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Abstract—We review studies about Holevo capacity and
expurgated bound of reliability function for quantum Gaus-
sian channels. In particular effects of using squeezed states
are clarified in terms of such quantum information quanti-
ties.

I. INTRODUCTION

We start with recalling early studies on optical com-
munication without the quantum coding theorems. In
1960s the experimental realization of the laser caused
outburst of interest in optical communication. Then the
ideal laser state was supposed to be a coherent state.
Especially Gordon investigated communication systems
using coherent states with standard measurements: ho-
modyne and heterodyne detection [15]. Each of these
systems was evaluated by Shannon capacity, regarded as
a classical memoryless channel. The Shannon capacity
for heterodyne and homodyne detections are

Chet = log(1 + Ntr), (1)

Chom =
1
2

log(1 + 4Ntr), (2)

where Ntr represents the average number of signal pho-
tons, called transmitter energy. In 1970s Stoler and Yuen
introduced the concept of squeezed state (two-photon
coherent state) which was expected to be a physical
carrier of information more effective than the coherent
state [19], [20], [17]. Let a be an annihilation operator.
Then a squeezed state is represented as

|µ; γ� = D(µ)S(γ)|0�, (3)

where D(µ) = exp(µa† − µ̄a) is the displacement
operator and S(γ) = exp((1/2)(−γa†2 + γ̄a2)) is the
squeezing operator with a squeezing parameter γ.

Yuen considered the problem of transmitter quantum
state selection from a viewpoint of signal-to-quantum
noise ratio under the energy constraint

Trρa†a ≤ Ns, (4)

where ρ is a density operator representing a quantum state
and Ns is a given positive value.

As a result it was found that the optimum signal-to-
quantum noise ratio achievable by any state of a radiation
field is

(S/N)o = 4Ns(Ns + 1), (5)

and this value is realized by the squeezed state with
the parameter γ = log

√
1 + 2Ns. Comparing (5) to the

value 4Ns obtained with coherent states, we can find that
the squeezed state is of great advantage to the signal-to-
quantum noise ratio. This is why use of squeezed state
improves Shannon capacity. Let us consider the optical
communication under the transmitter energy constraint
Ntr, where the transmitter produces squeezed states
|µ; γ0� with the optimum squeezing parameter

γ0 = log
√

1 + 2Ntr, (6)

and the receiver uses a homodyne detection. Then the
Shannon capacity is

Csq = log(1 + 2Ntr), (7)

which is greater than (1). Here it should be emphasized
that (7) is achieved by only one quadrature. Helstrom con-
sidered the problem of transmitter quantum state selection
for transmission over an attenuation channel. He proved
that unless transmitted (input) state is a coherent state,
the received (output) state will be a statistical mixture of
states [22]. Moreover he compared the performance of
squeezed states in binary optical communication through
the attenuated channel with that of coherent states. As
a result, it was found that the advantage of squeezed
state signals over coherent state ones vanishes as the
transmittance of channel goes to zero [23].

Besides the performance evaluation for concrete sys-
tems, studies of fundamental physical limitations on the
quality and rate of information transmission has been
carried out by many workers [24], [15], [16], [25].
Forney and Gordon conjectured the entropy bound for
information transmission with a fixed set of states valid
for arbitrary measurement [24], [16]. However they could
not prove the conjecture in the absence of a general
theory of measurement process, which was established
later by introducing the notion of positive operator valued
measurement (POVM) [21]; Gordon showed only the fact
that a binary quantum counter can achieve the entropy
bound in the limit of the weak signal [15] This fact
leads to the notion of binary discretization, which will be
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explained in Section V. The entropy bound was proved
for discrete signal set by Zador [32] and independently
by Holevo [1], and for general signal set by Ozawa
[18]. In particular, it was found that for a single boson
mode under the transmitter energy constraint Ntr, the
ultimate Shannon capacity is achieved by number states
with photon counting as

CBE = (Ntr + 1) log(Ntr + 1) − Ntr log Ntr, (8)

which is called Yuen-Ozawa bound in the following.
Communication theory based on quantum channel coding
scheme was established in 1990s. Hausladen et al. proved
quantum direct coding theorem for channels with finite
number of pure states [26]. This theorem claims that the
entropy bound proposed by Gordon is achievable in fact
by the quantum channel coding, where the measurement
can be made over a long sequence of states instead of just
symbol by symbol in the sequence. Such measurement is
called entangled measurement, which is represented by
POVM on a Hilbert space H⊗n, where H is a Hilbert
space providing a quantum-mechanical description for the
physical carrier of information and n is the length of
sequence of states. The direct coding theorem for discrete
mixed states was given by Holevo [5], and Schumacher
et al. [27] independently, and was extended to continuous
channels with constrained inputs by Holevo [6]. By virtue
of these results, it was shown rigorously for the first
time that the Yuen-Ozawa bound can be also achieved by
coherent states. According to the quantum direct coding
theorem, the entropy bound is called Holevo capacity
in the following, which is distinguished from Shannon
capacity based on the classical channel coding.

