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Fig. 4. Integrand in Fq.( 10) as a function of τ at various σ.
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Fig. 5. Summary of calculation results of the function h at various σ.
The envelope of various h curves corresponds to the optimum BK-factor
hm(ξ) which yields the maximum ENL at certain value of ξ.

where mismatching in wave vectors ∆k is given as

∆k = 2kω − k2ω. (12)

The integrand in Eq.( 10) as a function of τ is shown
in Fig. 4 at various phase mismatching parameters σ. It
is noteworthy that the value of function increases at the

Fig. 6. Calculation result of optimum phase mismatching parameter
σm which yields the optimum Boyd and Kleinman factor hm(ξ).

lower τ and sinusoidally varies at the higher range of τ by
increasing the σ. So there is possibility that the BK-factor
h improves by optimizing the σ. Fig. 5 shows calculation
results of the h as a function of ξ at various σ. The
optimized Boyd and Kleinman factor hm(ξ) corresponds
to the envelope curve in Fig. 5 and yields the maximum
ENL at certain value of ξ. This envelope is identical to
the curve with the condition of B=0 in Fig.2 in ref. [7].

The optimum σ (=σm) which attains the optimum
hm(ξ) is shown in Fig. 6. Experimentally the optimum
σm is achieved by fine tuning of the phase matching
temperature or adjustment of the crystal orientation in
order to maximize the SHG power. The mechanism that
the h improves with increasing the phase mismatching
parameter σ from zero to one is not clear for the author
yet.

A Lemma on Euler Angles
Mitsuru Hamada

Abstract—A recently obtained fundamental lemma
on Euler angles and its application to some issue on
universal gates for quantum computation [M. Hamada,
“Overlooked restrictions on Euler angles in quantum
computation,” APS 2013 March Meeting, Baltimore, USA,
2012, http://meetings.aps.org/link/BAPS.2013.MAR.H1.318
(abstract)] are described in detail. The fundamental lemma
in the unpublished work is as follows. Let X,Y , and
Z denote the Pauli matrices. For any three-dimensional
real unit vector n̂ = (nx, ny , nz)

T and θ ∈ R, put
Rn̂(θ) = cos(θ/2)I − i sin(θ/2)(nxX + nyY + nzZ). Put
Ry(θ) = R(0,1,0)T (θ) and Rz(θ) = R(0,0,1)T (θ). Lemma:
Assume α, γ, θ ∈ R and n̂ = (nx, ny , nz)

T is a real
unit vector; then, there exists some β, δ ∈ R satisfying
Rn̂(θ) = eiαRz(β)Ry(γ)Rz(δ) if and only if eiα ∈ {1,−1}
and

√
1− n2

z| sin(θ/2)| = | sin(γ/2)|. By means of this
lemma, a widespread fallacy on universal gates has been
pointed out. Mathematical details of the lemma and its
application, together with self-contained expositions of
underlying notions, are given so as to help us dispel the
fallacy.

I. INTRODUCTION

Around quantum computation, many interesting issues
have arisen. In particular, it has stimulated investigations on
systems represented by finite-dimensional Hilbert spaces
and information processing with such systems. One funda-
mental issue often discussed in the literature on quantum
computation is that on realization of an arbitrary unitary
operator with universal gates. It is known that, in principle,
there exist universal sets of gates, which are building blocks
of quantum circuits [1]. Here, a universal set means, using
gates in the set, we can construct any unitary operation
approximately, and the approximation can be made as
accurate as one wants.

Known arguments on the universality reduce the issue
of constructing any unitary operation on multiple primitive
systems to that of constructing any unitary operation on a
single primitive system [2], [3, Sec. 4.5.1], [4, Sec. 3.1].
The primitive system is represented by a two-dimensional
Hilbert space, and is sometimes called a quantum-bit
system.

This work is related to the issue of constructing an
arbitrary unitary operator on the two-dimensional Hilbert
space. Its aim is to draw the reader’s attention to results
of an unpublished piece of work of this author, of which
only an abstract was made public [5].

A motivation for that unpublished work was uneasiness
about a widespread fallacy often found in textbooks on
quantum computation. This fallacy was more than ten years
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old [3] when it was pointed out by the present author.
The fallacy was based on the following erroneous claim.
Writing the ‘rotation’ about a unit vector n̂ by an angle θ
as Rn̂(θ), they have claimed that any 2× 2 unitary matrix
can be written as eiαRm̂(β)Rn̂(γ)Rm̂(δ) for appropriate
choices of real numbers α, β, γ, and δ if n̂ and m̂ are non-
parallel real unit vectors in three dimensions [3, p. 176,
Exercise 4.11], [4, p. 34], [6, p. 66, Theorem 4.2.2].

In that work, the present author has given a fundamental
lemma (originally, called a theorem), which shows that
there are restrictions on the parameters for an equation
Rn̂(θ) = eiαRz(β)Ry(γ)Rz(δ) to hold, where Rz and
Ry are special cases of Rn̂ to be specified below. As an
application of this result, it has been shown that the above
statement using the non-parallel vectors is incorrect [5].

