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Abstract—We evaluate a quantum illumination system
with bright two-mode squeezed states. In order to evaluate
the system, we compute a fidelity F between two two-mode
Gaussian states, which is closely related to error probability
of the system. And we investigate the behavior of F when
a squeezing parameter r changes satisfying the constraint
on sum of signal and squeezing energies. We could find out
an optimum values of r for some cases by computation.

I. INTRODUCTION

We study about quantum illumination with bright two-

mode squeezed states. Tan et al. proposed quantum illu-

mination using two-mode squeezed states with zero mean

and computed its error probability [1]. Then they found

that the quantum illumination system using two-mode

squeezed states with zero mean has a lower value of the

error probability than the system using coherent states.

The two-mode squeezed state is a Gaussian state which is

characterized by a mean vector and a correlation matrix,

and has signal energy Ns corresponding to the mean

vector and squeezing energy Nsq corresponding to the

correlation matrix. On the other hand the coherent state

is a Gaussian state having only signal energy Ns , i.e.

Nsq = 0. With such terms, it can be said they compared

effects of two different Gaussian states, one with Nsq > 0
and Ns = 0 and one with Nsq = 0 and Ns > 0 under the

condition that Nsq+Ns is a constant. The main objective

of this paper is to confirm how effective it is to use

bright two-mode squeezed states, which are two-mode

Gaussian states with Nsq > 0 and Ns > 0. Note that

we consider an asymmetric case where a mean vector for

an idler mode is set to zero and only signal mode has a

non-zero mean vector. In order to evaluate the quantum

illumination system, we use a fidelity, which is strongly

related to the error probability of the system.

II. TWO-MODE GAUSSIAN STATES

A. Preliminaries

Let us recall a theory of general Gaussian state [4]. We

consider a quantum system, such as a cavity field with

finite numbers of modes, described by the annihilation

operators a1, . . . , an satisfying the canonical commuta-

tion relation (CCR)

[aj , a
†
k] = δj,kI, [aj , ak] = 0, (1)

where I is the unit operator, † denotes the adjoint

operation and

δj,k =

{
1 j = k
0 j �= k

. (2)

The Hilbert space of irreducible representation of this

CCR is denoted by H. Let us introduce canonical pairs

qj =

√
�

2
(aj + a†j), pj = i

√
�

2
(a†j − aj), (3)

such that

aj =
1√
2�

( qj + ipj), (4)

satisfying the Heisenberg CCR

[qj , pk] = iδj,k�I, [qj , qk] = 0, [pj , pk] = 0. (5)

For simplicity we use a column vector

R = [q1, p1; . . . ; qn, pn]
T , (6)

and a real column 2n−vector

z = [x1, y1; . . . ; yn, yn]
T (7)

in the following. Let us introduce a unitary operator in

H

V (z) = exp i

n∑
j=1

(xjqj + yjpj) = exp (iRT z). (8)

The operator V (z) satisfies the Weyl-Segal CCR

V (z)V (z′) = exp[
i

2
Δ(z, z′)]V (z + z′), (9)

where

Δ(z, z′) = �

n∑
j=1

(x′jyj − xjy
′
j) (10)
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is a canonical symplectic form. Let us consider 2n ×
2n−skew-symmetric commutation matrix Δn of compo-

nents of the vector R, which is given as

Δ1 =

[
0 �

−� 0

]
(11)

for n = 1, and

Δn =

⎡
⎢⎢⎢⎣

Δ1

Δ1

. . .

Δ1

⎤
⎥⎥⎥⎦ (12)

for n > 1. Then the canonical symplectic form (10) can

be written as

Δ(z, z′) = −zTΔnz
′. (13)

Let us mention that if ζ = (ζ1, . . . , ζn) where ζj =
1√
2�
(xj + iyj), then the displacement operator

Dn(z) = exp

n∑
j=1

(ζja
†
j − ζ̄jaj) (14)

is written by V (z) as

Dn(z) = exp
i

�

n∑
j=1

(yjqj − xjpj) = V (−Δ−1n z). (15)

The quantum characteristic function is defined to be

TrρV (z) (16)