A much more detailed and practically applicable de-
scription of the asymptotical channel performance than
the capacity is given by the reliability function, which
is essentially the speed of exponential decay of the error
probabilities at information rates below the capacity. The
importance of the reliability function is recognized well
in classical (Shannon) information theory, and extensive
studies have been devoted to it [30]. Quantum coding
theorems for the reliability function were established
by Holevo. On the analogy from the classical case,
Holevo defined the random coding bound Er(R) and
the expurgated bound Eex(R) based on the quantum
channel coding, and proved that these give the lower
bounds for the reliability function E(R) truly [6]. The
random coding bound Er(R) gives good evaluation of
channel performance at high rate, and is defined such
that the value of R satisfying Er(R) = 0 is equivalent
to the channel capacity. Thus the quantum direct coding
theorem can be shown immediately from the random
coding bound [6].

On the other hand the expurgated bound Eex(R) is
good at low rates. On the analogy of Shannon information
theory, we can further consider two important values,

the cut-off rate and the zero rate exponents. The former
gives an idea of channel performance at intermediate rates
and the latter at low rates. The latter is the value of the
reliability function at the zero rate limit and dominates
the asymptotic behavior of error probability at low rates.

This paper discusses squeezing effects in terms of
Holevo capacity or expurgated bound of quantum relia-
bility function. It is organized as follows. In Section II we
introduce Holevo’s theory [2] of Gaussian state and give
some formulae of quantum information quantities. In Sec-
tion III we give a general formula of Holevo capacity of
classical-quantum Gaussian channel and evaluate squeez-
ing effects for a transmission through an attenuated noisy
channel. In Section IV we present formulae of expurgated
bound of reliability function and zero rate error exponents
and find usage of squeezed states improves those quantum
information quantities, which show channel performance
at low communication rates. In Section V we introduce
an idea of binary discretization.

II. GAUSSIAN STATE

A. Characteristic Function

Let Z be a real linear space and ∆(z, z′) a nonde-
generate bilinear skew symmetric form on Z. Then the
pair (Z, ∆) is called a symplectic space. The symplectic
space with a nondegenerate bilinear skew symmetric
form has the even dimensionality, dim Z = 2r. A basis
{ej , hj} of Z satisfying ∆(hj , ek) = δj,k, ∆(ej , hk) =
−δj,k,∆(ej , ek) = ∆(hj , hk) = 0 is called symplectic,
where δj,k takes the value of 1 when j = k, otherwise
0. For any inner product α, there is a symplectic basis
{ej , hj} in (Z,∆) in which α takes a standard form

α(z, z′) =
r∑

j=1

aj(xjx
′
j + yjy

′
j),

for z =
∑r

j=1 xjej + yjhj and z′ =
∑r

j=1 x′
jej + y′

jhj .
We call a continuous family of unitary operators Z �
z → V (z) satisfying Weyl-Segal relation

V (z)V (z′) = ei∆(z,z′)/2V (z + z′), z, z′ ∈ Z (9)

a representation of the CCR. For a density operator ρ, we
call the transform z → Fz[ρ] = TrρV (z) characteristic
function of ρ. This is an analogy of classical characteristic
function of probability distribution. Let z → V (z) be
irreducible representation of the CCR. Fixing z ∈ Z, we
consider a unitary representation t → V (tz), where from
Stone’s theorem there exists a self adjoint operator R(z)
such that V (tz) = exp(itR(z)). Considering the spectral
representation of R(z): R(z) =

∫
λEz(dλ), we obtain

the probability distribution with respect to a state ρ as

µz
ρ(dλ) = TrρEz(dλ),
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function of ρ. This is an analogy of classical characteristic
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consider a unitary representation t → V (tz), where from
Stone’s theorem there exists a self adjoint operator R(z)
such that V (tz) = exp(itR(z)). Considering the spectral
representation of R(z): R(z) =

∫
λEz(dλ), we obtain

the probability distribution with respect to a state ρ as

µz
ρ(dλ) = TrρEz(dλ),

whose classical characteristic function is given by the
map t → Ftz[ρ] as,

Ftz[ρ] = TrρV (tz) = Trρ
∫

eitλEz(dλ)

=
∫

eitλTrρEz(dλ) =
∫

eitλµz
ρ(dλ).

In classical probability theory, moments of a probability
distribution are easily expressed through the derivatives of
its characteristic function. An analogous relation exists in
quantum case: we denote nth moment of the distribution
µz

ρ by mn(z). If nth absolute moment of µz
ρ is finite, we

have mn(z) = i−n dn

dtn Ftz[ρ]
��
t=0

. We call ρ a state with
finite second moments if m2(z) < ∞ for all z ∈ Z. For
a state ρ with finite second moments, we define mean
value of the state by the function m(z) which is given
by 1st moments of classical distribution µz

ρ as

m(z) = m1(z),

and correlation function of the state as

α(z, z′) :=m2(z, z′) − m(z)m(z′)

m2(z, z′) := − ∂2

∂t∂s
Ftz+sz′ [ρ]

����
t=s=0

.

