) for coherent states (y = 0).
When the value of R is small, the optimal proba-
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Fig. 1.  Comparison of the expurgated bound Fez(R) for
squeezed states, its lower bound FEey(R) and the expurgated
bound FEez(R) for coherent states.

bility distribution with the correlation matrix (9) for
squeezed states is given by Fy = 2E, F, = 0 and
graphs of Ee,(R) and E.,(R) coincide. As R becomes
somewhat larger, E’ew(R) no longer approximates
E.;(R) well. Figure 2 represents the relationship
between the parameter + and the lower bounds of
reliability function E.,(R) and F.,(R) when R = 0.2
and R = 0.7. In Figure 2 (a) the dotted line represents
E.,(0.2) and the solid line E,,(0.2). In Figure 2 (b)
the dotted line represents E.;(0.7) and the solid line
E..(0.7). Both figures show that E.,(R) does not
give a good approximation of E.,(R) as a squeezing
parameter 7 becomes smaller.

V. Conclusion

The expurgated bound is calculated for squeezed
states and compared with its lower bound E,, (R) for
which the analytical solution is known. However, this
evaluation experiment is limited to the case of E; = 1.
A more comprehensive report of the experiment will
be given in the future work.
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Fig. 2. Comparison of the expurgated bound Eeq (1) and its
lower bound Ee,(R), when (a) R =0.2, (b) R=0.7.
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