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Abstract—In a recent note (arXiv:1209.2423) Renner claims
that the criticisms of Hirota and Yuen on the security foundation
of quantum key distribution arose from a logical mistake. In
this paper it is shown that Renner misrepresents the claims of
Yuen and also Hirota while adopting one main theorem of Yuen
in lieu of his own previous error. This leads to his incoherent
position which ignores quantitative security criterion levels that
undermine the current security claims, a main point of the Yuen
and Hirota criticisms. This security criterion issue has never been
properly addressed in the literature and is here fully discussed,
as are several common misconceptions on QKD security. Other
foundational issues are touched upon to bring out further the
present precarious state of quantum key distribution security
proofs.

I. INTRODUCTION

In this paper we will respond to the recent Reply paper by
Renner [1] that the criticisms of Yuen [2-5] and Hirota [6]
on the security of quantum key distribution (QKD) protocols
are derived from a logical error. While Hirota could speak for
himself, some related points in his paper would be included
in our discussion. Renner explicitly attributes an equivocal
claim to us, and by an incorrect argument in a footnote,
claims to produce a counter-example to our conclusion. In
truth, the precise form of our claim has been repeatedly given
in [2-5]. Rather, Renner made a fundamental error in [7-8]
which has become the standard interpretation of the trace
distance criterion d widely employed in QKD. This incorrect
interpretation leads to the current prevalent QKD security
claim that the generated key K has a probability p ≥ 1−d of
being ideal [9-11]. In actuality, K is not ideal with probability
1 for d > 0 and may have a probability d of being found in
total by an attacker Eve [2-5]. As brought out in detail in
section III, the correct meaning of d gives a much weaker
security guarantee than the wrong interpretation in general. It
is the consequence of this error in concrete QKD protocols
that Yuen and Hirota pointed out, which is beyond rational
dispute as will be shown in this paper.

Security is a quantitative issue. The exact level one has
for a given l-bit key K is crucially important. In [1] l is
taken to be 106 and d = 10−20. There are two sorts of
security, “raw security” [3] before K is used and composition
security where Eve has additional information about it when
K is used, for example from a known-plaintext attack. In

∗This paper is a slightly revised version of arXiv:1210.2804v1 and is
identical to v2.

raw security, the ideal situation occurs when K has the
uniform distribution U to Eve. Since the earlier days of QKD
[12], “unconditional security” means the security result holds
against all attacks allowed by the laws of quantum physics,
with quantitative information theoretic security level that can
be made arbitrarily close to ideal through a security parameter.
If d is the maximum failure probability with “failure” meaning
the key is not ideal [7-11], security would be perfect with a
large probability p ≥ 1 − d, but that is false. When K has
a distribution P to Eve, its quality is often measured by a
single-number security criterion, say the variational distance
δ(P,U) between P and U . Since δ or d is not a bound on
1 − p, operational security meaning has to be given to them
through Eve’s probabilities of success in estimating various
portions of K and through Eve’s average bit error rate (BER)
[2-5].

This paper would provide the details to elaborate on the
following:
(1) What Renner Claimed Before The Reply —

The trace distance d is defined in (TD) of [1] with (TD)
meaning d ≤ ϵ, equation (1) of [1] says

(TD) → (UC secrecy) (1)

In [7-11] before this Reply paper [1], UC secrecy (of level
at least ϵ, or “ϵ-secrecy”) means the generated K is ideal
with probability p ≥ 1− ϵ. This is often phrased in terms
of the “failure probability” 1− p being less than ϵ. Thus,
with d interpreted as the maximum failure probability [7-
11], (1) is obtained to guarantee ϵ-secrecy when the level
of d is bounded by ϵ.

(2) What Yuen And Hirota Claimed —
It was shown [2-5] that Renner’s interpretation of d is
incorrect and in fact K is not uniform with probability
1 when d > 0, i.e., p = 0. Furthermore, the levels of d
obtained in concrete protocols, in theory [13] not to say in
experiment [14], imply K is very poor compared to U [2-
6], for both raw and known-plaintext attack security and
for both Eve’s sequence success probabilities and BER.

