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An Exposition of a Result in
“Conjugate Codes for Secure and Reliable

Information Transmission”

Mitsuru Hamada
Quantum Information Science Research Center

Quantum ICT Research Institute

Tamagawa University

6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan

Abstract—An elementary proof of the attainability of ran-
dom coding exponent with linear codes for additive channels
is presented. The result and proof are from Hamada (Proc.
ITW, Chendu, China, 2006), and the present material explains
the proof in detail for those unfamiliar with elementary
calculations on probabilities related to linear codes.

I. INTRODUCTION

These days, ‘information-theoretic security’ is a term

that even ordinary people may recognize as something

innovative through the mass media.1 This article offers

expository material for this author’s results [1] presented

about a decade ago that may be said to precede the boom

on information-theoretic security or specifically, wiretap

channels (a model of channels subject to eavesdropping)

in information theory. More specifically, this material has

been prepared for the following reason. Linear codes that

could be constructed in polynomial time suggested in [1]

were later proved to be asymptotically optimal [10] in that

they achieved the secrecy capacities of wiretap channels.

The material in this article was prepared when the author

wrote [10] since a result in [1] was used in [10] and

the detailed proof of the result seemed to be useful in

view of the interdisciplinarity of that work. We remark

that while in [1], they have been presented as coding-

theoretic ‘(quotient) codes’ or something equivalent, the

corresponding encoders are emphasized in [10]. As a

result, the latter would be much more readable. (Note that

classical coding theory mainly treats ‘codes’ for ordinary

channels without countermeasures against eavesdropping,

and the coding-theoretic ‘code’ can be understood as a set

associated with an encoder in the following manner. An

encoder is a one-to-one mapping from the whole space Fq
k

of k-dimensional numerical vectors over a finite field Fq to

the whole space of n-dimensional numerical vectors Fq
n,

where q is a power of a prime and k ≤ n. For example,

when q = 2, Fq = {0, 1} and Fq
n = {0, 1}n. Here, the

k-dimensional numerical vector represents a message or a

1The contents of this article are the same as those of the manuscript
arXiv:1001.1806v1, uploaded on Jan. 12, 2010, except adding this
paragraph, the footnotes other than footnote 4 and Refs. [10], [11] (and
correcting a few typos) in this version.

string of digits (a sequence of letters) to encode. Then,

mathematically speaking, the code is the image of Fq
k

under the encoder. The notion of an encoder of codes

for ordinary channels extends to an encoder of ‘quotient

codes’ [8] for wiretap channels as in [10].)

In this material, the details of the proof of a result in [1],

an article prepared for an invited talk, are presented without

assuming any prerequisite knowledge. In fact, when the

author prepared the manuscript [2], which includes one

illustrative application of the method of concatenating ‘con-

jugate code pairs’ devised in [1], [3],2 the author thought

some (or most) proofs are elementary and straightforward,

so that they are not needed for those working in our society

of information theory. However, in this article, still more

details will be presented to increase the accessibility.

We remark that that result and its detailed proof are

written so that they can be read without referring to [1].

Specifically, in this material, an elementary proof of the

attainability of random coding exponent with linear codes

for additive channels is presented. (Of course, many proofs

for the attainability of random coding exponent had existed,

but the incentive for developing this approach was to design

quantum error-correcting codes and codes that can be used

in cryptographic protocols. For these purposes, we needed

to design codes and decoders under constraints arising from

quantum mechanics.)

Thus, this material is supplementary to [1] for those

unfamiliar with the elementary approach adopted in [1],

but the result treated in this material is compact, classical,

and comprehensible without understanding the main issues

treated in [1]. This approach is nothing special, but it may

be said to be that of the method of types [4], [5], which

2Using the term ‘concatenate’ in this sense may not be readily accept-
able for specialists of Forney’s well-known concatenated codes. In fact,
this usage is fairly different from Forney’s, whereas our concatenation
here is related to Forney’s concatenated codes. On the other hand, one
would readily agree that the usage of ‘concatenate’ in Ref. [10] be an
extension of Forney’s. Regarding [2], the manuscript, which treats an
information theoretic issue, was combined with another, which treats
a combinatorial or coding-theoretic issue with the conventional coding-
theoretic criterion of minimum distance (extended to ‘quotient codes’ [8])
when it was included in a journal as [3].