Thus like in the classical case we represent the mean
values and correlation function by using derivatives of
characteristic function of the state. Next we give a rigor-
ous formula of mean value and correlation function. Let
Bh(H) be an ensemble of Hermitian operator (bounded
symmetric operator) on Hilbert space H. We introduce
the pre-inner product in Bh(H)

�Y, X�ρ = Trρ(Y ◦ X) = ReTrρY X,

with X ◦Y = 1
2 (XY +Y X). The completion of Bh(H)

with respect to �·, ·�ρ is a real Hilbert space and it is
denoted by L2

h(ρ). Considering m2(z) < ∞ implies
R(z) ∈ L2

h(ρ), we have [2]

m(z) = �I, R(z)�ρ
α(z, z′) = �R(z) − m(z), R(z′) − m(z′)�ρ.

(10)

In addition the correlation function α(z, z′) gives
an inner product on Z and satisfies the inequality
α(z, z)α(z′, z′) ≥ ∆(z, z′)2/4. Usually m(z) is denoted
by TrρR(z). It may seem to be no problem. But rig-
orously speaking, R(z) is an unbounded operator and
we should be careful whether the trace of ρR(z) can
be defined rigorously. This is why we need to use the
inner product �·, ·�ρ. We can say a similar thing about
the correlation function α(z, z′).

B. Definition of Gaussian State

The Gaussian state is fully characterized by only mean
value and correlation function. Let z → V (z) be an
irreducible representation of the CCR on (Z,∆). The
state ρ is called Gaussian if its characteristic function
has the form

Fz[ρ] = exp[im(z) − 1
2
α(z, z)], (11)

where m(z) is a linear functional and α(z, z′) is a bilinear
symmetric form on Z, which is obtained by Eqs. (10). On
the other hand, for (11) to be the characteristic function of
a quantum state it is necessary and sufficient that α(z, z′)
satisfies this uncertainty inequality: α(z, z)α(z′, z′) ≥
∆(z, z′)2/4.

So far we discussed a general CCR and defined the
Gaussian state. In the following we deal with a more
concrete CCR. We consider quantum system, such as
cavity field with finite numbers of modes, described
by annihilation operators a1, . . . , ar satisfying canonical
commutation relation (CCR)

[aj , a
†
k] = δj,kI, [aj , ak] = 0.

The Hilbert space of irreducible representation of this
CCR is denoted by H. Let us introduce canonical pairs

qj =

√
�

2ωj
(aj + a†

j), pj = i

√
�ωj

2
(a†

j − aj),

satisfying the Heisenberg CCR

[qj , pk] = iδjk�I, [qj , qk] = 0, [pj , pk] = 0.

Using the operators qj ,pj , we give a representation
of the CCR. For a real column 2r-vector z =
(x1, y1, . . . , xr, yr)T , we introduce a unitary operators in
H as

V (z) = exp i
r∑

j=1

(xjqj + yjpj).

Then the operators V (z) satisfy the Weyl-Segal relation
(9), where the skew symmetric form ∆ is given by

∆(z, z′) = �
r∑

j=1

(x′
jyj − xjy

′
j) = −zT ∆rz

′,

with the skew symmetric matrix ∆r. Thus it is found
that V (z) gives the representation of the CCR on the
symplectic space (R2r,∆).

We can represent m(z) and α(z, z′) in Eq. (11) by a
mean vector m = (mq

1,m
p
1, ..., m

q
r,m

p
r)T and a correla-

tion matrix A as m(z) = mT z and α(z, z′) = zT Az′

respectively.

C. Examples of Gaussian State

A single-mode pure Gaussian state is called a squeezed
state. In particular this paper deals with a squeezed state
|µ, γ� with a mean function

m(z) = x
√

2�/ω1Reµ + y
√

2�ω1Imµ (12)

and a correlation function

α(z, z′) =
1
2

�(xx′e−2γ/ω1+ω1e
2γyy′), γ ∈ R. (13)



16

The corresponding mean vector and correlation matrix
are given as m = (

√
2�/ω1Reµ,

√
2�ω1Imµ)T and

A(γ) =
[
�e−2γ/2ω1 0

0 �e2γω1/2

]
, (14)

respectively. In the following we put ω1 = 1 in a single
mode case for simplicity.

Another example is a quasiclassical Gaussian state

ρ0 =
1

πN̄

∫
|ζ��ζ|e|ζ|

2/N̄d2ζ, (15)

where mean value is 0 and correlation function is given
by

α(z, z′) = �(N̄ + 1/2)(ω−1
1 xx′ + ω1yy′),

which has the standard form

α̃(z, z′) = a(xx′ + yy′) (16)

with a = �(N̄ + 1/2). The quasiclassical Gaussian state
ρ0 is represented by the spectral decomposition

ρ0 =
1

N̄ + 1

∞∑
n=0

(
N̄

N̄ + 1

)n

|n��n| (17)

with number state |n�.

D. Basic formulae for Gaussian State

Firstly we obtain the formula of von Neumann entropy
for Gaussian states [7]. For simplicity we confine our-
selves to the one mode case, which can be easily extended
to the multi mode case. Firstly von Neumann entropy of
quasiclassical Gaussian state is easily obtained from the
spectral decomposition (17) as

H(ρ0) =
log(N̄ + 1)

N̄ + 1

∞∑
n=0

(
N̄

N̄ + 1

)n

− 1
N̄ + 1

log
N̄

N̄ + 1

∞∑
n=0

n

(
N̄

N̄ + 1

)n

=g(N̄)

(18)

with g(x) = (x+1) log(x+1)−x log x and N̄ = a/�−
1/2.