The density operator is called Gaussian, if its quantum

characteristic function has the form

TrρV (z) = exp(imT z − 1

2
zTαz), (17)

where m is a column 2n−vector and α is a real sym-

plectic 2n× 2n-matrix. One can show that

m = TrρR;α− i

2
Δn = TrRρRT . (18)

The mean m can be arbitrary vector; the necessary and

sufficient condition on the correlation matrix α is the

matrix uncertainty relation

α− i

2
Δn ≥ 0. (19)

B. Two-mode squeezed states

Let aS and aI be annihilation operators for the entan-

gled signal and idler mode pair. We neglect an unimpor-

tant phase factor, and the two-mode squeezed state can

be written as

|ψsq〉SI = S(r)|0〉SI . (20)

Here, |0〉SI is the two-mode vacuum state |0〉S ⊗ |0〉I ,

and

S(r) = exp[−r(a†Sa
†
I − aSaI)] (21)

is a squeezing operator, which transforms annihilation

operators aS and aI as

a′S = S(r)†aSS(r) = aS cosh r − a†I sinh r (22)

a′I = S(r)†aIS(r) = −a†S sinh r + aI cosh r. (23)

We introduce a vector representation

R = [qS , pS ; qI , pI ]
T and define a unitary operator

V (z) for a 4-dimension real vector z as in Section

II-A. Using the vector representations R and

R′ = [q′S , p
′
S ; q

′
I , p

′
I ] with q′j = S(r)†qjS(r) and

p′j = S(r)†pjS(r) (j = S, I), we can rewrite Eqs. (22)

and (23) in a real setting as

R′ = LR (24)

Here L is written as

L =

(
cosh rI2 sinh rJ2
sinh rJ2 cosh rI2

)
(25)

with

I2 =

(
1 0
0 1

)
, J2 =

(
−1 0
0 1

)
. (26)

From Eq. (24), we can obtain

S(r)†V (z)S(r) = exp[i(R′)T z]
= exp[iRT (LT z)]

= V (LT z).

(27)

Thus, the characteristic function of |ψsq〉SI is given as

Tr|ψsq〉SI〈ψsq|V (z) = Tr|0〉SI〈0|S(r)†V (z)S(r)

= exp

[
−1

2

�

2
zTLLT z

]
,

(28)

and the correlation matrix of |ψsq〉SI can be written as

α =
�

2
LLT =

�

2

(
cosh 2rI2 sinh 2rJ2
sinh 2rJ2 cosh 2rI2

)
. (29)
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III. QUANTUM ILLUMINATION SYSTEM WITH

GAUSSIAN STATES

We kindly explain our setting of quantum illumi-

nation system with Gaussian states. The system gen-

erates a bright two-mode squeezed state ρSI(z) =
[D1(z)⊗ II ] |ψsq〉SI〈ψsq|

[
D1(z)

† ⊗ II
]

and transmits

its signal mode and retains the idler mode. We assume we

receive the state ρ
(1)
SI = (Φk ⊗ II) ρSI(z) with the lossy

bosonic channel of transmittance k if a target exists, and

we have the state ρ
(0)
SI = |0〉S〈0| ⊗ TrSρSI if no target

exists. Then we may detect which of the signals ρ
(0)
SI and

ρ
(1)
SI is received.

The state ρ
(0)
SI is a Gaussian state with the zero mean

vector and the correlation matrix

α(0) =
�

2

[
I2 0
0 cosh 2rI2

]
. (30)

The mean vector of the Gaussian states ρSI(z) is

(x1, y1, 0, 0)
T , and its correlation matrix is given by

Eq. (29). Then the mean vector of the Gaussian state

ρ
(1)
SI is u = (kx1, ky1, 0, 0)

T . In order to obtain the

correlation matrix of ρ
(1)
SI , we describe the transformation

|0〉SI〈0| → (Φk⊗II)ρSI(z) in the Heisenberg picture by

the relation

ãS = kaS cosh r − ka†I sinh r +
√
1− k2aE

ãI = −a†S sinh r + aI cosh r,
(31)

where aE is an annihilation operator in a mode of envi-

ronment. We put q̃j =
√

�/2(ãj+ ã†j), p̃j = i
√

�/2(ã†j−
ãj), qj =

√
�/2(aj + a†j), pj = i

√
�/2(a†j − aj) with

j = S, I, E and we introduce the vector representation

R̃ = [q̃S , p̃S , q̃I , p̃I ],R0 = [qS , pS , qI , pI , qE , pE ]
T . We

can rewrite Eq. (31) in a real setting as

R̃ = MR0, (32)

where

M =

(
k cosh rI2 k sinh rJ2

√
1− k2I2

sinh rJ2 cosh rI2 0

)
. (33)