Tamagawa University Quantum ICT Research Institute Bulletin
Vol.7 No.1 : 11―16（2017）
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requires no prerequisite knowledge, with the very basics of

linear codes incorporated.

The aforementioned illustrative application of the

method for concatenation is construction of pairs of linear

codes (L1, L2) with L⊥2 ⊆ L1 (‘conjugate code pairs’) that

achieve a high information rate on the Shannon theoretic

criterion. Such a code pair can be viewed as a succinct rep-

resentation of the corresponding quantum error-correcting

code (QECC). The code construction is explicit in the

standard sense that the codes are constructible with poly-

nomial complexity. Another (cryptographic) application,

which reflects the original motivation of [1], [2] has been

presented in [6].3

II. CORRECTIONS AND REMARK TO [1]

A. Corrections to [1]; Some Apply Also to [2]

1) p. 149, right column, line 14, ‘ensemble’ should be

followed by ‘(multiset)’

2) p. 150, left column, line −1,

an|Pn|2d−nEr(W,r)

should read

an|Pn|2q−nEr(W,r)

3) p. 150, right column, line −9, ‘parameter k’ should

read ‘the number k/n’

4) p. 151, left column, line −8, ‘(y
(i)
1 · · · y(i)N )’ should

read ‘(y(1) · · · y(N))’

5) p. 152, left column, line 1, ‘(
⊕t

i=1 C
(i)
1 ,

⊕t
i=1 C

(i)
2 )’

should read

‘(
⊕t

j=1 C
(i)
1 ,

⊕t
j=1 C

(i)
2 )’

6) p. 152, left column, Eq. (6),

MQ(C) ≤ (|Pn(Fq)| − 1)q−n(1−rc)A

should read

MQ(C
(i)
j ) ≤ (|Pn(Fq)| − 1)q−n+kj |T n

Q |A

Essentially the same errors as in 1, 2 and 6 exist in

Section 4 of [2] (ver. 2), but the contents of Section 4 of

[2] are presented below in the corrected form.

B. Remark to [1], [2]

Note that, in [1], [2], an ensemble has been represented

as a multiset, which is similar to a usual set but permits

duplicated entries.

Now, the author thinks representing an ensemble as an

ordered set is more natural, as will be done in the present

article.

3The efforts to analyze the performance of codes suggested in [1] on
classical wiretap channels culminated in the optimality result [10], so that
if one was only interested in classical wiretap channels, [6] might have
only historical meanings now.

III. PRELIMINARIES

In this section, we fix our notation, and recall some

notions to be used. As usual, �a� denotes the largest integer

a′ with a′ ≤ a, and �a� = −�−a�. An [n, k] linear (error-

correcting) code over a finite field Fq , the finite field of q
elements, is a k-dimensional subspace of Fq

n. The dual of

a linear code C ⊆ Fq
n is {y ∈ Fq

n | ∀x ∈ C, x · y = 0}
and denoted by C⊥, where x · y = xyt with yt being

the transpose of y. The zero vector in Fq
n is denoted by

0n. The n × n identity (resp. zero) matrix is denoted by

In (resp. On). For integers i ≤ j, we often use the set

[i, j] ∩ Z = {i, i + 1, . . . , j}, which consists of integers

lying in the interval [a, b] = {z ∈ R | a ≤ z ≤ b}.

We denote the type of x ∈ Fq
n by Px [4], [5]. This

means that the number of appearances of u ∈ Fq in

x ∈ Fq
n is nPx(u). The set of all types of sequences in

Fq
n is denoted by Pn(Fq). Given a set C ⊆ Fq

n, we put

MQ(C) = |{y ∈ C | Py = Q}| for types Q ∈ Pn(Fq). The

list of numbers (MQ(C))Q∈Pn(Fq) may be called the P-

spectrum (or simply, spectrum) of C. For a type Q, we put

T n
Q = {y ∈ Fq

n | Py = Q}. We denote by P(Y) the set

of all probability distributions on a set Y . The entropy of a

probability distribution P on Y is denoted by H(P ), viz.,

H(P ) =
∑

y∈Y −P (y) logP (y). Throughout, logarithms

are to base q.

We follow the convention to denote by PX the probability

distribution of a random variable X.

