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Abstract—We compute a cut-off rate RM forM -ary ASK
signal states and deal with the discretization problem where
we consider whether RM achieves a continuous cut-off rate.

I. INTRODUCTION

This paper discusses a cut-off rate of quantum Gaussian
channels, where classical information is conveyed by
quantum Gaussian states and a positive operator valued
measure is used in the decoding procedure. In particular
we mainly deal with ASK signal states.

The quantum cut-off rate is a quantity describing be-
havior of error probability exponents at medium rates[1].
The Holevo capacity gives the upper limit on the in-
formation rate for reliable classical-quantum communi-
cation and the quantum cut-off rate is considered to be
the practical upper bound on the information rate of
a classical-quantum channel[2]. Ban et.al developed a
method of computing quantum cut-off rate and applied
it for a group-covariant M -ary quantum state channel[2].

Our purpose is to reveal properties of ASK signal states
in terms of quantum cut-off rate. Unfortunately, for ASK
signal states, we cannot always apply the Ban’s method
of computing a quantum cut-off rate. So we compute it by
exploiting a numerical method in Sec. II. In Sec. III we
obtain a continuous quantum cut-off rate in the case of
one dimensional distributed signals and compare it with
the result for the discrete case.

II. QUANTUM CUT-OFF RATE FOR ASK SIGNAL
STATES

We firstly remind the quantum cut-off rate for classical-
quantum communication channels with M pure signal
states {|ψ1〉, ..., |ψM 〉}. It is given by

RM = max
π

μ̃(π, 1) (1)

where the function μ̃(π, s) is a Gallager function given
as

μ̃(π, s) = −s ln

M∑
j=1

M∑
k=1

πjπk|〈ψj |ψk〉|2/s. (2)

Ban found that the quantum cut-off rate can be computed
as

RM = ln

⎡
⎣ M∑
j=1

M∑
k=1

(G−1
2 )jk

⎤
⎦ , (3)

if

π̃j =

∑M
k=1(G−1

2 )jk∑M
i=1

∑M
k=1(G−1

2 )ik
, (4)

is non-negative for all j = 1, 2, ...,M , where G−1
2 is the

inverse of the matrix (G2)jk = |〈ψj |ψk〉|2 [2]. Note that
{π̃j} gives the optimum input probability when the above
condition is satisfied.

Let us compute the quantum cut-off rate for ASK signal
states, which consists of M signal states {|−α〉, ....., |α〉}.
Here we assume α is a real number for simplicity.
Unfortunately we cannot always employ Ban’s formula
(3) because π̃j may not be positive when distance be-
tween signals is short. Then we must rely on numerical
computation. Fig. 1 shows graphs of cut-off rates RM

with respect to number of signals M for α = 2, 5, 10. In
Fig. 1 circles are computed by Ban’s formula. The graphs
indicate that large number of signals is needless. Unlike
the case of PSK signal states the average energy

N =
M∑
j=1

πj |αj |2 (5)

with {|α1〉, ..., |αM 〉} = {|−α〉, ....., |α〉}, changes as a
priori probability distribution π does. We are interested in
knowing how the average energy, NM , for the optimum
a priori distribution changes according to the number of
signals, M . Fig. 2 shows the graph of NM/N2, with
respect to number of signals M for α = 2, 5, 10. Here we
use a normalization NM/N2 instead of NM , because we
are interested in whether we need a larger energy when
M takes a larger value.

III. DISCRETIZATION

We remind the quantum cut-off rate for a continu-
ous classical-quantum channel with pure signal states
{|ψm〉;m ∈ M} where M is a Borel subset in a finite
dimensional Euclidean space. In [6] it is given as

RC = max
0≤p

max
π∈P1

μ̃(π, 1, p), (6)

where P1 is the set of probability distribution π satis-
fying

∫
f(m)π(dm) ≤ E for a fixed nonnegative Borel

function f on M and

μ̃(π, s, p)

= −s ln

∫
ep[f(m)+f(n)−2E]|〈ψm|ψn〉|2/sπ(dm)π(dn).

(7)
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Fig. 1. Dependence of cut-off rate on number of signals, M , when
α = 2, 5, 10. Circles show values computed by Ban’s formula.

α
α
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Fig. 2. Dependence of NM/N2 on number of signals M , when α =
2, 5, 10.