(3) What Renner Claimed In His Reply —
The meaning of (1) is now equivocal in [1]. In paragraph
two, UC secrecy is still claimed to be “ϵ-secret” with
a failure probability ≤ ϵ, but the explanation of failure
probability in footnote [14] is given in terms of the correct
sequence probability meaning of d first described in [5] but
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with no reference. The BER meaning is not given. These
two interpretations of UC secrecy in [1] are contradictory,
as indicated in point (2) above. By an arbitrary stipulation
in footnote [15], it is declared in [1] that d = 10−20 for
an l = 106 bit key is sufficiently secure. Together with
distorting our correct claim that the condition (HY) means
the key is near-uniform to that it is necessary for security,
a “logical error” on Yuen and Hirota is manufactured
in [1] through a counter-example in footnote [19]. This
counter-example itself is infused with error and confusion,
including the same conceptual confusion that leads to the
error described in (1) above.

(4) What Is Wrong With The Security Claim In [1] —
In addition to the above point (2) there are fundamental
problems on the claims in [1] for d = 10−20 and
l = 106. Since K is then far from uniform, it cannot be
used to subtract for leakEC , Eve’s information gain from
error correction, that is employed in all recent security
proofs. Also, why is such d level “sufficient” for security?
When K is not near-uniform, only the users in a specific
application can decide whether a given d level is sufficient.
It cannot be prescribed in advance at d = 10−20. It
is the responsibility of the security analyst to spell out
clearly the key rate and security level tradeoff. Note that
according to the most up to date theoretical analysis of
single-photon BB84 in [13], d = 10−20 is nowhere to
be found. Already in their presented results the key rate
is reduced to effectively zero at d = 10−14, with a one-
bit K generated before message authentication bits are
accounted for.

When the average guarantee in the security proofs
is converted to individual guarantee necessary for security
claim on an individual system, the level is reduced from d
to d1/3 for Eve’s sequence success probabilities [4]. Thus,
d = 10−20 [1] reduces to d1/3 > 10−7. For d = 10−14

[13], d1/3 > 10−5 and for d = 10−6 [14], d1/3 = 10−2.
These are poor to very poor security guarantees for any
application, and they remain so even under the wrong
interpretation. Such quantitative issues are among the main
claims of [2-6] not addressed in [1].

(5) What Are The Other QKD Security Foundation Issues —
There are many other basic problems in the known QKD
security proofs that have been raised additionally in [15-
19] but not touched upon in [1] despite its title and ref-
erences. There are also several common but fundamental
misconceptions in QKD security that should be clarified.
A most significant misconception is that there is a security
parameter in QKD protocols that can bring security to an
arbitrarily good level if the key rate is below a certain
threshold.

In this paper, we will explain points (1)-(5) in detail. In
section II we will explain the above criterion issue to settle
the matter once for all. We will start by dispelling a common
misconception that QKD security is guaranteed by the laws of
quantum physics, either no-cloning or whatever Uncertainty

Relation. The necessary condition for operational quantitative
security will be given. We will describe the severe reduction of
the guaranteed d level to d1/3, and the importance of bringing
Eve’s BER on K close to 1/2. While many details on the
points about d itself can be found from [2-5], in section III
we will make just one basic point on the error of interpreting
d as maximum failure probability, namely a new fundamental
argument on why the ‘proof’ of such an interpretation given in
[7-8] involving a joint distribution is not only invalid but is in
fact irrelevant to the issue. All the security points raised in [1]
will be addressed. In section IV various security proof issues
concerning BB84 type protocols will be touched upon. We will
bring out the inevitable exchange of key rate and security level
in QKD systems, with the important consequence that there
is no security parameter in QKD protocols that would render
it arbitrarily secure for a fixed key rate. We will point out the
incorrect step of subtracting leakEC to account for information
leak due to error correction. Some common misconceptions
about QKD security are summarized in section V.

The upshot is that the security foundation of QKD is indeed
very much shaken. General security cannot be established by
experiments and can only be proved theoretically. The present
predicament is that it is not clear why and how a concrete
QKD protocol can be proved secure in principle.