Next we pass to the general one mode case. We
consider the representation of the CCR with q1 and p1 on
symplectic space (R2, ∆). Let ρ be a Gaussian state with
a correlation correlation matrix A. Transition from one
symplectic basis to another is described by a symplectic
transformation S, satisfying ∆(Sz, Sz′) = ∆(z, z′).
Let us recall that the correlation function α(z, z′) of
the Gaussian state ρ takes the standard form by using
appropriate symplectic basis. This means that there exists
a symplectic transformation S such that

SAST = diag[a, a] =: Ã.

Moreover we can find the von Neumann entropy
of the Gaussian state ρ is given by g(N̄) with

N̄ = a/� − 1/2. We represent the correlation ma-
trix Ã = diag[a, a] = SAST by the original cor-
relation matrix A without using S. To do that, we
shall use the matrix ∆−1

1 A which is diagonalizable
and has purely imaginary eigenvalues ±ia/�. For a
diagonalizable matrix M = Gdiag(mj)G−1, we put
absM = Gdiag(|mj |)G−1. Then considering Ã/� =
abs(∆−1

1 Ã) = (ST )−1abs(∆−1
1 A)ST , we obtain

H(ρ) = g(N̄) = g(a/� − 1
2
) =

1
2
Spg(Ã/� − I2)

=
1
2
Spg((ST )−1abs(∆−1

1 A)ST − I2)

=
1
2
Spg(abs(∆−1

1 A) − I2/2).

(19)

We can easily extend this discussion to the multimode
case and obtain the general formula

H(ρ) =
1
2
Spg(abs(∆−1

r A) − I2r/2). (20)

Similarly by reducing to the quasiclassical Gaussian
state with the spectral decomposition (17), we obtain the
formula of s-th power of quantum Gaussian state [9]. Let
ρm be the Gaussian state with correlation matrix α and
mean m. Then for any positive real number s > 0

Trρs
mV (z) = Ns(A) exp

[
imT z − 1

2
zT αGs(A)z

]
. (21)

Here the functions Ns,Gs are given as

Ns(A) =
[
det fs(abs(∆−1

r A))
]− 1

2 ,

Gs(A) = gs(abs(∆−1
r A)),

(22)

and
fs(d) = (d + 1/2)s − (d − 1/2)s,

gs(d) =
1
2d

(d + 1/2)2 + (d − 1/2)s

(d + 1/2)2 − (d − 1/2)s
.

(23)

Next we give a formula of product of two Gaussian
state [9]. Let ρj (j = 1, 2) be Gaussian states with
characteristic functions

TrρjV (z) = exp
[
imT

j z − 1
2
zT Ajz

]
. (24)

Using the multiplication formula

Trρ1ρ2V (z) =
��

(2π)�

∫
Trρ1V (v)Trρ2V (z − v)

· exp
[

i

2
vT ∆rz

]
dv,

(25)

the characteristic function of ρ1ρ2 is given as

Trρ1ρ2V (z) = [det ∆−1
r (A1 + A2)]−

1
2

· exp
[
−1

2
(m1 + m2)T (A1 + A2)−1(m1 + m2)

]

· exp[−1
2
((A2 + (i/2)∆r)z − 2im2)T (A1 + A2)−1

((A1 − (i/2)∆r)z − 2im1)].
(26)
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Moreover we can find the von Neumann entropy
of the Gaussian state ρ is given by g(N̄) with

N̄ = a/� − 1/2. We represent the correlation ma-
trix Ã = diag[a, a] = SAST by the original cor-
relation matrix A without using S. To do that, we
shall use the matrix ∆−1

1 A which is diagonalizable
and has purely imaginary eigenvalues ±ia/�. For a
diagonalizable matrix M = Gdiag(mj)G−1, we put
absM = Gdiag(|mj |)G−1. Then considering Ã/� =
abs(∆−1

1 Ã) = (ST )−1abs(∆−1
1 A)ST , we obtain

H(ρ) = g(N̄) = g(a/� − 1
2
) =

1
2
Spg(Ã/� − I2)

=
1
2
Spg((ST )−1abs(∆−1

1 A)ST − I2)

=
1
2
Spg(abs(∆−1

1 A) − I2/2).

(19)

We can easily extend this discussion to the multimode
case and obtain the general formula

H(ρ) =
1
2
Spg(abs(∆−1

r A) − I2r/2). (20)

Similarly by reducing to the quasiclassical Gaussian
state with the spectral decomposition (17), we obtain the
formula of s-th power of quantum Gaussian state [9]. Let
ρm be the Gaussian state with correlation matrix α and
mean m. Then for any positive real number s > 0

Trρs
mV (z) = Ns(A) exp

[
imT z − 1

2
zT αGs(A)z

]
. (21)

Here the functions Ns,Gs are given as

Ns(A) =
[
det fs(abs(∆−1

r A))
]− 1

2 ,

Gs(A) = gs(abs(∆−1
r A)),

(22)

and
fs(d) = (d + 1/2)s − (d − 1/2)s,

gs(d) =
1
2d

(d + 1/2)2 + (d − 1/2)s

(d + 1/2)2 − (d − 1/2)s
.