This work consists of several parts of the unpublished
piece of work of this author, the abstract of which is [5].
Specifically, it consists of the fundamental lemma, some
part explicating the objects treated in the lemma, and the
application of the lemma.

II. FUNDAMENTAL LEMMA ON EULER ANGLES

Let X,Y , and Z denote the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Throughout, I denotes the 2× 2 identity matrix.
We will work with a matrix

Rn̂(θ) = (cos θ
2 )I − i(sin θ

2 )(nxX + nyY + nzZ) (1)

where n̂ = (nx, ny, nz)
T ∈ R3 with �n̂� =√

n2
x + n2

y + n2
z = 1 and θ ∈ R, with R denoting the set

of real numbers. Note in traditional quantum physics [7],
special attentions are paid to Rn̂(θ) with n̂ = (0, 1, 0)T and
Rn̂(θ) with n̂ = (0, 0, 1)T, which we denote by Ry(θ) and
Rz(θ), respectively.

Lemma 1: [5, Theorem]. For any α, γ, θ ∈ R and n̂ =
(nx, ny, nz)

T ∈ R3 with n2
x + n2

y + n2
z = 1, the following

two conditions are equivalent.

I. There exist some β, δ ∈ R such that

Rn̂(θ) = eiαRz(β)Ry(γ)Rz(δ). (2)

II. Both of the following hold:

eiα ∈ {1,−1}, (3)√
1− n2

z| sin θ
2 | = | sin γ

2 |. (4)

In this article, only a proof of ‘I ⇒ II’ is included.
Proof of Lemma 1 (I ⇒ II).
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i) We will first give a more concrete form of (2). A direct
calculation shows

Rz(β)Ry(γ)Rz(δ)

= cos
γ

2
cos

δ + β

2
I − i sin

γ

2
sin

δ − β

2
X

− i sin
γ

2
cos

δ − β

2
Y − i cos

γ

2
sin

δ + β

2
Z. (5)

Hence, (2) is equivalent to
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos θ
2 = eiα cos γ

2 cos
δ+β
2 (6)

nx sin
θ
2 = eiα sin γ

2 sin
δ−β
2 (7)

ny sin
θ
2 = eiα sin γ

2 cos
δ−β
2 (8)

nz sin
θ
2 = eiα cos γ

2 sin
δ+β
2 . (9)

ii) We will prove I ⇒ II.
From (6), we have eiα ∈ R, i.e., (3). On each side of (7)

and (8), taking the absolute values, squaring, and summing
the resultant pair, we have (4). [Eqs. (6) and (9) also imply
(4) similarly.]

�

III. BASICS ON 2× 2 UNITARY MATRICES

In this section, we derive some basics such as those on
the decomposition Rz(β)Ry(γ)Rz(δ) and even the matrix
Rn̂(θ) itself in an elementary self-contained manner.

A. Rotation about an arbitrary axis

The two matrices Rz(θ) and Ry(θ) represent rotations
in the following sense. Let M(x, y, z) be defined by

M(x, y, z) = xX + yY + zZ =

�
z x− iy

x+ iy −z

�

for (x, y, z)T ∈ R3. Then, for θ ∈ R, we have1

Rz(θ)M(x, y, z)Rz(θ)
† = M(x�, y�, z�)

where the coordinates obey

(x�, y�, z�)T = R̂z(θ)(x, y, z)
T (10)

with

R̂z(θ) :=

⎛
⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠ . (11)

We also have

Ry(θ)M(x, y, z)Ry(θ)
† = M(x�, y�, z�)

where
(x�, y�, z�)T = R̂y(θ)(x, y, z)

T (12)

with

R̂y(θ) :=

⎛
⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞
⎠ . (13)

1 Considering the action UM(x, y, z)U† of a unitary matrix U is
natural since any 2×2 density matrix can be written in the form (1/2)[I+
M(x, y, z)], where x2 + y2 + z2 ≤ 1.

Thus, Rz(θ) and Ry(θ) act as the rotation about the z-
axis by the angle θ and the rotation about the y-axis by
the angle θ, respectively, in R3. Using these facts, we will
derive a unitary matrix that corresponds to a rotation about
an arbitrary vector in R3.

Now note that any unit vector n̂ ∈ R3 can be obtained
by rotating (0, 0, 1)T about the y-axis and then rotating the
obtained vector about the z-axis:

n̂ = R̂z(φ)R̂y(ψ)(0, 0, 1)
T.