II. QKD SECURITY CRITERION AND NECESSARY
SECURITY CONDITIONS

In a QKD protocol of the BB84 type [20] two users A and
B try to establish a sequence of secret bits, the generated key
K, between themselves that no eavesdropper Eve can know
even with any active attack. The security is often claimed to be
based on the laws of quantum physics as if the latter have to
be violated in order for Eve to succeed. It is clear that quantum
no-cloning is a necessary but far from sufficient condition for
security. In particular, the possibility of approximate cloning
shows the issue is a more complicated quantitative one. The
more prevalent intuitive security idea is quantum disturbance-
information trade-off, that the users could tell the presence of
Eve by monitoring the system disturbance level if she gains an
amount of “information” on K exceeding a given design level.
Indeed, intrusion level estimation is a key part of all the typical
QKD approaches. Henceforth the term QKD is used with the
understanding that intrusion level estimation is involved.

To get sizable disturbance relative to the signal that can be
readily estimated in QKD, the signal level needs to be low,
say a single photon in BB84. Thus, the disturbance induced
by Eve is easily masked by other unavoidable disturbance
in a concrete realistic system even when such imperfection
is small for other purposes. Furthermore, in an active attack
Eve could in principle transform the quantum signals in many
different ways and the users have to estimate her information
gain under a given level of tolerable disturbance. It is now clear
that security is a quantitative and complicated matter, and that
there is no simple intuitive reason why any net key bits can be
generated in QKD with whatever security, especially when the
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bits used for message authentication necessary for defending
against man-in-the-middle attack are counted.

What security criterion should one use to measure the
quantitative security level and why? In the literature this issue
has never been correctly addressed. The mutual (accessible)
information was used from the beginning but was found
to contain a major loophole [21,22] and is by now largely
abandoned. The trace distance criterion d [23,7-8] is at present
nearly universally employed in QKD security analysis which
is cited in [1] as the criterion that leads to “UC secrecy”.

What is the level of d needed for UC secrecy? While one
can distinguish perfect secrecy from UC secrecy, adequate
UC security cannot be established by mere terminology or
definition. It appears that the QKD security criterion is often
thought to be a matter of choice by the designer, a wrong
conception as we show presently. In [5] the following crite-
ria are given in terms of Eve’s optimal probabilities p1 of
successfully estimating various subsets of K from her attack.
For raw security [3] where Eve only has information from the
key generation process, the conditions are, with K∗ being any
subset of K and for any value k∗ of K∗,

p1(k
∗) ≤ 2−|K∗| + ϵ′ (2)

for some chosen level ϵ′ [5]. Under known-plaintext attack
where Eve knows a subset segment K1 = k1 of K and
estimates a subset K∗

2 in the rest of K, the condition is, for
some level of ϵ′′,

p1(k
∗
2 |K1 = k1) ≤ 2−|K∗

2 | + ϵ′′ (3)

These probabilities have direct operational meaning in contrast
to theoretical entities such as d or mutual information. The
users have to decide what the ϵ′ and ϵ′′ are for the cryp-
tosystem to be sufficiently secure operationally in a particular
application. In particular, if these levels cannot be guaranteed
it means Eve may be able to guess the key portion K∗ or
K∗

2 with a probability exceeding the prescribed level chosen
by the users, thus the cryptosystem is not proven secure
to its operational specification! Hence (2)-(3) are necessary
conditions for security. They are not sufficient for one-time
pad use of K, as discussed later.

Among different composition security situations, known-
plaintext attacks have to be included in QKD security
proofs. As discussed in [3], the raw security of conventional
symmetric-key ciphers is far better than that of concrete QKD
systems.

As explained in [2], Eve derives from her probe measure-
ment a whole distribution P on all the 2l possible K values.
A single-number criterion merely expresses a constraint on P ,
but P itself should be compared to U for operational security
guarantees. In particular, one has the form given in the left
sides of (2)-(3) above for Eve’s sequence success probabilities.
In the ideal case, ϵ′ = ϵ′′ = 0 in (2)-(3). The levels ϵ′ and ϵ′′

can be stipulated by the system designer for different security
needs. Under a d ≤ ϵ guarantee, (2)-(3) hold only when
averaged over all relevant key values [5] with ϵ′ = ϵ′′ = ϵ.