(23)

Next we give a formula of product of two Gaussian
state [9]. Let ρj (j = 1, 2) be Gaussian states with
characteristic functions

TrρjV (z) = exp
[
imT

j z − 1
2
zT Ajz

]
. (24)

Using the multiplication formula

Trρ1ρ2V (z) =
��

(2π)�

∫
Trρ1V (v)Trρ2V (z − v)

· exp
[

i

2
vT ∆rz

]
dv,

(25)

the characteristic function of ρ1ρ2 is given as

Trρ1ρ2V (z) = [det ∆−1
r (A1 + A2)]−

1
2

· exp
[
−1

2
(m1 + m2)T (A1 + A2)−1(m1 + m2)

]

· exp[−1
2
((A2 + (i/2)∆r)z − 2im2)T (A1 + A2)−1

((A1 − (i/2)∆r)z − 2im1)].
(26)

Finally a formula of fidelity between two quantum
Gaussian states is given as follows [9]. Let ρm1 and ρm2

be Gaussian states with characteristic functions

Trρmj V (z) = exp
[
imT

j z − 1
2
zT Az

]
(j = 1, 2). (27)

Then the fidelity between these two Gaussian states is

Tr
��√ρm1

√
ρm2

�� = exp
[
−1

8
(m1 − m2)T A−1(m1 − m2)

]
.

(28)

III. HOLEVO CAPACITY OF CLASSICAL-QUANTUM
GAUSSIAN CHANNEL

A. Holevo Capacity

A classical-quantum Gaussian channel is defined by
a mapping Θ : R2r � m → ρm ∈ S(H), where
ρm is a quantum Gaussian state with mean function
m(z) = mT z and correlation function α(z, z′) = zT Az.
Here m is a 2r-dim vector representing the functional
m(z). Note that ρ0 describes background noise, compris-
ing quantum noise and ρm is obtained by applying the
displacement operator to ρ0. We assume every codeword
(m1, ..., mn) ∈ (R2r)n satisfies the energy constraint

n∑
i=1

f(mj) ≤ nE, j = 1, ...,M,

with a energy function f(m). Then the Holevo capacity
is given by the expression

C = sup
π∈P1

[
H

(∫

R2r

ρmπ(dm)
)
−
∫

R2r

H(ρm)π(dm)
]

.

where P1 is the set of Gaussian probability distributions
π satisfying ∫

f(m)π(d2m) < E. (29)

The mixture ρπ =
∫

ρmπ(dm) will be again Gaussian
density operator with zero mean and the correlation
matrix A+B, where A is a correlation matrix of quantum
state ρ0 and B is that of Gaussian probability distribution
π. So the Holevo capacity is equal to

C = max
B∈B1

1
2
Spg(abs(∆−1

r (A + B)) − I2r/2)

− 1
2
Spg(abs(∆−1

r A) − I2r/2)
(30)

where B1 is the convex set of correlation matrices B
corresponding to Gaussian probability distributions satis-
fying the energy constraint (29).

B. Attenuated Noisy Channel

Let a be an annihilation operator on a Hilbert space H.
The linear attenuator with coefficient k ≤ 1 is described
by the transformation

a′ = ka +
√

1 − k2a0, (31)

in the Heisenberg picture. Here a0 is an annihilation
operator in another mode in the Hilbert space H0 of
an ”environment”. We assume that the environment is
initially in the vacuum state. We denote by Γatt the cor-
responding transformation of states σ in the Shrödinger
picture: Trσa′ = TrΓatt[σ]a. Then Γatt[σ] has the
characteristic function [7]

TrΓatt[σ]V (z) = TrσV (kz) · exp
[
−�

2
1 − k2

2
zT z

]
.

Further we assume a thermal noise which zero mean and
variance Nc; we denote such defined attenuated noisy
channel by Γ. Through the attenuated noisy channel we
transmit squeezed states σ(γ)m with mean vector m and
the correlation matrix A(γ) given by Eq. (14). Then it
can be found that the output state ρ(γ)m = Γ[σ(γ)m]
has the characteristic function

Trρ(γ)mV (z) = Trσ(γ)mV (kz)·exp
[
−�

2
λ(k,Nc)zT z

]
,

where

λ(k, Nc) =
1 − k2

2
+ Nc. (32)

This indicates that ρ(γ)m is a Gaussian state with the
mean km and the correlation matrix

k2A(γ) + �λ(k, Nc)Î . (33)

Thus we obtain the classical-quantum channel m →
ρ(γ)m with an energy function

f(m) =
1
2
[mT m + SpA(γ)]. (34)

Then the Holevo capacity is given as follows [12].
[A] If |γ| ≤ γ0 holds, we obtain

C =(k2Ntr + Nc + 1) log(k2Ntr + Nc + 1)

− (k2Ntr + Nc) log(k2Ntr + Nc)

− g



{[

Nc +
1
2

]2

+ 2k2Nsqλ(k, Nc)

}1/2

− 1
2


 .

(35)

where

Nsq = Trσ(γ)0a† =
1
4
(e−2γ + e2γ) − 1

2
. (36)

When we transmit coherent states, that is Nsq = 0, the
second term in (35) is simplified and the capacity is given
by

C =(k2Ntr + Nc + 1) log(k2Ntr + Nc + 1)

− (k2Ntr + Nc) log(k2Ntr + Nc)
− (Nc + 1) log(Nc + 1) + Nc log Nc.