This is the quantum cut-off rate that we can achieve if we
are allowed to use codes |ψm1〉 ⊗ · · · ⊗ |ψmK 〉 satisfying
energy constraint

f(m1) + · · ·+ f(mK) ≤ KE. (8)

On the other hand in the case of quantum cut-off rate RM

any letter states |ψmj 〉 in a codeword are chosen from the
fixed finite set {|ψ1〉, ..., |ψM 〉} and energy constraint is
not considered. Putting p = 0 and considering a discrete
probability distribution as π in Eq. (6), we obtain the

following relation

RM ≤ RC , (9)

where {|ψ1〉, ..., |ψM 〉} ⊂ {|ψm〉;m ∈ M} and energy
constraint E is fixed to the value of average energy with
optimum probability distribution in Eq. (1).

In the following we devote ourselves to the case of
coherent signal states. Then we consider

f(α) = �|α|2 (10)

as a signal energy for coherent state |α〉 and put E =
�Ntr.

Let us compute the Gallager function assuming a priori
probability distribution is Gaussian

π(d2α) =
1

πNtr
exp

(
−|α|2
Ntr

)
d2α, (11)

where α is a complex valued random variable. Then we
have [6]

μ̃(π, s, p)

= s

[
2pE + log

(
1 + p2E2 − 2pE +

E(1− pE)

�s

)]
,

(12)

with E = �Ntr, and we can solve the optimization (6)
and obtain

RC = 2Ntr + 2− 2ϑ(2Ntr) + lnϑ(2Ntr), (13)

with ϑ(t) = (1 +
√
t2 + 1)/2. It is more suitable

to consider the case where a priori probability π is
distributed one-dimensionally:

π(dx) =
1√

2πNtr

exp

(
− |x|2
2Ntr

)
dx. (14)

Then we compute the cut-off rate Rx as

Rx = 2Ntr + 1− ϑ(4Ntr) +
lnϑ(4Ntr)

2
. (15)

Here we have the relation RM ≤ Rx ≤ RC and RM

(M = 2, 3, ...) increases monotonously with respect to
M . Fig. 3 shows the graphs of R2/Rx and R30/Rx with
respect to average signal energy Ntr. Note that we have
NM ≤ N30 for M < 30 and NM = N30 for M > 30 in
our case, where Ntr is small (Ntr < 0.8). These graphs
show the followings.

1) When the average energy Ntr is small (Ntr < 0.1),
the binary cut-off rate R2 has almost the same value
as the continuous cut-off rate Rx.

2) When Ntr < 0.6, it is not necessary to use more
than two signal states. i.e. NM = N2,M = 3, 4, ..

3) When Ntr has the large value, the value of RM

does not approach to that of Rx even if we take
any large values of M .

By further computation we can find graphs of RM/Rx,
M ≥ 3 coincide each other when Ntr is small (e.g. Ntr ≤
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Fig. 3. Dependence of ratios R2/Rx,R30/Rx on average signal
energy, Ntr .

0.8). So the dot line in Fig. 3 gives an upper bound. On
the other hand for a larger value of Ntr we need a larger
value of M in order to achieve the upper bound.

IV. CONCLUSION

We have computed the cut-off rate RM for M -ary
ASK signal states {|−α〉, ....., |α〉} and compared it with
the continuous cut-off rate Rx. The value of binary cut-
off rate R2 is equal to that of Rx approximately when
Ntr << 1 while RM does not achieve the continuous
cut-off rate even if we take any large values of M . This
means that our strategy based on ASK signal states is not
suitable to achieve the continuous cut-off rate for a large
value of Ntr.

REFERENCES

[1] M. V. Burnashev and A. S. Holevo, On reliability function of
quantum communication channel, Probl. Peredachi Inform., 34, 1-
13, 1998

[2] M. Ban and K. Kurokawa and O. Hirota Cut-off rate for quantum
communication channels with entangled measurement, Quantum
Semiclass. Opt., 10, L7-L12, 1998

[3] Fumio Futami, Experimental demonstrations of Y-00 cipher for
high capacity and secure optical fiber communications, Quantum
Information Processing, vol. 13, no-10, pp2277-2292, 2014

[4] A. S. Holevo, Coding theorems for quantum channels, Tamagawa
University Research Review, 4, 1, 1998

[5] A. S. Holevo, Reliability function of general classical-quantum
channel, IEEE Trans. on Information Theory, 46(6), 2256-2260,
2000

[6] A. S. Holevo and M. Sohma and O. Hirota, Error exponents for
quantum channels with constrained inputs,Reports on Mathematical
Physics, 46, 3, 343-358, 2000

[7] Y. Ishida, K. Kato, and T. S. Usuda, Capacity of attenuated channel
with discrete-valued input, Proceedings of the 8th International
Conference on Quantum Communication, Measurement and Com-
puting, O. Hirota, J. H. Shapiro, and M. Sasaki (Eds. ), NICT Press,
pp.323-326, 2007.


