
ISSN 2186-6570 

 

On the Relation between Holevo’s Commutation 

Operator and Modular Operator 

 

Masaki Sohma 

 

Quantum Information Science Research Center, Quantum ICT Research Institute, 

Tamagawa University 

6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan 

 

 

Tamagawa University Quantum ICT Research Institute Bulletin, Vol.6, No.1, 25-27, 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©Tamagawa University Quantum ICT Research Institute 2016 

All rights reserved. No part of this publication may be reproduced in any form or by any means 

electrically, mechanically, by photocopying or otherwise, without prior permission of the copy right 

owner. 



25 1

On the Relation between Holevo’s Commutation
Operator and Modular Operator

Masaki Sohma
Quantum Information Science Research Center, Quantum ICT Research Institute, Tamagawa University

6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
E-mail: sohma@eng.tamagawa.ac.jp

Abstract—We report on verification of the relation between
Holevo’s commutation operator and the modular operator.

I. INTRODUCTION

In the study of noncommutative statistics, Holevo intro-
duced the space of square-integrable operators and the asso-
ciated superoperators called the commutation operators [1].
These are very useful mathematical tools for the solution of
noncommutative statistical problems. On the other hand the
modular operator is well known in the operator theory; it
appears in the main results of the Tomita-Takesaki theory.
Holevo pointed out that we can show the relation between
the commutation operator and the modular operator by a
simple computation [1]. This paper reviews results about
theses operators in the simplest case, and gives a detailed
computation to verify the relation between them.

We mainly deal with the von Neumann algebra N =
Mn(C), which is the ensemble of n × n complex matrices
and can be considered as the algebra B(H) of bounded
linear operators on the Hilbert space H = C

n with the inner
product (x, y) = x̄T y. Let ρ be a non-degenerated density
operator and ω be the corresponding normal state given by
ω(A) = TrρA,A ∈ N. We regard N as a Hilbert space with
the inner product

〈A,B〉 = 1

2
ω(BA∗ +A∗B), (1)

and denote it by H. In the quantum theory we consider
additional bilinear form on H

[A,B] = iω(A∗B −BA∗). (2)

and obtain fundamental inequalities

〈X,X〉 ≥ ± i

2
[X,X],

which yield the uncertainty relation of the most general form
[1]. We define a commutation operator D so that it satisfies

[A,X] = 〈A,DX〉. (3)

The operator D, firstly introduced by Holevo [1], plays an
important role in the non-commutative statistical theory. From
Eq. (2) it holds that

1± i

2
D ≥ 0. (4)

On the other hand we can also regard N as a Hilbert-Schmidt
space with another inner product

〈A,B〉2 = Tr(A∗B),

by virtue of its finite-dimensionality and denote it by H2. Let
us consider a ∗-representation on H2

� : N→ B(H2), (5)

where B(H2) is the ensemble of bounded operators on H2 and
�(A)B = AB. Then the state ω can be written by the inner
product 〈·, ·〉2 as

ω(A) = Tr(ρ1/2Aρ1/2) = 〈ρ1/2, �(A)ρ1/2〉2.
Remark: In the present case we have H2 = H, but when we
consider an infinite dimensional Hilbert space H the equality
does not hold, i.e. H2 ⊂ B(H) ⊂ H. This may make it difficult
to extend the discussion in Sec. 4 to the infinite dimensional
case.

As stated in Sec. 3, we can define the modular operator
Δ for the von Neumann algebra M = �(N) and its cyclic
separating vector ρ1/2 ∈ H2. In this paper we derive a
simple relation between such derived modular operator and
the commutation operator:

Δ =

(
1 +

i

2
D

)(
1− i

2
D

)−1

,

which is originally shown in [1].

II. REPRESENTATION ON H⊗H
We identify the Hilbert-Schmidt space H2(= N = Mn(C))

on H = C
n with H⊗H by a unitary operator v satisfying

v(eje
T
k ) = ej ⊗ ek,

where ej = (δj1, δj2, ..., δjn)
T with the Kronecker delta δjl.