(37)
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[B] When |γ| > γ0 holds, we obtain

C = g

({
k2[2Ntr + 1]

[
λ(k, Nc) + k2 e2|γ|

2

]

+λ(k, Nc)2 − k4 e4|γ|

4

}1/2

− 1
2

)

− g



{[

Nc +
1
2

]2

+ 2k2Nsqλ(k, Nc)

}1/2

− 1
2


 .

(38)

These results indicate usage of coherent states always
gives the maximum capacity, and that of squeezed states
gives it only for the ideal channel (k = 1 and Nc).
Furthermore we shall consider the case where the co-
herent amplitude of the squeezing state is restricted to
real number, that is, m = (mq

1, 0). Then the capacity is
calculated as [10]

C = g

([
−k2 e2γ

2
+

1 + k2

2
+ Nc + 2k2Ntr

]1/2

·
[
k2 e2γ

2
+

1 − k2

2

]1/2

− 1
2

)

− g



[(

Nc +
1
2

)2

+ 2k2Nsqλ(k, Nc)

]1/2

− 1
2


 .

(39)

In particular, in the ideal case where k = 1 and Nc = 0,
we have

C = g

(√
B(γ) +

1
4
− 1

2

)
, (40)

with

B(γ) = e2γ (2Ntr + 1) /2 − Spα(γ)/2�

= −1
4
[e2γ − (2Ntr + 1)]2 + Ntr(Ntr + 1).

(41)

We can find γ = γ0 maximizes B(γ) and also the capacity
C. Substituting γ = γ0 into Eq. (40) we get CBE =
(Ntr + 1) log(Ntr + 1) − Ntr log Ntr, which is equal to
the ultimate capacity.

IV. EXPURGATED BOUND OF CLASSICAL-QUANTUM
GAUSSIAN CHANNEL

A. Definition of Expurgated Bound

Like the classical information theory, we introduce the
reliability function

E(R) = lim sup
n→∞

1
n

ln
1

p(enR, n)
, (42)

where R is an information rate below the Holevo capacity
C and p(M, n) denotes an error probability achieved with
the optimal code consisting of M codewords of length n
and the optimal quantum detection process described by
a positive operator-valued measure. As a lower bound of

E(R), the expurgated bound is well known, which gives
a good approximation at low rates. It is defined as

Eex(R) = max
1≤s

(max
0≤p

max
π∈P1

µ̃(π, s, p) − sR), (43)

where µ̃ is a quantum Gallager function given by

µ̃(π, s, p) = − s ln
∫ ∫

ep[f(x)+f(y)−2E]

·
(
Tr
√

ρx
√

ρy

) 1
s π(dx)π(dy).

(44)

The quantity characterizing the channel performance at
low information rates is the value E(+0) of the reliability
function at zero rate. Its lower bound is given by the
expurgated bound,

Eex(0) ≤ E(+0), (45)

and an upper bound is obtained as [8]

E(+0) ≤ −2 min
π∈P1

∫ ∫
lnTr|√ρm

√
ρm′ |π(dm)π(dm′).

(46)
In particular, in the case of pure states, the upper and
lower bounds coincide, i.e. E(+0) = Eex(0).

The Gallager function µ̃(π, s, p) with the a priori
Gaussian distribution

π(dm) =
1

2π
√

det B
exp

[
−1

2
mT B−1m

]
dm, (47)

takes the following form

µ̃(π, s, p) = 2psE

+
s

2
log det

[
(I2 − pβ)(I2 − pB + 2(2sG 1

s
(A)A)−1B)

]
.

(48)

which can be derived from Eqs. (21) and (26).

B. Expurgated Bound for Ideal Channel

When ρ0 is a coherent state, the expurgated bound can
be computed as

Eex(R) =




2Ntr(1 −
√

1 − e−R) R < log ϑ(2Ntr)
2(Ntr + 1 − ϑ(2Ntr))

+ lnϑ(2Ntr) − R
otherwise

,

(49)
where

ϑ(x) =
1 +

√
x2 + 1
2

.

On the other hand, we have not yet found the way to
perform analytically maximization in Eq. (43) and to
compute the expurgated bound when ρ0 is a squeezed
state. So we evaluate the expurgated bound for the ideal
channel, by considering suboptimal a priori distributions
to Gaussians with correlation matrix of the form

[
E 0
0 0

]
, (50)
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[B] When |γ| > γ0 holds, we obtain

C = g

({
k2[2Ntr + 1]

[
λ(k, Nc) + k2 e2|γ|

2

]

+λ(k, Nc)2 − k4 e4|γ|

4

}1/2

− 1
2

)

− g



{[

Nc +
1
2

]2

+ 2k2Nsqλ(k, Nc)

}1/2

− 1
2


 .

(38)

These results indicate usage of coherent states always
gives the maximum capacity, and that of squeezed states
gives it only for the ideal channel (k = 1 and Nc).
Furthermore we shall consider the case where the co-
herent amplitude of the squeezing state is restricted to
real number, that is, m = (mq

1, 0). Then the capacity is
calculated as [10]

C = g

([
−k2 e2γ

2
+

1 + k2

2
+ Nc + 2k2Ntr

]1/2

·
[
k2 e2γ

2
+

1 − k2

2

]1/2

− 1
2

)

− g



[(

Nc +
1
2

)2

+ 2k2Nsqλ(k, Nc)

]1/2

− 1
2


 .