From Markov inequality [24] such average guarantee can
be converted into the individual guarantees (2)-(3) for proper
comparison with U [25]. Operationally, average guarantee is
not sufficient also because “failure probability” of some sort
is required in the quality control of individual items in any
production system. Thus, we have (2)-(3) with

ϵ′ = ϵ′′ = d1/3 (4)

due to averaging of d with respect to the possible K values
and the privacy amplification codes given in security proofs
[4,5].

Our averaged conditions [5] are obtained for the classi-
cal variational distance [24] which is bounded by d upon
measurement from Eve. They do not seem to have appeared
before [26] in either the classical or quantum literature other
than deterministic bit leak in raw security brought up in [3].
Probabilistic bit leaks of any level are covered in (2)-(3), and
such leaks must also be guaranteed by quantitative bounds.
Note that equality can be achieved for these bounds, i.e.,
there are Eve’s distributions on K compatible with the d ≤ ϵ
guarantee which satisfy (2)-(3) with equality [2-5]. This shows
they can be used with equality to measure the quantitative
security guarantee on K.

What would be a sufficient condition for security? If ϵ’ and
ϵ” are not small in the right scale with respect to l, (2)-(3)
may not be sufficient depending on the application. Recall
that the comparison reference of the distribution P of K is
U . When K is used in one-time pad form, in addition to (2)-
(3) Eve’s average BER pb in her estimate of the K bits has
to be close to 1/2 for security. (Note that pb accounts for the
correlation between the bits in K from its definition [4].) This
is well known in data communications and is easily seen, that
an incorrect sequence estimate on K may nevertheless produce
a preponderance of correctlyy estimated key bits similar to
what one may get from a biased a priori distribution of K
that is different from U . It turns out that [4] only

1

2
− pb ≤ d

1
4 /2

√
log2 e (5)

can be guaranteed for the whole K in raw security, there is
no subset guarantee for either raw or known-plaintext attack
security. However, if d ∼ 2−l for l ≫ 1 so that K is near-
uniform, it appears K should be quantitatively secure for
all conceivable applications as stated in [15]. Note that no
composition security argument from the mere form of d [23]
can guarantee pb under known-plaintext attacks [4], while the
wrong interpretation can [11], because K is U with a high
probability p ≥ 1− d.

III. THE INCORRECT INTERPRETATION OF d AND
CLASSICAL CRYPTOGRAPHY

The prevalent interpretation is that d gives the probability
that K is different from U with Eve’s probe disconnected
from K and thus giving composition security also [7-11]. This
interpretation has repeatedly been pointed out to be incorrect
in [2-5] to no avail, until the appearance of [1], which no
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longer cites such an interpretation but instead the correct one!
The origin of the error comes from the interpretation of the
variational distance δ(P,Q),

δ(P,Q) =
1

2

∑
i

|Pi −Qi| (6)

between two classical probability distributions P and Q which
is given to Proposition 2.1.1 in [7], that “the two settings
described by P and P ′, respectively, cannot differ with
probability more than ϵ.” In our present notation or that of
[8], P ′ = Q, and d is interpreted equivalently from Lemma
1 of [8] as the “probability that two random experiments
described by P and Q, respectively, are different”. We would
not repeat the reasons and simple counter-examples [2-5] on
why this interpretation is wrong. It does not follow from
the mathematical statement of his Proposition 2.1.1, or the
equivalent Lemma 1 of [8], through a joint distribution which
gives P and Q as marginals, but rather from conceptual and
verbal confusions. Instead, we point out here that any such
joint distribution is irrelevant to the meaning of δ(P,Q).
This is simply because the marginal distribution is just P
regardless of what the underlying space of P is joined to.
P does not suddenly become Q with a probablity δ(P,Q)
in the presence of the given joint distribution. The wrong
interpretation arose from basic conceptual confusions about
the relation of probability concepts to the real world. It is
amazing that it has perpetuated as far and as long as it has.

The variational distance is a well studied concept and
nowhere else could one find such a strong interpretation as
given in [7-8]. In particular, d is not so interpreted in [23].
Indeed, it is shown in [3] and easily seen from (6) that when
d > 0, the distribution of K is not U with probability 1
(no probability issue here really) instead of d. Subtle and
equivocal words in [1] may suggest that the wrong and correct
interpretations of d (equivalently δ) are similar. Although the
two interpretations quantitatively contradict each other, one
may perhaps think they are numerically close. In particular,
since “failure” includes the event where the whole K is
compromised, it is important to understand the difference
between the two interpretations precisely, as follows.

