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Abstract—We evaluate a quantum illumination system
with bright two-mode squeezed states. In order to evaluate
the system, we compute a fidelity /' between two two-mode
Gaussian states, which is closely related to error probability
of the system. And we investigate the behavior of ' when
a squeezing parameter r changes satisfying the constraint
on sum of signal and squeezing energies. We could find out
an optimum values of » for some cases by computation.

I. INTRODUCTION

We study about quantum illumination with bright two-
mode squeezed states. Tan et al. proposed quantum illu-
mination using two-mode squeezed states with zero mean
and computed its error probability [1]. Then they found
that the quantum illumination system using two-mode
squeezed states with zero mean has a lower value of the
error probability than the system using coherent states.
The two-mode squeezed state is a Gaussian state which is
characterized by a mean vector and a correlation matrix,
and has signal energy N corresponding to the mean
vector and squeezing energy N, corresponding to the
correlation matrix. On the other hand the coherent state
is a Gaussian state having only signal energy N, , i.e.
Ngq = 0. With such terms, it can be said they compared
effects of two different Gaussian states, one with Ny, > 0
and N, = 0 and one with Ny, = 0 and N, > 0 under the
condition that N, + N, is a constant. The main objective
of this paper is to confirm how effective it is to use
bright two-mode squeezed states, which are two-mode
Gaussian states with Ny, > 0 and Ny > 0. Note that
we consider an asymmetric case where a mean vector for
an idler mode is set to zero and only signal mode has a
non-zero mean vector. In order to evaluate the quantum
illumination system, we use a fidelity, which is strongly
related to the error probability of the system.

II. TWO-MODE GAUSSIAN STATES
A. Preliminaries

Let us recall a theory of general Gaussian state [4]. We
consider a quantum system, such as a cavity field with
finite numbers of modes, described by the annihilation
operators aq,...,a, satisfying the canonical commuta-
tion relation (CCR)

[aj, az] =0xd, laj,ax] =0, (D

where [ is the unit operator,  denotes the adjoint

operation and
|1 5=k
5]-7;6—{0 Gtk (2)

The Hilbert space of irreducible representation of this
CCR is denoted by #H. Let us introduce canonical pairs

h - |n
w= /b ra) n=iffa-a). ©

such that

1 .
aj = \/7271( q; +ip;), “4)

satisfying the Heisenberg CCR

[4j,px] = 305101, [gj,q:] =0, [pj,pe] =0. (5)

For simplicity we use a column vector

R =1[q1.p1;- -G Pnl" (6)
and a real column 2n—vector
2= (21,915 Yns Ynl T @)

in the following. Let us introduce a unitary operator in
H

Viz) = expz’Z(quj +y;p;) = exp (RT2). (8)

Jj=1

The operator V' (z) satisfies the Weyl-Segal CCR

VEV(E) = eplz A=V E+2), O

where

Az,2') = hZ(x;yj — zy;) (10)
j=1
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is a canonical symplectic form. Let us consider 2n x
2n—skew-symmetric commutation matrix A,, of compo-
nents of the vector R, which is given as

Alz{_oh H (an

Ay
Ay
A, = _ (12)

Ay

for n > 1. Then the canonical symplectic form (10) can
be written as

Az, ) = =2TA, 2. (13)
Let us mention that if ¢ = ((y,...

1

V2h

,Cn) where (; =
(xj + iy;), then the displacement operator

Di(2) =exp Y _((al — Gay) (14)
j=1

is written by V' (z) as

Dy (z) = exp % > (Wi —zp) = V(=4,"2). (15)

j=1
The quantum characteristic function is defined to be

TrpV(2) (16)
The density operator is called Gaussian, if its quantum
characteristic function has the form
1
TrpV (z) = exp(im”z — EzTaz), (17

where m is a column 2n—vector and « is a real sym-
plectic 2n x 2n-matrix. One can show that

i
m = TrpR; o — §An = TrRpRY. (18)
The mean m can be arbitrary vector; the necessary and
sufficient condition on the correlation matrix « is the

matrix uncertainty relation

o — %An > 0. (19)

B. Two-mode squeezed states

Let ag and a; be annihilation operators for the entan-
gled signal and idler mode pair. We neglect an unimpor-
tant phase factor, and the two-mode squeezed state can
be written as

[¥sq)s1 = S(r)|0)sr- (20)

Here,
and

0)ss is the two-mode vacuum state |0)s ® |0),

S(r) = exp[—r(aga} —agay)] 21

is a squeezing operator, which transforms annihilation
operators ag and aj as

as = S(r)tasS(r) = agcoshr —alsinhr  (22)
ay = S(r)arS(r) = fag sinhr +arcoshr.  (23)

