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Abstract—Two-mode squeezed vacuum states are impor-
tant for realizing quantum illumination radar because of
their non-classical correlation. In quantum illumination
radar one of the entangled beams is transmitted to a target
in a lossy optical medium as a signal beam. The other beam
called as a reference is send to the radar receiver with a
lossless channel. So, the entangled light beams are exposed
to such an asymmetric optical-loss condition. This causes
violation of their inseparability criterion for non-classical
correlation.

In this article we assume an asymmetric two-mode
squeezed vacuum states where the signal beam has larger
quadrature phase amplitudes and average photon number
than the reference beam. We calculate a correlation variance
of quadrature phase amplitudes between entangled beams in
the asymmetric optical-loss condition. And then we check
the non-classical correlation of the light source based on
Duan’s and Simon’s inseparability criterion. We could find
out some conditions where asymmetric property of two-
mode squeezed vacuum states has an ability to compensate
the effect of the asymmetric optical-loss and can maintain
the inseparability criterion.

I. INTRODUCTION

Quantum illumination is a recently developed target de-

tection technique utilizing quantum entanglement [1], [2],

[3]. In this technique quantum entanglement is exploited

to improve error probability of discrimination for target

presence or absence even in a lossy and noisy environ-

ment. Initially a pair of entangled photons was proposed

as a quantum entanglement resource [1]. After that, Tan,

et al. proposed entangled two-mode Gaussian states such

as two-mode squeezed vacuum states as a light source

and showed improvement in error probability of target

detection [2]. So, the author is interested in applying

two-mode squeezed vacuum states as a light source to

an experimental study of quantum illumination [4], [5].

Two-mode squeezed vacuum states are macroscopic

quantum entangled states of electro-magnetic fields and

have non-classical correlation between quadrature phase

amplitudes in each optical beam. It is usually generated

by mixing two independent single-mode squeezed vac-

uum states characterized by same squeezing parameter r.

They are combined by a beam splitter with transmissivity

of 0.5 with a relative optical phase of 90◦. In this

case the entangled output beams have same quadrature

phase amplitude noises and average photon number. In

this article, therefore, we call them symmetric two-mode

squeezed vacuum states. To verify non-classical correla-

tion of a light source, an inseparability criterion is nec-

essary. One useful and practical inseparability criterion

for continuous-variable entangled states was developed by

Duan, et al. [6] and Simon [7]. This criterion is based on a

correlation variance between quadrature phase amplitudes

of entangled light beams. The correlation variance can be

directly detected by balanced homodyne measurement.

Therefore it has been frequently used in continuous-

variable quantum-optics experiments to verify quantum

entanglement [8].

In the quantum illumination radar, two-mode squeezed

vacuum states are exposed to an asymmetric optical loss.

One of the entangled beams usually called as a signal

beam is transmitted towards a target through a turbulent

atmosphere or a lossy optical medium. The other beam

usually called as a reference beam is directly sent to

the radar receiver with a lossless channel. In a previous

work the author studied how non-classical correlation of

symmetric two-mode squeezed vacuum states are affected

in such an asymmetric optical loss [9]. In these optical

conditions only the signal beam is affected by the optical

loss and attenuates its quadrature phase amplitude, and

finally decreases the average photon number. As a result

symmetric two-mode squeezed vacuum states become

asymmetric states. The asymmetric property of the light

source causes increasing of the correlation variance of

quadrature phase amplitudes and then violates the insep-

arability criterion.

In this article we consider asymmetric two-mode

squeezed vacuum states as a light source for the quantum

illumination radar. In these asymmetric states the signal

beam has a larger quadrature phase amplitude and average

photon number than the reference beam. Then the correla-

tion variance of them are more than one and violates the

inseparability criterion. However, when only the signal

beam is exposed to an optical loss, its quadrature phase

amplitudes and average photon number are reduced and

finally expected to become comparable to those of the

reference beam . As a result it is expected that asymmetric

property of the light source is compensated and then its

non-classical correlation is maintained. We calculate the

correlation variance of quadrature phase amplitudes of

asymmetric squeezed vacuum states after exposition to

asymmetric optical-loss conditions. And we check the

Tamagawa University Quantum ICT Research Institute Bulletin
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inseparability criterion to study non-classical correlation

of the light source.

II. OPTICAL MODEL

In this chapter we derive a description of asymmetric

two-mode squeezed vacuum states using Heisenberg rep-

resentation (with unit of � = 1/2, i.e.
[
x̂, ŷ

]
= i/2) as

is often used in continuous-variable quantum-optics [8].