Prior to ref [5], which correctly proves known-plaintext
attack security under d ≤ ϵ for the first time, in the literature
there are two incorrect/incomplete proofs of universal compo-
sition security. One of them [11] is invalid since it utilizes
the wrong interpretation of d. With (3) from [5], known-
plaintext attack security is established for Eve’s sequence
success probabilities but there is no similar guarantee for
Eve’s BER. In contrast, under the wrong interpretation Eve’s
BER pb = 1

2 with a probability ≥ 1 − d for every k, on
which counter-examples are easily constructed. In general,
each different composition situation has to be treated under
the correct meaning of d for quantitative guarantee, which
cannot be given by just d or δ since they are not operational
criteria. This fact alone shows the composition security claim
on d in [23] in incomplete or invalid, since mathematical
representation of operation security is lacking.

A further difference is that if K is not at least near uniform,
one cannot use it to subtract for the bits leakEC , given by
(8) in section IV, while such bits need to be used in the
middle of a valid security proof. Another difference is that
Markov inequality needs to be applied only once under the
wrong interpretation since there is no K-average needed,
which results in d1/2 instead of d1/3 in (4).

Even assuming the wrong interpretation is true, the rela-
tively large value of d that can be obtained is quite worrysome.
For d = 10−20, the operational guarantee (2)-(3) for a 106

bit key is not better than that of a 66 bit key! An arbitrary
reason of system imperfection level given in footnote [15]
of [1] is used to justify such numerical values. But why is
d = 10−20 sufficient for UC secrecy? In fact, the raw security
operational guarantee (1)-(2) for d = 10−20 is much worse
than that obtained in conventional symmetric key ciphers [3].

Furthermore, there is no hint that such a d level of 10−20 can
be obtained in a concrete protocol. If one takes into account
Markov inequality for individual guarantee as discussed in
section II, only an effective d1/3 > 10−7 is obtained for
d = 10−20 after the K value average and privacy amplification
code average are accounted for [4]. The effective d1/3 value of
> 10−7 for d = 10−20 is already very large for l = 103, not
to say l = 106. The only concrete experimental protocol with
quantified security level is given in [14,27] with effectively
d = 10−6. Then d1/3 = 10−2 from [14] may entail a very
drastic breach of security. Note that the d = 10−20 level
cannot even be achieved for a positive key rate in a “tight
finite-key” analysis of single-photon BB84 [13], for which the
best d = 10−14 is obtained for l = 1! It should be emphasized
that these effective d1/3 values give poor security guarantee
even according to the wrong interpretation. The corresponding
BER guarantee of (5) is similarly poor.

In this connection, it is important to note that the size of
d should be measured with respect to 2−l according to the
correct interpretation (2)-(3), not with respect to 1 according
to the incorrect interpretation. This has been a major source
of confusion, that since the system is evidently secure or
ideal when a criterion takes the value zero hence it should
be secure for a small value of the criterion. Yes, this is correct
if “smallness” is measured in the correct scale, but 1 is not
always the scale, an elementary point that is often forgotten
when relative dimensional measure is ignored.

Similarly, the criterion d as “distinguishability advantage”
is used to justify d as a security criterion in [23], which is also
the justification for using variational distance in some classical
cryptography work brought up in the last paragraph of [1].
While the distinguishability advantage was only established for
binary decisions, it is now established [5] for N-ary decisions
for N between 2 and 2l. However, the relevant point in this
connection is that the required level ϵ in d ≤ ϵ depends on
what N in the N-ary decision is. A value good compared to
1
2 for N=2 may be very inadequate relative to 1/N for N =
2l, as we just discussed. This N-ary issue is another reason
why composition security proof has to be spelled out precisely
and quantitatively. Security is a quantitative issue through and
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through. Further discussion of such d meaning is given in [4].
The quantitative counter-example in [1] is irrelevant to begin

with since we never deny (1) in its correct sense and we only
insist (HY) is necessary for a near-uniform K when l is large.
It may be mentioned that the counter-example uses a very strict
meaning for his vague condition (HY) that neither Yuen nor
Hirota ever indicated. The construction in the counter-example
betrays the same confusion which underlies the erroneous
interpretation of d [7-8]. In the counter-example, δ or d or
ϵ is fixed at 2−l and there is no room for another ϵ = 10−20

“by construction”! This is one conspicuous example of the
several incoherences in [1].