Here, for ψ =
∑

j λjej and φ =
∑

k μkek we have

v(ψφ∗) =
∑
j,k

λjμ̄kv(eje
T
k )

=
∑
j,k

λjμ̄kej ⊗ ek = ψ ⊗ φ.
(6)

In the ∗-representation (5), �(A) is given by �̃(A) = A ⊗ In
on H⊗H. In fact

v(�(A)eje
T
k ) = v(Aeje

T
k ) = Aej ⊗ ek

= (A⊗ In)ek ⊗ ej = �̃(A)v(eje
T
k ),

(7)
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and hence �(A) = v∗�̃(A)v.
On the other hand,

r(A) : N ∈ X → XA � N

is represented by r̃(A) = In ⊗AT on H⊗H. In fact

v(r(A)eje
T
k ) = v(eje

T
kA) = v(ej(A

∗ek)∗)

= ej ⊗A∗ek = ej ⊗AT ek

= (In ⊗AT )ej ⊗ ek = r̃(A)v(eje
T
k ),

(8)

and hence r(A) = v∗r̃(A)v. Remark that �̃(N) = N⊗ In and
r̃(N) = In ⊗N are von Neumann algebras in

B(H⊗H) = B(H)⊗B(H) = N⊗N,

and we have

�̃(N)′ = r̃(N), r̃(N)′ = �̃(N). (9)

III. MODULAR OPERATOR

We give a proof of the main results of Tomita-Takesaki
theory in the case of M = �(N) ⊂ B(H2) with N = Mn(C),
where all difficulties in the theory vanish. From Eq. (9), we
have

M′ = v∗�̃(N)′v = v∗r̃(N)v = r(N)

M′′ = v∗r̃(N)′v = v∗�̃(N)v = �(N) = M.
(10)

We introduce a cyclic separating vector ρ1/2, satisfying

H2 = Mρ1/2 = M′ρ1/2,

and consider anti-linear operators on H2

S : �(A)ρ1/2 → �(A)∗ρ1/2, (11)

F : r(A)ρ1/2 → r(A)∗ρ1/2. (12)

Here

�(A)∗ = v∗(A⊗ In)
∗v = v∗�̃(A∗)v = �(A∗),

and

r(A)∗ = v∗(In ⊗AT )∗v = v∗r̃(A∗)v = r(A∗).

The linear operator Δ = FS on H2 is known as a modular
operator. For the operator S, we have

S(X) = ρ−1/2X∗ρ1/2.

In fact, putting

X = �(A)ρ1/2 = Aρ1/2,

Y = �(A)∗ρ1/2 = �(A∗)ρ1/2 = A∗ρ1/2,
(13)

we have

Y = (Xρ−1/2)∗ρ1/2 = ρ−1/2X∗ρ1/2.

On the other hand, for the operator F , we have

F (X) = ρ1/2X∗ρ−1/2.

In fact, putting

X = r(A)ρ1/2 = ρ1/2A,

Y = r(A)∗ρ1/2 = r(A∗)ρ1/2 = ρ1/2A∗,
(14)

we have

Y = ρ1/2(ρ−1/2X)∗ = ρ1/2X∗ρ−1/2.

Thus we have

Δ(X) = FS(X) = F (ρ−1/2X∗ρ1/2)

= ρ1/2(ρ−1/2X∗ρ1/2)∗ρ−1/2

= ρXρ−1,

(15)

we have that is,

Δ = v∗(ρ⊗ (ρ−1)T )v. (16)

It follows that Δ∗ = v∗(ρ⊗ (ρ−1)T )∗v = Δ. Since Δ−1/2 =
v∗(ρ−1/2 ⊗ (ρ1/2)T )v,

Δ−1/2(X) = ρ−1/2Xρ1/2

and hence

S(X) = Δ−1/2(X∗) = Δ−1/2J(X),

where J is an anti-linear operator defined by J(X) = X∗. In
a similar way we have

F (X) = Δ1/2J(X).

Since

Δ−it�(A)Δit(X) = Δ−it(AρitXρ−it) = ρ−itAρitXρ−itρit

= ρ−itAρitX = �(ρ−itAρit)(X),
(17)

we have
Δ−it�(A)Δit = �(ρ−itAρit).

On the other hand, we have

J�(A)J(X) = J(AX∗) = (AX∗)∗ = XA∗ = r(A∗)(X)

Thus we obtain the main results of Tomita-Takesaki theory in
our case:

Δ−itMΔit = M, (18)

JMJ = M′. (19)

Remark that the above discussion can be easily extend to the
case where N = Mm1(C) ⊕ · · · ⊕ Mmn(C). The proof of
Tomita-Takesaki theory for a finite dimensional von Neumann
algebra is given in the Appendix.