As in Section II-B, we can find the correlation matrix of

ρ
(1)
SI as

α(1) =
�

2
MMT

=
�

2

[
(k2 cosh 2r + 1− k2)I2 k sinh 2rJ2

k sinh 2rJ2 cosh 2rI2

]
.

(34)

Moreover, in the Gaussian case, we can separately deal

with the effect of attenuation or amplification and that of

thermal noise. Hence, when we also assume the effect of

thermal noise with zero mean and variance �Nc, we may

consider the following correlation matrices as α(0) and

α(1) respectively,

α(0) + �

[
NcI2 0
0 0

]
,

α(1) + �

[
NcI2 0
0 0

]
.

(35)

We constrain sum of the signal energy Ns = x21+y21 and

the squeezing energy Nsq = (cosh 2r − 1)/2 as

Ns +Nsq = N. (36)

In the following, we investigate the behavior of fidelity

F = F (ρ
(0)
SI , ρ

(1)
SI ) = Tr

∣∣∣∣
√
ρ
(0)
SI

√
ρ
(1)
SI

∣∣∣∣ (37)

under the energy constraint (36). We can not evaluate the

quantum illumination system rigorously by the fidelity,

but it is related to the error probability of the system

as follows. We can evaluate the quantum illumination

system by error probability of quantum detection for two

equiprobable states ρ
(0)
SI and ρ

(1)
SI . Then the minimum

error probability is given as

P =
1

2
min

{X0,X1}

[
TrX0ρ

(1)
SI +TrX1ρ

(0)
SI

]
, (38)

where the minimization is taken over all POVMs

{X0, X1}, which consist of positive operators satisfying

X0 + X1 = I . It is known that the minimum error

probability P is obtained as

P =
1

2
(1−D(ρ

(0)
SI , ρ

(1)
SI )), (39)

where D(ρ
(0)
SI , ρ

(1)
SI ) =

1
2Tr|ρ

(0)
SI −ρ

(1)
SI | is a trace distance.

The trace distance is bounded above and below using the

fidelity F as

1− F ≤ D(ρ
(0)
SI , ρ

(1)
SI ) ≤

√
1− F 2, (40)

and hence we got

1

2
(1−

√
1− F 2) ≤ P ≤ F

2
. (41)

Note that we may repeat the transmission described above

M times to improve performance of the system. Then the

minimum error probability P (M) is bounded as

P (M) ≤ P
(M)
QC ≤ 1

2
FM , (42)

where P
(M)
QC = 1

2

[
min
0≤s≤1

Tr(ρ
(0)
SI )

s(ρ
(1)
SI )

1−s

]M
is the

quantum Chernoff bound [1],[3].
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IV. COMPUTATION OF FIDELITY UNDER TOTAL

ENERGY CONSTRAINT

We can compute the fidelity for the Gaussian states

ρ
(0)
SI and ρ

(1)
SI using the formula in [2] as

F (ρ
(0)
SI , ρ

(1)
SI ) = exp

[
−1

4
uT (α(0) + α(1))−1u

]

×
[(√

Γ +
√
Λ
)
−
√(√

Γ +
√
Λ
)2

−Υ

]−1/2 (43)

where

Υ := det(α(0) + α(1)) ≥ 1, (44)

Γ := 16 det

[
(J2α

(0))(J2α
(1))− 1

4
I

]
≥ Υ, (45)

Λ := 16 det

(
α(0) +

i

2
J2

)
det

(
α(1) +

i

2
J2

)
≥ 0

(46)

Note that when we consider effect of thermal noise we

may use the correlation matrices given by Eq. (35) as

α(0) and α(1).
Figure 1 shows graphs of the first term and the second

term of Eq. (43) with respect to a squeezing parameter

r ≥ 0. From the energy constraint (36), r changes in the

region

0 ≤ r ≤ rmax :=
1

2
log(2N + 1 +

√
4N2 + 4N). (47)

The first term represents effect of signal energy, and

its value monotonically increases with respect to r. The

second term represents the effect of squeezing, and its

value monotonically decreases. In this case the second

term is more effective than the first term and hence the

fidelity monotonically decreases, as squeezing becomes

stronger.