IV. GOOD CODES IN A BALANCED ENSEMBLE

A. Balanced Ensemble

We can find good codes in an ensemble if the ensemble is

‘balanced’ in the following sense. Suppose S = {C(i)}Ni=1

is an ensemble (ordered set) of subsets of Fq
n. If there

exists a constant V such that |{i ∈ [1, N ] ∩ Z | x ∈
C(i)}| = V for any word x ∈ Fq

n \ {0n}, the ensemble S
is said to be balanced. (We remark that the ‘balancedness’

is defined in a different manner in [7] for ensembles of

encoders, not codes.)

The first task in [1] was to construct a relatively small

balanced ensemble. This result can be found in [1], [2], but

it is included in Appendix B. With the method of types,

we will show that a large portion of a balanced ensemble

consists of good codes. While the goodness of codes should

be evaluated by the decoding error probability, it is also

desirable to quantify the goodness in such a way that the

goodness does not depend on characteristics of channels.

In view of this, the following proposition is useful.

The next proposition relates the spectrum of a code with

its decoding error probability when it is used on an additive

memoryless channel.

Proposition 1: [8, Theorem 4]. Suppose we have an

[n, κ] linear code C over Fq such that

MQ(C) ≤ anq
κ−n|T n

Q |, Q ∈ Pn(Fq) \ {P0n}
for some an ≥ 1. Then, its decoding error probability with

the minimum entropy syndrome decoding is upper-bounded
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by

an|Pn(Fq)|2q−nEr(W,r)

for any additive channel W of input-output alphabet Fq,

where r = κ/n and Er(W, r) is the random coding

exponent of W defined by

Er(W, r) = min
Q∈P(Fq)

[D(Q||W ) + |1− r −H(Q)|+].

Here, D and H denote the relative entropy and entropy,

respectively, and |x|+ = max{0, x}.

For a poof, see Section IV-C. In the simplest case where

q = 2, the premise of the above proposition reads ‘the

spectrum of C is approximated by the binomial coefficients

|T n
Q | up to normalization.’

The following lemma shows a large portion of a balanced

ensemble {C(i)}N∗
i=1 is made of good codes (we have

applied this fact to ensembles written as {C(i)
j }N∗

i=1 in [1],

[2]).

Lemma 1: [1, p. 152, left column]. Assume we have a

balanced ensemble {C(i)}N∗
i=1. Let us say an [n, κ] code

C(i) is A-good if

MQ(C
(i)) ≤ A(|Pn(Fq)| − 1)q−n(1−ρ)|T n

Q | (1)

for all Q ∈ Pn(Fq) \ {P0n}, where ρ = κ/n. Then, the

number of codes that are not qεn-good in {C(i)}N∗
i=1 is at

most

z = �N∗q−εn�. (2)

This lemma will be proved in Section IV-B. Note, owing

to Proposition 1, for the qεn-good codes C(i) in the above

lemma, the decoding error probability is upper-bounded by

a′nq
−n[Er(W,ρ)−ε], (3)

where a′n = |Pn(Fq)|3 is at most polynomial in n.

B. Proof of Lemma 1

A proof of Lemma 1 will be given, though it may be a

routine in information theory. We have a lemma.

Lemma 2: Assume S and W are finite sets, and non-

negative numbers fw(x) are associate with each pair

(x,w) ∈ S×W . Denote by fw the average of fw(x) over

S:

fw =
1

|S|
∑
x∈S

fw(x).

Then, for any a > 0, the number of members in S that fail

to satisfy the condition

∀w ∈ W , fw(x) ≤ fw|W|a

is upper-bounded by a−1|S|.
Proof. Let X be a random variable uniformly distributed

over S. Then, the probability that X fails to satisfy ‘∀w ∈

W , fw(X) ≤ fw|W|a’ is upper-bounded as follows:

Pr{∃w ∈ W , fw(X) > fw|W|a}
≤

∑
w

Pr{fw(X) > |W|fwa}

(i)
=

∑
w: fw>0

Pr{fw(X) > |W|fwa}

(ii)