In classical cryptography practice, encryption security is
based on complexity, search for known-plaintext attacks on
symmetric key ciphers and other computational ones in asym-
metric key ciphers. The information theoretic security we
talk about here for QKD plays no role except for one-time
pad. Thus, the claim of [1] that classical cryptography is
compromised without a small enough d is false, for this and
the following reasons.

The bound storage model [28] with controllable information
theoretic security is not used in practice while it has a criterion
related to d, but there is a security parameter in [28] that
could make it arbitrarily small which is not available in QKD.
In particular, the key length l itself is not such a parameter
once the proper criterion is employed in QKD [2], a point that
will be elaborated in the next section IV. On the other hand,
security is not fully established in [28] unless the criterion
value goes to zero, precisely because N-ary decisions as well
as Eve’s bit error rate are not treated. In fact, security under
known-plaintext attacks, which is the real issue for symmetric
key ciphers [3], is also not treated in [28].

In public key cryptography the variational distance criterion
from complexity consideration plays no role in practice. In fact
the probabilistic encryption schemes that utilize such theory
is not used due to its slow speed. Similar to [28], security for
public key is not established in principle for N-ary decisions,
Eve’s bit error rate, and for known-plaintext attacks.

The actual situation is that other than one-time pad, no
protocol in classical cryptography has been proven secure,
information theoretically or computationally. Cryptography is
still very much an art. Quantum cryptography aspires to prov-
able security, a lofty goal that has been repeatedly claimed to
be achieved from numerous errors of reasoning. Since security
is a serious matter and cannot be established experimentally,
we should examine all the security proof steps more carefully.
A concise discussion of such steps and the state of QKD
security proofs is given next.

IV. QKD SECURITY PROOF STATUS

There are five main steps involved in the general security
proof of a BB84-type QKD protocol, assuming the physical
modelling is complete and correct:

(i) Pick a security criterion and establish its operational
guarantee is adequate;

(ii) Measure the quantum bit error rate (QBER) on the
checked qubits and transfer it with proper statistical
margin to the sifted key K ′′;

(iii) Bound Eve’s relevant information on K ′′ under an arbi-
trary joint attack;

(iv) Apply an open error correcting code (EEC) and bound
Eve’s information on the corrected key K ′;

(v) Apply an open privacy amplification code (PAC) to
generate the final key K and bound Eve’s information
on K according to the chosen criterion to obtain its
quantitative level of security.

Each of these five steps has been treated incorrectly since
the early days of QKD security proofs. At present, step (i) is
almost resolved (apart from Eve’s general bit error rate) in one
way through the criterion d via (2)-(5) above. Step (v) can be
resolved by the classical Leftover Hash Lemma [29]. We will
discuss the other three steps in turn, the main impediment to
progress in security proof is from steps (iii) and (iv).

Historically the Shor-Preskill proof [30] is most influential
and widely quoted, but it is incomplete/incorrect for all five
steps. Here it will be used as a representative and the other
security approaches and proofs other than [13] will not be dis-
cussed. The Shor-Preskill proof employs the mutual accessible
information criterion Ia without insisting it be small enough.
(In contrast to the impression from [21,22], the Ia criterion
is actually fine if its level is at or below 2−l for an l-bit key
K [31].) The transfer of QBER is later amended in [32] for
general joint attacks, which is still incorrect because it involves
classical counting instead of qubit counting. It appears that
correct quantum counting can be developed [33], which gives
wider fluctuation or lower security level with a factor of two
reduction in the exponent.

The major difficulty in QKD security proof arises from
the correlation between key bits that are introduced by Eve’s
active joint attack and the user’s ECC and PAC. To account
for such correlation from a joint attack, step (iii) has mostly
been achieved by some sort of symmetrization which does
not appear to be valid. How does one get symmetry from an
asymmetric situation? The usual argument (see, for example,
the reduction of a general attack to collective attack in [7])
involving an openly known permutation cannot do any work
since Eve knows it and could just rearrange back. A new
argument is used in [13] which involves incorrect classical
counting on qubits similar to [32] and moreover, does not
work for sufficiently small d [15].