(39)

In particular, in the ideal case where k = 1 and Nc = 0,
we have

C = g

(√
B(γ) +

1
4
− 1

2

)
, (40)

with

B(γ) = e2γ (2Ntr + 1) /2 − Spα(γ)/2�

= −1
4
[e2γ − (2Ntr + 1)]2 + Ntr(Ntr + 1).

(41)

We can find γ = γ0 maximizes B(γ) and also the capacity
C. Substituting γ = γ0 into Eq. (40) we get CBE =
(Ntr + 1) log(Ntr + 1) − Ntr log Ntr, which is equal to
the ultimate capacity.

IV. EXPURGATED BOUND OF CLASSICAL-QUANTUM
GAUSSIAN CHANNEL

A. Definition of Expurgated Bound

Like the classical information theory, we introduce the
reliability function

E(R) = lim sup
n→∞

1
n

ln
1

p(enR, n)
, (42)

where R is an information rate below the Holevo capacity
C and p(M, n) denotes an error probability achieved with
the optimal code consisting of M codewords of length n
and the optimal quantum detection process described by
a positive operator-valued measure. As a lower bound of

E(R), the expurgated bound is well known, which gives
a good approximation at low rates. It is defined as

Eex(R) = max
1≤s

(max
0≤p

max
π∈P1

µ̃(π, s, p) − sR), (43)

where µ̃ is a quantum Gallager function given by

µ̃(π, s, p) = − s ln
∫ ∫

ep[f(x)+f(y)−2E]

·
(
Tr
√

ρx
√

ρy

) 1
s π(dx)π(dy).

(44)

The quantity characterizing the channel performance at
low information rates is the value E(+0) of the reliability
function at zero rate. Its lower bound is given by the
expurgated bound,

Eex(0) ≤ E(+0), (45)

and an upper bound is obtained as [8]

E(+0) ≤ −2 min
π∈P1

∫ ∫
lnTr|√ρm

√
ρm′ |π(dm)π(dm′).

(46)
In particular, in the case of pure states, the upper and
lower bounds coincide, i.e. E(+0) = Eex(0).

The Gallager function µ̃(π, s, p) with the a priori
Gaussian distribution

π(dm) =
1

2π
√

det B
exp

[
−1

2
mT B−1m

]
dm, (47)

takes the following form

µ̃(π, s, p) = 2psE

+
s

2
log det

[
(I2 − pβ)(I2 − pB + 2(2sG 1

s
(A)A)−1B)

]
.

(48)

which can be derived from Eqs. (21) and (26).

B. Expurgated Bound for Ideal Channel

When ρ0 is a coherent state, the expurgated bound can
be computed as

Eex(R) =




2Ntr(1 −
√

1 − e−R) R < log ϑ(2Ntr)
2(Ntr + 1 − ϑ(2Ntr))

+ lnϑ(2Ntr) − R
otherwise

,

(49)
where

ϑ(x) =
1 +

√
x2 + 1
2

.

On the other hand, we have not yet found the way to
perform analytically maximization in Eq. (43) and to
compute the expurgated bound when ρ0 is a squeezed
state. So we evaluate the expurgated bound for the ideal
channel, by considering suboptimal a priori distributions
to Gaussians with correlation matrix of the form

[
E 0
0 0

]
, (50)

with E = �(2Ntr + 1) − SpA(γ) for γ ≥ 0. Then we
obtain a lower bound Êex(R)(≤ Eex(R) ≤ E(R)) as
[14]

Êex(R) =

{
2Nt(Nt + 1)(1 −

√
1 − e−R) R < R0

Ĉ − R otherwise
,

(51)
with R0 = 1

2 lnϑ(4Ntr(Ntr + 1)) and

Ĉ =2Ntr(Ntr + 1) + 1 − ϑ(4Ntr(Ntr + 1))

+
1
2

log ϑ(4Ntr(Ntr + 1)).
(52)

Comparing Eq.(49) and Eq.(51), we find that squeezing
is good at low communication rates.

C. Zero Rate Error Exponents

The upper and lower bounds of the zero rate exponents
for an attenuated noisy channel can be easily obtained as

ξI0 ≤ E(+0) ≤ I0, (53)

where

I0 =
k2�2

λ2

[
Nsq +

1
2

+
√

N2
sq + Nsq

]
[Ntr − Nsq],

ξ =
1

1 +
√

1 − �2/(4λ2)
, (54)

λ = �
√

(Nc + 1/2)2 + k2Nsq[(1 − k2) + 2Nc].

In particular, for the ideal channel (i.e. k = 1 and Nc =
0), we obtain

E(+0) = 2B(γ). (55)

This shows that the value of zero rate exponents for
squeezed states with the optimal parameter γ = γ0 ,
2Ntr(Ntr + 1), is larger than that for coherent states
(Nsq = 0), 2Ntr. Thus the advantage of squeezing
has been shown rigorously by evaluating the zero rate
exponents E(+0).