As a result, n̂ can be written as

n̂ = (sinψ cosφ, sinψ sinφ, cosψ)T, (14)

cf. spherical coordinates. Then,

R̂n̂(θ) := R̂z(φ)R̂y(ψ)R̂z(θ)[R̂z(φ)R̂y(ψ)]
−1 (15)

is the matrix that represents the rotation about n̂ by the
angle θ in R3. This is obvious since [R̂z(φ)R̂y(ψ)]

−1

moves n̂ to (0, 0, 1)T.
Then,

U = Rz(φ)Ry(ψ)Rz(θ)[Rz(φ)Ry(ψ)]
†

= Rz(φ)Ry(ψ)Rz(θ)Ry(−ψ)Rz(−φ) (16)

acts as UM(x, y, z)U † = M(x�, y�, z�), where
(x�, y�, z�)T = R̂n̂(θ)(x, y, z)

T. Performing the
multiplication in (16), we have

U = (cos θ
2 )I − i(sin θ

2 )[(sinψ cosφ)X

+ (sinψ sinφ)Y + (cosψ)Z],(17)

which is the same as Rn̂(θ) in (1) since we have
set (nx, ny, nz) = (sinψ cosφ, sinψ sinφ, cosψ). Note
Ry(ψ), Rz(φ), Rz(θ) ∈ SU(2), so that Rn̂(θ) ∈ SU(2).

B. Parameterizations of SU(2) elements

1) Rz(β)Ry(γ)Rz(δ) : Any matrix in SU(2) can be
written as �

e−iη cos γ
2 − eiζ sin γ

2
e−iζ sin γ

2 eiη cos γ
2

�
(18)

and hence, as
�
e−i δ+β

2 cos γ
2 − ei

δ−β
2 sin γ

2

e−i δ−β
2 sin γ

2 ei
δ+β
2 cos γ

2

�
(19)

where η, ζ, β, γ, and δ are real numbers. This can be easily
shown using the fact that the two columns and the two rows
of any unitary matrix are orthonormal, respectively.

Note that the matrix in (19) equals Rz(β)Ry(γ)Rz(δ),
as can be seen by performing the multiplications. [This can
also be written as in (5).] Thus, any matrix in SU(2) can
be decomposed into Rz(β)Ry(γ)Rz(δ).
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2) Rn̂(θ) : Any matrix in SU(2) can be written as
(

a b
−b∗ a∗

)
(20)

with some complex numbers a and b such that |a|2+|b|2 =
1. This is just a result of rewriting the expression (18).
Hence, any matrix in SU(2) can be written as

(
w + iz y + ix
−y + ix w − iz

)
= wI + i(xX + yY + zZ) (21)

with some real numbers x, y, z, and w such that

w2 + x2 + y2 + z2 = 1. (22)

From this expression of an arbitrary matrix in SU(2),
we obtain another parameterization as follows. Take a
real number θ such that cos(θ/2) = w and sin(θ/2) =√
1− w2 =

√
x2 + y2 + z2; write x, y, and z as x =

−nx sin(θ/2), y = −ny sin(θ/2), and z = −nz sin(θ/2),
where nx, ny, nz ∈ R and n2

x + n2
y + n2

z = 1. Thus, using
real numbers θ, nx, ny, nz ∈ R with n2

x + n2
y + n2

z = 1,
any matrix in SU(2) can be written as

(cos θ
2 )I − i(sin θ

2 )(nxX + nyY + nzZ),

which is nothing but Rn̂(θ) in (1). Thus, (17) is another
parameterization for elements in SU(2).

IV. IMPLICATION OF LEMMA 1

In this section, the application of Lemma 1 is presented.
The following corollary to Lemma 1 and its consequence
are taken from the abstract [5] verbatim, where ‘iff’ stands
for ‘if and only if,’ and the fallacy is the one mentioned in
the introduction.2

Corollary 1: Assume α, γ ∈ R, n̂ = (nx, ny, nz)
T ∈

R3 and n2
x+n2

y+n2
z = 1. Then, there exist some β, δ, θ ∈ R

such that eiαRz(β)Rn̂(θ)Rz(δ) = Ry(γ) iff eiα = 1 or
−1, and | cos(γ/2)| ≥ |nz|.

This corollary shows a (to be read ‘the’ now) widespread
fallacy on universal gates in quantum computation.
Namely, when | cos(γ/2)| < |nz | < 1, according to a
(‘the’ now) claim often found in textbooks, Ry(γ) could be
written as eiαRz(β)Rn̂(θ)Rz(δ) for some α, β, δ, θ ∈ R.
This is untrue by the corollary.

V. CONCLUDING REMARKS

We have drawn the reader’s attention to a lemma
(theorem in [5]) that clarifies when the two parametric
expressions of matrices in SU(2) equal each other. This
lemma was originally obtained to point out the widespread
misleading erroneous claim that for any non-parallel vec-
tors m̂ and n̂, any 2 × 2 unitary matrix could be written
as a scalar multiple of the product of some three SU(2)
rotations about either m̂ or n̂.

A large portion of the material of the unpublished work,
the abstract of which is [5], has been included in more

2 We remark that the ‘only if’ part of the corollary, follows from the
‘I ⇒ II’ part of Lemma 1, and this part is enough for obtaining the
consequence, i.e., for demonstrating the fallacy.

recent conference proceedings [8]. The main result of [8]
is obtained with the fundamental theorem of [5] (Lemma 1
of the present work). On the research commenced in [8]
(in fact, in the unpublished manuscript, of which [5] is an
abstract), some progresses have been made, and obtained
results are being presented [9].
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