The information Eve has on the chosen ECC and PAC are
not accounted for in the Shor-Preskill proof. In a direct devel-
opment of the Shor-Preskill approach, Hayashi has recently
incorporated such information for ECC [34] and PAC [35],
which are yet to be evaluated for concrete protocols under
general attack. In the meantime, the ECC information leak
expression

leakEC = h(QBER) (7)

where h(·) is the binary entropy function, is employed by
him [36] and in fact universally [9,13,37] to account for such
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leak. It is pointed out [15] that there is the possibility of
information leak from ECC similar to quantum information
locking leak [15] that undermines inadequate values of acces-
sible information as a security criterion, and which is neglected
in the expression (7). Furthermore, (7) can be justified only for
collective attacks asymptotically. Collective attack is extremely
restrictive, Eve can launch what is called a joint attack without
any entanglement by just attacking a portion of the key bits
(which seems to suggest already that collective attacks cannot
be optimal for any of Eve’s aim, not to mention for this
leakEC issue). Indeed, no justification for such a crucial
treatment of step (iv) by (7) has ever been spelled out because
there is none. It cannot be true for all attacks if one examines
its meaning [15]. This ECC information leakage problem (iv)
and also the joint attack problem (iii) appear to be very difficult
to resolve in QKD security proofs.

The condition (7) by itself shows that the near-universal
step of subtracting it from the generated key bits to get the
final K is invalid, unless perhaps when the d level of K is
so small that (2)-(3) imply the bits are nearly uniform and K
functions effectively as U . This is a problem even if the users
decide that a given large d level is sufficient for security. The
security proof itself is supposedly carried out with uniform
bits in the amount (7). Note that Even could launch a joint
attack just to invalidate (7) regardless of whether collective
attack is optimum from the viewpoint of her information gain
on K. She may want to minimize the users’ key rate which
may not turn out positive.

Apart from all these theory problems, the security proof
claims are often used by experimentalists to claim security
for their systems in an invalid way. For example, the Shor-
Preskill asymptotic key rate is often quoted as the system
capability, with no mention of the criterion and its quantitative
level. Equally significantly, Shor-Preskill only claimed to have
established such rate for a joint CSS code as ECC and PAC. In
[38], for example, the cascade reconciliation protocol is used
for error correction which has numerous problems [39] and
universal hashing is used for PAC. However, it has never been
shown that the Shor-Preskill key rate applies to such error
correction and privacy amplification procedures.

The asymptotic convergence rate for various criteria yields
the actual (asymptotic) key rate for fixed levels of d or p1
[2,25], and is not given in [24] for its mutual information
criterion. In this connection, we would like to bring out a
common misconception concerning QKD security. Since [30]
it is often thought that as long as the key rate is below a certain
threshold, security level can be made arbitrarily close to the
ideal when the key length l is indefinitely increased. That is,
l is taken to be a security parameter, and that is likely why
only the secure key rate is quoted in many papers including
[38]. Perhaps this is thought to be in analogy with Shannon’s
Channel Coding Theorem [24], which says that for data rate
below capacity, the error rate can be made arbitrarily small
for long enough block length. Sometimes it is thought that
finite privacy amplification is what renders this untrue. We
would like to point out here that the problem is present even

asymptotically for any l → ∞, as follows [2].
For key rate below a threshold, let us assume it is indeed

proved that Eve’s accessible information Ia (or d) goes to 0
as l → ∞, exponentially as ∼ 2−λl for some 0 < λ < 1,

d ∼ 2−λl or Ia/l ∼ 2−λl (8)

The situation for finite l is the same. The security level for
those l bits is very different depending on what exactly λ is.
It is near ideal for λ = 1 but very far from ideal for λ << 1.
Indeed, Eve’s maximum probability p1 of estimating the whole
K sets the limit on the number of uniform bits that can be
generated since p1 = 2−n for n uniformly distributed bits.
Thus, it is the rate of p1 or equivalently Ia/l going to zero
that determines the rate of uniform key generation, not the
original key rate threshold [2,15]. It turns out the convergence
rate λ in (8) is very small for d in [13], and not evaluated
for Ia/l in other proofs except [27] which leads to an even
smaller λ [14]. With d = 10−20 and l = 106, λ ∼ 2