V. BINARY DISCRETIZATION

Let us recall Gordon’s suggestion that the binary quan-
tum counter can extract essentially all the information
incorporated in a weak light wave; he proposed a semi-
optimal system with On-Off keying states {|0�, |α�}
and the binary quantum counter {|0��0|, I − |0��0|}.
According to this suggestion, we infer that the binary
discretization, restricting the number of letters to only
two, realizes asymptotically the capacity in the quantum
case. In this section we shall verify this inference by
computing the capacity realized by the optimum binary
discretization [11]. In addition we also consider the binary
discretization for the zero rate exponents.

A. Binary Discretization for Capacity

Let us consider the classical-quantum Gaussian chan-
nel with correlation matrix A(γ) (γ ≥ 0). This describes
an entangled measurement system with pure Gaussian
states over the ideal channel Γid given by the identity
operator on H. From (35) and (38) with k = 1 and
Nc = 0, we obtain the capacity of this channel as follows.
[A] When 0 ≤ γ ≤ γ0 holds, we have

C = (Ntr + 1) log(Ntr + 1) − Ntr log Ntr, (56)

which is denoted by CBE .
[B] When γ > γ0 holds, we have

C = g

(
[(2Ntr + 1)(e2γ/2) − e4γ/4]1/2 − 1

2

)
. (57)

On the other hand the optimum capacity for two signal
states is given by

C(2) = sup
{m1,m2}

sup
Q

H({m1,m2}, {Q, 1 − Q}). (58)

Here the maxima are taken over all binary set of inputs,
{m1, m2}, and all probability assignments Q, 1 − Q
satisfying the constraint

Qf(m1) + (1 − Q)f(m2) ≤ �
(

Ntr +
1
2

)
, (59)

and H({m1,m2}, {Q, 1 − Q}) is the capacity of binary
channel with input letter states {σ(γ)m1 , σ(γ)m2} and
the corresponding a priori probabilities {Q, 1−Q}. It is
known [6] that the capacity H({m1,m2}, {Q, 1−Q}) is
given by

H (Qσ(γ)m1 + (1 − Q)σ(γ)m2)

= log 2 − 1
2
(1 − x) log(1 − x) − 1

2
(1 + x) log(1 + x),

(60)

where

x =
√

1 − 4Q(1 − Q)(1 − κ2), (61a)
κ2 = Trσ(γ)m1σ(γ)m2 . (61b)

From (26), we have

κ2 = exp
[
− 1

2�
(m1 − m2)T diag[e2γ , e−2γ ](m1 − m2)

]
.

(62)
Carrying out maximization in Eq. (58), we obtain

C(2) = −
[
1 − e−2B(γ)

2
log(

1 − e−2B(γ)

2
)

+
1 + e−2B(γ)

2
log(

1 + e−2B(γ)

2
)
]

, (63)

which is achieved by Q = 1/2, m1 = −m2 =
√

B(γ).
Here we can also find a squeezing effect.

The binary discretization realizes approximately the
capacity CBE in a weak photon case. Let us consider the
case of γ = 0 for simplicity. By applying e−x ≈ 1 − x
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and log(1−x) ≈ −x to (56) and (63) and neglecting the
term of N2

tr, the following approximation holds,

CBE ≈ C(2) ≈ −Ntr log Ntr + Ntr for Ntr � 1. (64)

This result shows that the binary discretization provides
a simple optimal strategy to construct a quantum code.
The classical continuous channel does not have such a
good property[29]; the binary discretization necessarily
causes some loss of information and hence it provides no
optimal way to use the channel. The code achieving the
capacity of continuous channel should be found in more
complicated way considering sphere packing.

B. Binary Discretization for zero rate exponents

Let us find the optimum binary discretization for zero
rate exponents of ideal channel with squeezed states. We
consider the optimization,

E(2)(+0) = max
{m1,m2}

max
Q

E(+0)({m1,m2}, Q), (65)

where E(+0)({m1,m2}, Q) is the zero rate exponents
for the binary channel with two pure states σ(γ)m1 and
σ(γ)m2 and with a priori probability {Q, 1 − Q}. It is
known [6] that

E(+0)({m1,m2}, Q) = −2Q(1 − Q) log κ2, (66)

where κ2 is given by (61b). Carrying out the maximiza-
tion in Eq.(65), we have

E(2)(+0) = 2B(γ), (67)

This equals to the value of zero rate exponents in the
unrestricted case (55).

VI. CONCLUSION

We have evaluated effects of squeezing for the follow-
ing cases.

1) capacity for attenuated noisy channel
2) capacity for ideal channel with squeezed state sig-

nals whose coherent amplitudes are restricted to
real number

3) expurgated bound for ideal channel
4) zero rate exponents for attenuated noisy channel
5) binary discretization for capacity of ideal channel
6) binary discretization for zero rate exponents of ideal

channel
In the case of (1), squeezing does not improve capacity;
whenever a channel is not ideal the value of capacity
decreases by using squeezed states. In the case of (2)
and (5), effects of squeezing is so small that it vanishes
when transmittance k of channel is small. Only in the case
of (3) , (4) and (6) squeezing effects are remarkable. As
seen in the subsection V-B, at low communication rates,
binary discretization is very effective and hence signal-to-
noise ratio is essential. This is the reason why squeezing
is good at low communication rates.
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