≤
∑

w: fw>0

(|W|a)−1 ≤ a−1, (4)

where the equality (i) and inequality (ii) follow from the

fact that fw = 0 implies fw(x) = fw|W|a = 0 for all

x ∈ S, and Markov’s inequality, respectively. Markov’s

inequality is included at the end of this subsection with a

proof. The lemma immediately follows from (4). �
Proof of Lemma 1. From the fact that {C(i)}N∗

i=1 is

balanced, it follows

1

N∗

N∗∑
i=1

MQ(C
(i)) =

qκ − 1

qn − 1
|T n

Q | ≤ qκ

qn
|T n

Q | (5)

for any Q ∈ Pn(Fq), Q 
= P0n . To see this, let V be

the number of appearances of any fixed nonzero word in

enumerating codewords in C(i), i ∈ [1, N∗]∩Z. Then, we

have trivial equalities V (qn − 1) = N∗(qκ − 1) and

N∗∑
i=1

MQ(C
(i)) = V |T n

Q |

for any Q ∈ Pn(Fq), Q 
= P0n .4 From these, we

readily obtain the equality and hence the inequality in (5).

Now Lemma 1 follows upon applying Lemma 2 to S =
{(C(i), i) | i ∈ [1, N∗] ∩ Z}, where fw((C, i)) = MQ(C),
w = Q and W = Pn(Fq) \ {P0n}. �

Lemma 3 (Markov’s Inequality): For a positive constant

A, and a random variable Y that takes non-negative values

and has a positive mean μ, we have

Pr{Y ≥ Aμ} ≤ 1/A.

Proof. We have μ =
∑

w PY(y)y ≥∑
y: y≥μA PY(y)y ≥∑

y: y≥μA PY(y)μA = μA
∑

y: y≥μA PY(y) = μAPr{Y ≥
Aμ}, which implies the lemma. �

C. Proof of Proposition 1

We use the following basic inequality [4], [5], [9]:∑
y∈Fq

n: Py=Q

Pn(y) ≤ q−nD(Q||P ) (6)

for any P ∈ P(Fq). (Recall Pn denotes the product of n
copies of P .) The symmetric group on {1, . . . , n}, which

4The relation V (qn − 1) = N∗(qκ − 1) immediately follows by
counting the pairs (x,C) such that x ∈ C \ {0n} and C is a component

of {C(i)}N∗
i=1 in two ways, and the other equality follows similarly.



14

is composed of all permutations on {1, . . . , n}, is denoted

by Sn. We define an action of Sn on Fq
n by

π((x1, . . . , xn)) = (xπ(1), . . . , xπ(n))

for any π ∈ Sn and (x1, . . . , xn) ∈ Fq
n, and put

π(C) = {π(x) | x ∈ C}, π ∈ Sn, C ⊆ Fq
n.

The expectation operation with respect to a random vari-

able X taking values in X is denoted by EX:

EXf(X) =
∑
x∈X

PX(x)f(x)

where f is a real-valued function on X .

Lemma 4: Assume a linear code C ⊆ Fq
n satisfies

MQ(C \ {0n})/|T n
Q | ≤ anq

−nT , Q ∈ Pn(Fq)

with some real numbers an ≥ 1 and T . Let J be a set

of coset representatives for Fq
n/C such that each coset

D ∈ Fq
n/C has a representative that belongs to J and

that attains the minimum of H(Px), x ∈ D (the resulting

decoding is called minimum entropy decoding). Then, we

have for any Pn ∈ P(Fq
n),

EπPn(π(J)
c) ≤ an|Pn(Fq)|

∑
Q∈Pn(Fq)

Pn(T n
Q )q−n|T−H(Q)|+

where c denotes complement, |t|+ = max{t, 0}, and the

random variable π is uniformly distributed over Sn.

Corollary 1: Assume for a linear code C ⊆ Fq
n,

MQ(C \ {0n}) is bounded as in Lemma 4. Then, with

J as in the lemma, we have for any P ∈ P(Fq),

Pn(Jc) ≤ an|Pn(Fq)|2q−nE(P,T )

where

E(P, T ) = min
Q∈Pn(Fq)

[D(Q||P ) + |T −H(Q)|+].

A proof of Lemma 4 is given in the next subsection.