Figure 2 shows the relationship between the fidelity

F and the squeezing parameter r for N = 0.1, 1.0, 5.0
each with k = 1.0 and Nc = 0. Note that each region of

r is determined by (47) differently. In these cases, as r
is increased the fidelity is reduced, that is, squeezing is

effective.

Figure 3 shows the relationship between the fidelity F
and the squeezing parameter r for N = 20.0, k = 1.0,

and Nc = 1.5. Here the value of fidelity is 0.079288 as

r = 0 and 0.130617 as r = rmax. The minimum value

of fidelity is 0.078232 which is given by r = 0.3497.

Hence we are necessary to choose an intermediate value

of squeezing parameter r to obtain the optimum result.

Figure 4 shows graphs of the first term and second term

of Eq. (43) under the parameter setting of Fig. 3. In this

case in the regions close to both ends either the first term

or the second term takes values close to zero. Therefore

the fidelity takes the maximum value in middle region in

Fig. 3.

Figure 5 shows the relationship between the fidelity

F and the squeezing parameter r for k = 0.5 and

Nc = 0, and the parameter N is taken from 0.1, 1.0, 5.0
and 20.0. Except in the case of N = 20.0 the graphs

have the same tendency as in the case of k = 1. In

the case of N = 20.0, the graph behaves similarly to

the graph of Fig. 3. This means squeezing becomes less

effective than displacement as the value of N increases.

On the other hand, Fig. 6 shows the graph of fidelity

for N = 5.0, 20.0, 50.0, 100.0 each with k = 0.5 and

Nc = 2.0. From this we can see that when we consider

a thermal noise we need a larger value of N so that the

graph behaves similarly to the graph of Fig. 3.

Figure 7 shows the relationship between fidelity and a

squeezing parameter r for N = 100 and Nc = 0, and the

parameter k is taken from 0.05, 0.1, 0.25 and 0.5. From

this we can see even if N takes a large value squeezing is

useful for small values of transmittance k, k = 0.05, 0.1.

On the other hand for larger values of k, k = 0.25 and

0.5, the graphs have the same tendency as the graph of

Fig. 3.

V. CONCLUSION

We have computed the fidelity between two-mode

Gaussian states used in the quantum illumination system

under the total energy constraint Ns+Nsq = N . And we

have drawn graphs of fidelity F = F (r) with respect to a

squeezing parameter r for various cases of k,Nc, and N .

When energy of received signal is small, the minimum

value of fidelity is given by Ns = 0 (i.e. r = rmax).

Such cases are also studied in a previous research [1].

In this paper we have newly found there is a case where

an intermediate value of r (0 < r < rmax) gives the

minimum fidelity.
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Fig. 1. Behavior of first and second terms in the fidelity formula and
the fidelity for k = 0.5, N = 1.0, Nc = 0.

Fig. 2. Relationship between fidelity F and squeezing parameter r for
N = 0.1, 1.0, 5.0 each with k = 1.0 and Nc = 0.

Fig. 3. Relationship between fidelity F and squeezing parameter r for
k = 1.0, N = 20.0 and Nc = 1.5.

Fig. 4. Behavior of first and second terms in the fidelity formula for
k = 1.0, N = 20.0, Nc = 1.5

Fig. 5. Relationship between fidelity F and squeezing parameter r for
N = 0.1, 1.0, 5.0, 20.0 each with k = 0.5 and Nc = 0.

Fig. 6. Relationship between fidelity F and squeezing parameter r for
N = 5.0, 20.0, 50.0, 100.0 each with k = 0.5 and Nc = 2.0.
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Fig. 7. Relationship between fidelity F and squeezing parameter r for
k = 0.05, 0.1, 0.25, 0.5 each with N = 100 and Nc = 0.