Fig. 1 shows an optical model to generate asymmetric

two-mode squeezed vacuum states. In this model two

single-mode squeezed vacuum states SQ1 and SQ2 are

combined with a beam splitter BS. A relative optical

phase between squeezed vacuum states SQ1 and SQ2

is fixed at 90◦. In this article we derive the description

of two-mode squeezed vacuum states for not only the

symmetric case but also an asymmetric case. So, we

assume that beam splitter BS has variable transmittance

T and incident two single-mode squeezed vacuum states

SQ1 and SQ2 are characterized by squeezing parameter r1
and r2, respectively. Squeezing parameter ri corresponds

to optical gain of a squeezer SQi(ri) and related with av-

erage photon number ni of the incident squeezed vacuum

state SQi by an equation of ni = sinh2ri (i = 1, 2).

Firstly we write complex amplitude operators of input

squeezed vacuum states SQ1 and SQ2 as

â1 = e−r1 x̂1 + ier1 ŷ1 (1)

and

â2 = er2 x̂2 + ie−r2 ŷ2. (2)

x̂i and ŷi (i = 1, 2) are quadrature phase amplitude

operators of incident vacuum states for two independent

squeezers which are not shown in Fig. 1. After mixing

two single-mode squeezed vacuum states SQ1 and SQ2

by the beam splitter with transmittance T , entangled two-

mode output states Out1 and Out2 are generated. They

corresponds to signal and reference beams, respectively.

The complex amplitude operators of two outputs Out1
and Out2 are calculated as

Â1 = X̂1 + iŶ1

=
(√

Te−r1 x̂1 +
√
1− Ter2 x̂2

)
+ i
(√

Ter1 ŷ1 +
√
1− Te−r2 ŷ2

) (3)

and

Â2 = X̂2 + iŶ2

=
(
−
√
1− Te−r1 x̂1 +

√
Ter2 x̂2

)
+ i
(
−
√
1− Ter1 ŷ1 +

√
Te−r2 ŷ2

)
.

(4)

The average photon number n1 and n2 of outputs Out1
and Out2 are calculated as

n1 = T sinh2r1 + (1− T )sinh2r2 (5)

and

n2 = (1− T )sinh2r1 + T sinh2r2, (6)

respectively. When squeezing parameters r1 and r2 are

equal (r1=r2=r), average photon numbers n1 and n2
of output states become same as sinh2r. On the other

hand, as long as beam-splitter transmittance is kept at 0.5,

average photon numbers n1 and n2 of outputs are also

same and given as 0.5sinh2r1 + 0.5sinh2r2. So, in both

cases, two outputs Out1 and Out2 are in symmetric two-

mode states. To generate asymmetric two-mode squeezed

vacuum states where the average photon number n1 is

larger than n2, it is required to chose optical conditions

with r1 > r2 and 0.5 < T < 1, or r1 < r2 and

0 < T < 0.5. In this article we chose the former

condition.

In order to study the effect of asymmetric optical-

loss conditions on two-mode squeezed vacuum states, we

introduce optical losses L1 and L2 in both optical paths

of output beams Out1 and Out2, respectively, as shown

in Fig. 1. These optical losses are modeled as mixture

of vacuum states through beam splitters with amplitude

transmittance of
√
1− L1 and

√
1− L2, respectively.

To describe an asymmetric optical-loss condition for

quantum illumination radar, it is reasonable to assume

that optical loss L2 is zero and only L1 is varied as a

calculation parameter. To describe the effect of optical

losses we use quadrature phase amplitude operators of

vacuum states Vac1 (x̂′1, ŷ′1) and Vac2 (x̂′2, ŷ′2) which

come to be mixed in the output states Out1 and Out2, re-

spectively. Finally complex amplitude operators of output

beams Out′1 and Out′2 after exposition to the asymmetric

optical-loss condition are given as

Â′1 = X̂ ′1 + iŶ ′1
=
√
1− L1

(√
Te−r1 x̂1 +

√
1− Ter2 x̂2

)
+
√
L1x̂

′
1

+ i
{√

1− L1

(√
Ter1 ŷ1 +

√
1− Te−r2 ŷ2

)
+
√
L1ŷ

′
1

}
(7)

and

Â′2 = X̂ ′2 + iŶ ′2
=
√
1− L2

(
−
√
1− Te−r1 x̂1 +

√
Ter2 x̂2

)
+
√
L2x̂

′
2

+ i
{√

1− L2

(
−
√
1− Ter1 ŷ1 +

√
Te−r2 ŷ2

)
+
√
L2ŷ

′
2

}
.

(8)

The average photon number of outputs is also affected

by the asymmetric optical loss. The average photon num-

ber n′1 and n′2 of outputs Out′1 and Out′2 are calculated

as

n′1 = (1− L1)
{
T sinh2r1 + (1− T )sinh2r2

}
(9)

and

n′2 = (1− L2)
{
(1− T )sinh2r1 + T sinh2r2

}
, (10)

respectively.
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Fig. 1. Optical model for generating asymmetric two-mode squeezed vacuum states. Incident single-mode squeezed vacuum states SQ1 and SQ2

characterized by squeezing parameter r1 and r2, respectively, are combined using beam splitter BS(T ) with transmittance of T . A relative optical
phase between them is fixed at 90◦. Two entangled outputs Out1 and Out2 are affected by an environment with optical losses L1 and L2 in each
optical path and become final outputs Out′1 and Out′2, respectively.