Proof of Corollary 1. Clearly, EπPn(π(J)c) = Pn(Jc).
Then, inserting the estimate of Pn(T n

Q ) in (6) into the

bound on EπPn(π(J)c) in the lemma, we have

Pn(Jc) ≤ an|Pn(Fq)|
∑

Q∈Pn(Fq)

q−n[D(Q||P )+|T−H(Q)|+]

and hence, the corollary.

Putting T = 1−κ/n in this corollary, we readily obtain

the proposition.

D. Proof of Lemma 4

In the proof, Pn(Fq) is abbreviated as Pn. We will show

that G = EπPn(π(J)
c) is bounded above by the claimed

quantity.

Imagine we list up all words in π(C \ {0n}) for all

π ∈ Sn permitting duplication. Clearly, the number of

appearances of any fixed word y ∈ Fq
n in the list only

depends on its type Py ∈ Pn. Namely, for any Q ∈ Pn,

there exists a constant, say LQ, such that

|{π ∈ Sn | y ∈ π(C \ {0n})}| = LQ (7)

for any word y with Py = Q. Then, counting the number

of words of a fixed type Q in the list in two ways, we

have |T n
Q |LQ = |Sn|MQ(C \ {0n}). Hence, for any type

Q ∈ Pn(Fq)

LQ

|Sn|
=

MQ(C \ {0n})
|T n

Q | ≤ anq
−nT (8)

by assumption. From (7) and (8), we have

|Ay(C \ {0n})|
|Sn|

≤ anq
−nT (9)

for any y ∈ Fq
n, where

Ay(C \ {0n}) =
{
π ∈ Sn | y ∈ π(C \ {0n})

}
.

Then, we have

G =
1

|Sn|
∑
π∈Sn

∑
x/∈J

Pn(x)

=
∑

x∈Fq
n

Pn(x)
|{π ∈ Sn | x /∈ J}|

|Sn|
. (10)

Since x /∈ J occurs only if there exists a word u ∈ Fq
n

such that H(Pu) ≤ H(Px) and u − x ∈ π(C \ {0n})
from the design of J specified above (minimum entropy

decoding), it follows

|{π ∈ Sn | x /∈ J}|/|Sn|
≤

∑
u∈Fq

n:H(Pu)≤H(Px)

|Au−x(C \ {0n})|/|Sn|

≤
∑

u∈Fq
n:H(Pu)≤H(Px)

anq
−nT

=
∑

Q′∈Pn:H(Q′)≤H(Px)

an|T n
Q′ |q−nT

≤
∑

Q′∈Pn:H(Q′)≤H(Px)

anq
nH(Q′)−nT (11)

where we have used (9) for the second inequality, and

another well-known inequality [4], [5], [9]

∀Q ∈ Pn(Fq), |T n
Q | ≤ qnH(Q) (12)

for the last inequality. Then, using the inequalities
min{at, 1} ≤ amin{t, 1} and min{s+t, 1} ≤ min{s, 1}+
min{t, 1} for a ≥ 1, s, t ≥ 0, we can proceed from (10)
as follows, which completes the proof:

G

≤
∑

x∈Fq
n

Pn(x)min
{ ∑

Q′∈Pn:H(Q′)≤H(Px)

anq
nH(Q′)−nT , 1

}

≤ an

∑
Q∈Pn

Pn(T n
Q )min

{ ∑
Q′∈Pn:H(Q′)≤H(Q)

qnH(Q′)−nT , 1
}

≤ an

∑
Q∈Pn

Pn(T n
Q )

∑
Q′∈Pn:H(Q′)≤H(Q)

min
{
q−n[T−H(Q′)], 1

}

≤ an|Pn|
∑

Q∈Pn

Pn(T n
Q ) max

Q′∈P(Fq):H(Q′)≤H(Q)
q−n|T−H(Q′)|+

= an|Pn|
∑

Q∈Pn

Pn(T n
Q )q−n|T−H(Q)|+ .
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V. CONCLUDING REMARKS

In [1], [3] (or [2]), quantum-mechanically compatible

pairs of linear codes that are constructible with polynomial

complexity were presented. The Calderbank-Shor-Steane

quantum codes corresponding to the constructed pairs

achieve the so-called Shannon rate. The most novel result

among these would be the method for ‘concatenating’ com-

patible (conjugate) code pairs, which have been published

in [3].