3 × 10−4

resulting in 66 bits guarantee of (2)-(3) for 106 bits, or just
22 bits from (4) after Markov inequality is applied. In [13]
the best d = 10−14 or d1/3 > 10−5, and in [14] Ia/l ∼ 10−6

equivalent to d1/3 ∼ 10−2.
One can relax uniform K to ϵ-secrecy via ϵ-smooth entropy

[40]. Intuitively, one cannot expect much would be accom-
plished when ϵ is only moderately larger than 2−l. In fact,
even for very large d for a given l, the results of [13] shows
the key rate is still very low.

Thus, the exchange of key rate and security level is a
fundamental fact in all QKD protocols, asymptotic or finite,
and l is not a security parameter. In fact, one needs to prove
that a positive exponent λ > 0 would result in (8) which is far
from guaranteed. This is especially the case when all system
imperfections and message authentication bits are taken into
account. Together with the numerical values obtained in [13],
this fundamental tradeoff between key rate and security level
gives a grim picture of the usefulness of BB84 type protocols.

In QKD security proofs there are numerous problems as-
sociated with physical modelling that have been ignored or
neglected. We may point out the case of general lossy channel
security [16], photon number splitting attacks on multi-photon
sources and decoy states [18], and heterodyne-resend attack
in CV-QKD [19]. Security is seriously undermined in the last
two situations against the prevalent security claims on them. In
particular, a grave issue that has been generally overlooked is
to what extent the users could accurately determine the various
system parameters such as loss, a serious robustness issue for
security. The well known detector blinding attacks [41] shows
detailed detector behavior has to be explicitly represented in
a real security proof [17], but so far it has not been done.

V. COMMON MISCONCEPTIONS ON QKD
SECURITY

The list in the following corrects some major misconcep-
tions on QKD security, most of which have been discussed in
this paper as part of our response to [1].
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(a) Any single-number security criterion, other than the wrong
interpretation of d in [7,8], is not sufficient for security
by itself. For operationally meaningful security guarantee,
it has to be quantitatively reduced to bounds on Eve’s
various success probabilities in estimating segments of the
key and also her average bit error rate.

(b) One cannot prescribe, as done in [1], that some chosen nu-
merical level of a criterion is always sufficient for security
when the level is far from ideal. It is the application user
of the cryptosystem who decides what level is adequate
for a specific application.

(c) There is a fundamental exchange between key rate and
security level. It is not the case that security can be made
arbitrarily close to ideal for key rate below a certain
threshold. It is the cryptosystem designer’s responsibility
to evaluate such quantitative tradeoff. The results of [13]
give poor security level even at very low key rate.

(d) Contrary to widespread impression, there is no valid QKD
general security proof in the literature. For example, the
error correction step has never been treated correctly. The
burden of proof is on those who claim security, not on
other to produce a specific counter-example on the security
claim.

(e) As a consequence of (d) and in view of the fundamental
difficulties discussed in this paper, QKD is at present no
different in security status from other cryptosystems under
study or in use. It does not have the advantage of having
been proved unconditionally secure in principle.

(f) The problem of complete system representation for secu-
rity claim is not a “practical security” issue for the applica-
tion user, but rather a basic one. The incomplete modelling
of system component behavior, such as photodetector
temporal response to different input signal levels, is not
a mere “side channel” issue but a main issue of model
completeness, without which there can be no proof of
security.

VI. CONCLUSION

It is hard to avoid the impression that Eve’s standpoint
has rarely been taken seriously in the literature and the main
concern has been to claim security. A common mistake in
general security proofs is to analyze only one type of attacks
but claiming unconditional security against all possible attacks.
Security is a serious matter. There are an unlimited number
of attack scenarios, thus security can only be established
theoretically if at all and the burden of proof is on those who
claim security. Attacks from the Norway group [41] shows
how dangerous a faulty claim may be, with security totally
compromised in an unexpected way, a situation actually fa-
miliar in conventional cryptography. When addressing security
issues it would be good to keep the following question in mind:

How did we come to the present QKD security predicament
with endless invalid security proofs?
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