IV. RELATION BETWEEN HOLEVO’S COMMUTATION
OPERATOR AND MODULAR OPERATOR

Let us see how the commutation operator defined by (3) is
described on H ⊗ H. Since it holds for A,X, Y = DX ∈
H(= N = H2) that

[A,X] = iω(A∗X −XA∗) = iTrρ(A∗X −XA∗)
= TrA∗i(Xρ− ρX) = 〈A, i(Xρ− ρX)〉2

〈A, Y 〉 = ω((Y A∗ +A∗Y )/2) = Trρ((Y A∗ +A∗Y )/2)

= TrA∗(ρY + Y ρ)/2 = 〈A, ρY + Y ρ〉2,
(20)

we have
(ρY + Y ρ)/2 = i(Xρ− ρX),
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which can be represented on H⊗H as

(ρ⊗ In + In ⊗ ρT )v(Y ) = 2i(In ⊗ ρT − ρ⊗ In)v(X).

Thus

v(DX) = v(Y ) = 2i(ρ⊗In+In⊗ρT )−1(In⊗ρT−ρ⊗In)v(X),

that is,

D = v∗[2i(ρ⊗ In + In ⊗ ρT )−1(In ⊗ ρT − ρ⊗ In)]v.

Moreover

1 +
i

2
D = v∗[2(ρ⊗ In + In ⊗ ρ)−1ρ⊗ In]v, (21)

1− i

2
D = v∗[2(ρ⊗ In + In ⊗ ρ)−1In ⊗ ρT ]v, (22)

1 +
1

4
D2 = v∗[4(ρ⊗ In + In ⊗ ρ)−2ρ⊗ ρT ]v. (23)

From our assumption stated in Sec. 1, ρ1/2 is a non-
degenerated operator and hence we can use it as a cyclic
separating vector in Sec. 3. Thus, from Eqs. (21), (22) and
(16) we conclude

Δ =

(
1 +

i

2
D

)(
1− i

2
D

)−1

,

and
i

2
D = (Δ− 1)(Δ + 1)−1.

V. APPENDIX

A Proof of general Tomita-Takesaki theory was given by [3].
Afterward Longo shown that its proof can be simplified for
approximately finite von Neumann algebra [2]. In this section
we prove the main results of Tomita-Takesaki theorem for a
finite dimensional von Neumann algebras Ñ on a Hilbert space
K according to [2] for readers’ convenience. We assume there
exists a cyclic separating vector ξ ∈ K; K = Ñξ = Ñ′ξ. Then
we define operators S̃, F̃ , Δ̃ and J̃ on K as

S̃ : Xξ → X∗ξ,X ∈ Ñ

F̃ : Y ξ → Y ∗ξ, Y ∈ Ñ′

Δ̃ = F̃ S̃,

J̃ = Δ̃1/2S̃.

(24)

The Wedderburn theorem states that a finite dimensional C∗

algebra is ∗-isomorphic to a direct sum of simple matrix
algebras. That is, there exists ∗-isomorphic function ϕ for von
Neumann algebra Ñ such that

ϕ : Ñ � N := Mm1(C)⊕ · · · ⊕Mmn(C).

Let us consider the faithful state on Ñ as

ωξ(Ã) = (ξ, Ãξ)K, Ã ∈ Ñ,

where (·, ·)K is an inner product of the Hilbert space K. Using
this state we can define the state on N

ω(A) = ωξ(ϕ
−1(A)), A ∈ N,

which is normal by virtue of finite-dimensionality and is faith-
ful because ξ is separating, i.e. there exists a non-degenerated

density operator ρ such that ω(A) = TrρA. Applying the
discussion in Sec. 3 to the von Neumann algebra M = �(N)
and the cyclic separating vector ρ1/2, we get the operators,
S, F, J and Δ. In particular the operators S and F are given
by Eqs. (11) and (12). Here we have

〈�(A)ρ1/2, �(B)ρ1/2〉2 = (ϕ−1(A)ξ, ϕ−1(B)ξ)K,

which means

U : H2 � �(A)ρ1/2 → ϕ−1(A)ξ ∈ K, A ∈ N

gives a unitary operator from H2 to K. Using this unitary
operator we obtain the following relations

S̃ = USU∗,

F̃ = UFU∗,
(25)

and hence
Δ̃ = UΔU∗, (26)

J̃ = UJU∗. (27)

Moreover
Ñ = UMU∗, (28)

since M = �(N) and ϕ−1(A) = U�(A)U∗ for A ∈ N. From
Eqs. (18),(19),(26),(27) and (28), we conclude the main result
of Tomita-Takesaki theory,

Δ̃−itÑΔ̃it = Ñ

J̃ÑJ̃ = Ñ′.
(29)
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