The present material was prepared for explaining the

results not included in [3] for those unfamiliar with the

elementary combinatorial approach (the method of types

with the very basics of linear codes incorporated).

This material might be included somewhere else (possi-

bly in some other context).5
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APPENDIX

A. Compatible (Conjugate) Code Pairs [1]

Consider a pair of linear codes (C1, C2) satisfying

C⊥2 ⊆ C1, (13)

which condition is equivalent to C⊥1 ⊆ C2. The following

question arises from an issue on quantum error correction:

How good both C1 and C2 can be under the constraint

(13)? This is the subject treated in [1], [3], [2].

We have named a pair (C1, C2) with (13) a conjugate

code pair in [1]. In what follows, we will use a ‘compatible

code pair’ in place of ‘conjugate code pair.’

B. Code Ensemble Based on Extension Field [1]

The companion matrix of a polynomial f(x) = xn −
fn−1xn−1−· · ·− f1x− f0, which is monic (i.e., of which

the leading term has coefficient 1), over Fq is defined to

be

T =

⎡
⎢⎢⎢⎣

0n−1 f0

In−1

f1
...

fn−1

⎤
⎥⎥⎥⎦ .

Let T be the companion matrix, or its transpose, of a

monic primitive polynomial of degree n over Fq . Given an

n× n matrix M , let M |m (resp. M |m) denote the m× n
submatrix of M that consists of the first (resp. last) m

rows of M . We put C
(i)
1 = {xT i|k1 | x ∈ Fq

k1} and

C
(i)
2 = {x(T−i)t|k2 | x ∈ Fq

k2} for i = 1, 2, . . . , where

M t denotes the transpose of M . Then, setting

B = BT = {(C(i)
1 , C

(i)
2 )}q

n−1
i=1 , (14)

we have the next lemma.

5When the author wrote this comment, he had in mind the context of
wiretap channels [10], [11], described in Section I, as such a context.

C⊥
2 { H2

g1

C1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ ...

gk

g′
1
t . . . g′

k
t

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭C2

Ht
1

}C⊥
1

= In

Fig. 1. A basic structure of an [[n, k]] compatible code pair.

Lemma 5: [1, Lemma 1]. Let T be the companion

matrix of a monic primitive polynomial of degree n over

Fq . For integers k1, k2 with 0 ≤ n − k2 ≤ k1 ≤ n

and BT = {(C(i)
1 , C

(i)
2 )}q

n−1
i=1 constructed as above, any

(C
(i)
1 , C

(i)
2 ) is a compatible code pair, and both {C(i)

1 }q
n−1

i=1

and {C(i)
2 }q

n−1
i=1 are balanced.

Remark. It is known (and proved in a self-contained

manner in [3, Sections VII]) that the matrix T has the

following property, which are used in the proof of Lemma 5

below: The set {On, In, T, . . . , T
qn−2} is isomorphic to

Fqn as a field. �
Proof of Lemma 5 [1]. The condition (13) is fulfilled

since T iT−i = In implies that the C
(i)
2
⊥ is spanned by the

first n − k2 rows of T i. (This is easily seen if we divide

the two matrices on the left-hand side of T iT−i = In into

submatrices as in Figure 1.)

We can write C
(i)
1 = {yT i | y ∈ Fq

n, supp y ⊆ [1, k1]∩
Z}, where supp (y1, . . . , yn) = {i | yi �= 0}. Imagine

we list up all codewords in C
(i)
1 permitting duplication.

Specifically, we list up all yT i as y and i vary over the

range {y | y ∈ Fq
n, supp y ⊆ [1, k1] ∩ Z} and over

[1, qn − 1] ∩ Z, respectively.

With y ∈ Fq
n \ {0} fixed, yT i, i ∈ [1, qn − 1] ∩ Z,

are all distinct since T i �= T j implies yT i − yT j = yT l

for some l and yT l is not zero. Hence, any nonzero fixed

word in Fq
n appears exactly qk1 −1 times in listing yT i as

above. Namely, the ensemble {C(i)
1 }q

n−1
i=1 is balanced. Us-

ing (T−i)t in place of T i, we see the ensemble {C(i)
2 }q

n−1
i=1

is also balanced, completing the proof. �
Lemmas 1 and 5 show the existence of a compatible

code pair having exponentially decreasing decoding error

probabilities in B.
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