We introduce a vector representation
R = [qs,ps;qr,pr)T and define a unitary operator
V(z) for a 4-dimension real vector z as in Section
II-A. Using the vector representations R and
R = |ds, 05450 with ¢ = S(r)ig;S(r) and
py = S(r)'p;S(r) (j = S, 1), we can rewrite Egs. (22)
and (23) in a real setting as

R' =LR (24)

Here L is written as

r_ ( coshrls sinhrJs )

sinhrJy, coshrly (25)

with

12=<(1) (1)>,J2=(_01 (1’) (26)

From Eq. (24), we can obtain
S(r)TV(2)S(r) = expli(R')" 2]
= exp[iRT (LT 2)] (27)
=V(LT2).

Thus, the characteristic function of |),) sy is given as
Trlthsq) s1(tsq|V (2) = Tr]0) 51 (0]S(r) TV (2)S(r)
[ ihg.a] @8

= exp |:222 ,CL Z:| ,

and the correlation matrix of |t4,)ss can be written as

~h .. h{( cosh2rly sinh2rJ,
@ = §££ ) < sinh 2r.Jy cosh2rly /- (29)



III. QUANTUM ILLUMINATION SYSTEM WITH
GAUSSIAN STATES

We kindly explain our setting of quantum illumi-
nation system with Gaussian states. The system gen-
erates a bright two-mode squeezed state psr(z) =
[D1(2) ® It] [thsq) s1(¥sq| [D1(2)T @ I;] and transmits
its signal mode and retains the idler mode. We assume we
receive the state p(SII) = (P, ® I1) psi(z) with the lossy
bosonic channel of transmlttance k if a target exists, and
we have the state pSI |0)s(0] ® Trspss if no target

exists. Then we may detect which of the signals pgol) and

pg I) is received.

The state ngI) is a Gaussian state with the zero mean

vector and the correlation matrix

h| I 0
o) _ = 2
> =3 { 0 cosh2rl, } ' (30)

The mean vector of the Gaussian states pgy(z) is
(71,91,0,0)T, and its correlation matrix is given by
Eq. (29). Then the mean vector of the Gaussian state
pgl) is u = (kx1,ky1,0,0)7. In order to obtain the
correlation matrix of pfgll) , we describe the transformation
|0)s1(0] = (Pr®1Is)psi(z) in the Heisenberg picture by
the relation

as = kag coshr — k:a} sinhr + V1 — k2ag

ar = fafg sinh 7 + ay cosh r,

€1y

where ar is an annihilation operator in a mode of envi-
ronment. We put ¢; = /1/2(a; +&;),ﬁj =1 h/Q(&} -
a;),q; = \/h/2(a; +a;),pj =1 h/2(a} — a;) with
J = S,1,F and we introduce the vector representation

R = [gs,Ps, dr, b1, Ro = [qs,Ps, 41, 1,45, PE)" - We
can rewrite Eq. (31) in a real setting as

R = MRy, (32)
where
_( kcoshrly ksinhrJy /1 — k21,
M= < sinhrJ, coshrls 0 - (33

A(s )in Section II-B, we can find the correlation matrix of
1
Psr a8

o) = gMMT
_h (k? cosh2r +1 — k*)Iy  ksinh2rJ,
92 ksinh 2rJ, cosh 2r 1,

(34)

Moreover, in the Gaussian case, we can separately deal
with the effect of attenuation or amplification and that of
thermal noise. Hence, when we also assume the effect of
thermal noise with zero mean and variance AN, we may

25

consider the following correlation matrices as o(?) and
o respectively,

N.Is 0
(0) cl2
« +h[ 0 0],

N.Is 0
(1) cl2
« —|—h{ 0 0].

(35)

We constrain sum of the signal energy N, = 22 +%7 and
the squeezing energy Ny, = (cosh2r —1)/2 as

Ny + Ny = N. (36)

In the following, we investigate the behavior of fidelity

(0)

(1)
Ps1

Psr

F=F(p§},0)) 37)

under the energy constraint (36). We can not evaluate the
quantum illumination system rigorously by the fidelity,
but it is related to the error probability of the system
as follows. We can evaluate the quantum illumination
system by error probability of quantum detection for two
equiprobable states p(SI) and p(l) Then the minimum

error probability is given as

1
P = - min
2 {Xo0,X1}

TrXop + Terp(O)] (38)
where the minimization is taken over all POVMs
{Xo, X1}, which consist of positive operators satisfying
Xo + Xy = I. It is known that the minimum error
probability P is obtained as

Pl

5 (1= D(p57.p5))). (39)

where D(p), pi)) = LTr|pQ) — p{) | is a trace distance.
The trace distance is bounded above and below using the
fidelity F' as

L= F<D(pg),0§) <VI-F2,  (40)

and hence we got

Laovicm<p<L

; (41)

o |

Note that we may repeat the transmission described above
M times to improve performance of the system. Then the
minimum error probability P(™) is bounded as

M on Lo
PO < Poc’ < S FY, (42)
(M) (0)ys (1)1
_ 1 . 1 .
where Py’ = 3 [Oggngr(pSI) (ps)t™ is the

quantum Chernoff bound [1],[3].
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IV. COMPUTATION OF FIDELITY UNDER TOTAL
ENERGY CONSTRAINT

We can compute the fidelity for the Gaussian states

Pg)]) and p(sll) using the formula in [2] as

1 _
1 (PgJI)’PgI)) = exp [4UT(Q(O) +all) 14
-1/2  (43)

x[(\fr+\FA)—\/(\/f+¢K)2—T

where

T := det(a® + o) > 1, (44)
I := 16 det {(Jga(o))(Jga(l)) - H >, (45

A = 16 det <a<°> + ;J2> det (a(l) + ;J2> >0
(46)

Note that when we consider effect of thermal noise we
may use the correlation matrices given by Eq. (35) as
a® and o,

Figure 1 shows graphs of the first term and the second
term of Eq. (43) with respect to a squeezing parameter
r > 0. From the energy constraint (36), r changes in the
region

1
0<r<mTmas :i= §log(2N+ 1+ V4ANZ 4+ 4N). 47)

The first term represents effect of signal energy, and
its value monotonically increases with respect to r. The
second term represents the effect of squeezing, and its
value monotonically decreases. In this case the second
term is more effective than the first term and hence the
fidelity monotonically decreases, as squeezing becomes
stronger.

Figure 2 shows the relationship between the fidelity
F' and the squeezing parameter r for N = 0.1,1.0,5.0
each with £ = 1.0 and N, = 0. Note that each region of
r is determined by (47) differently. In these cases, as r
is increased the fidelity is reduced, that is, squeezing is
effective.

Figure 3 shows the relationship between the fidelity F’
and the squeezing parameter r for N = 20.0, k = 1.0,
and N, = 1.5. Here the value of fidelity is 0.079288 as
r = 0 and 0.130617 as r = 7,,4,. The minimum value
of fidelity is 0.078232 which is given by r = 0.3497.
Hence we are necessary to choose an intermediate value
of squeezing parameter 7 to obtain the optimum result.

Figure 4 shows graphs of the first term and second term
of Eq. (43) under the parameter setting of Fig. 3. In this
case in the regions close to both ends either the first term
or the second term takes values close to zero. Therefore
the fidelity takes the maximum value in middle region in

Fig. 3.
Figure 5 shows the relationship between the fidelity
F and the squeezing parameter r for £ = 0.5 and

N, =0, and the parameter N is taken from 0.1,1.0,5.0
and 20.0. Except in the case of N = 20.0 the graphs
have the same tendency as in the case of £ = 1. In
the case of N = 20.0, the graph behaves similarly to
the graph of Fig. 3. This means squeezing becomes less
effective than displacement as the value of N increases.
On the other hand, Fig. 6 shows the graph of fidelity
for N = 5.0,20.0,50.0,100.0 each with & = 0.5 and
N, = 2.0. From this we can see that when we consider
a thermal noise we need a larger value of IV so that the
graph behaves similarly to the graph of Fig. 3.

Figure 7 shows the relationship between fidelity and a
squeezing parameter r for N = 100 and N, = 0, and the
parameter k is taken from 0.05,0.1,0.25 and 0.5. From
this we can see even if N takes a large value squeezing is
useful for small values of transmittance k, k£ = 0.05,0.1.
On the other hand for larger values of k, k£ = 0.25 and
0.5, the graphs have the same tendency as the graph of
Fig. 3.

V. CONCLUSION

We have computed the fidelity between two-mode
Gaussian states used in the quantum illumination system
under the total energy constraint N+ Ny, = N. And we
have drawn graphs of fidelity /' = F'(r) with respect to a
squeezing parameter 7 for various cases of k, N, and N.
When energy of received signal is small, the minimum
value of fidelity is given by Ny = 0 (i.e. ¥ = Tmaz)-
Such cases are also studied in a previous research [1].
In this paper we have newly found there is a case where
an intermediate value of r (0 < r < 7rp4,) gives the
minimum fidelity.
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