Correlation variance of quadrature phase amplitudes

between outputs Out′1 and Out′2 is defined as

Δ1,2
2 = 〈

[
Δ
(
X̂ ′1 − X̂ ′2

)]2〉+ 〈
[
Δ
(
Ŷ ′1 + Ŷ ′2

)]2〉. (11)

It has been proven by Duan, et al. [6] and Simon [7]

that two outputs Out′1 and Out′2 are inseparable and show

quantum entanglement when the relation

Δ1,2
2 < 1 (12)

is satisfied. Equation (12) is called as an inseparability

criterion and corresponds to a sufficient condition of non-

classical correlation. Therefore the quantitative relation

between correlation variance Δ1,2
2 and the strength of

non-classical correlation is not clear with this. Recently

a measure for quantifying quantum entanglement of two-

mode squeezed vacuum states is reported by Tserkis, et
al. [10] However it is still difficult to deal with two-mode

squeezed vacuum states affected by optical losses. So, in

this work we use the inseparability criterion to study and

check non-classical correlation of the light source.
In our optical model, correlation variance Δ1,2

2 can

be calculated using quadrature phase amplitudes of final

output states Out′1 and Out′2. The first and second term

of correlation variance Δ1,2
2 are calculated as

〈
[
Δ
(
X̂1 − X̂2

)]2〉
=

1

4
(
√
1− L1

√
T +

√
1− L2

√
1− T )2e−2r1

+
1

4
(
√

1− L1

√
1− T −

√
1− L2

√
T )2e2r2

+
1

4
(L1 + L2),

(13)

〈
[
Δ
(
Ŷ1 + Ŷ2

)]2〉
=

1

4
(
√

1− L1

√
T −

√
1− L2

√
1− T )2e2r1

+
1

4
(
√
1− L1

√
1− T +

√
1− L2

√
T )2e−2r2

+
1

4
(L1 + L2)

(14)

and are given as a function of squeezing parameters r1,

r2, beam-splitter transmittance T , and optical losses L1

and L2.

III. CALCULATION RESULTS

Firstly we prepare asymmetric two-mode squeezed

vacuum states Out1 and Out2 as an incident light source.

For that purpose it is require to set squeezing parameter r2
smaller than squeezing parameter r1 and simultaneously

vary beam-splitter transmittance T more than 0.5. Notice

that two-mode output Out1 and Out2 have a symmetric

structure as long as beam-splitter transmittance T is 0.5

even with the set of different squeezing parameters r1
and r2. To study the non-classical property of asymmetric

two-mode squeezed vacuum states after exposition to

an asymmetric optical loss, we calculated correlation

variance Δ1,2
2 of the final output states Out′1 and Out′2.

Fig. 2 shows calculation results of correlation variance

Δ1,2
2 as a function of squeezing parameter r2 with beam-

splitter transmittance T at 0.5, 0.6, 0.7, 0.8, 0.9, and

1.0, respectively. Optical loss L2 was set at zero and

L1 was set at (a) 0.0, (b) 0.5, and (c) 0.9. Squeezing

parameter r1 of incident squeezed vacuum state SQ1 was

fixed at 1.5. In Fig. 2 (a) with optical loss L1 of 0.0,

correlation variances Δ1,2
2 monotonically increase when

beam splitter transmittance T increases. So, the asym-

metric property of two-mode squeezed vacuum states is

only making its correlation variance Δ1,2
2 large under

the lossless condition (L1=L2=0).

In Fig. 2 (b) with optical loss L1 of 0.5, correlation

variances Δ1,2
2 with T=0.5 and 0.6 are larger than those

of Fig. 2 (a) at the full range of squeezing parameter

r2. Correlation variance Δ1,2
2 with T=0.6 shows lower

values than that with T=0.5 when squeezing parameter r2
is less than 1.206 and gives the minimum value of 0.503

at r2 of 0.658. On the other hand correlation variances

Δ1,2
2 with T=0.7, 0.8, 0.9, and 1.0 decrease as compared

with those of Fig. 2 (a) especially at low values of

squeezing parameter r2.
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Fig. 2. Calculation results of correlation variance Δ1,2
2 in a log scale as a function of squeezing parameter r2 with beam-splitter transmittance T

of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, respectively. Squeezing parameter r1 is fixed at 1.5. Optical loss L2 is zero and L1 is set at (a) 0.0, (b) 0.5, and
(c) 0.9.

In Fig. 2 (c) with L2=0.9, most of the correlation

variances Δ1,2
2 are more than one and don’t satisfy the

inseparability criterion except those with T=0.8 and 0.9.

Correlation variances Δ1,2
2 gives the minimum value

of 0.901 with T = 0.9 at squeezing parameter r2 of

0.106. At this condition the average photon numbers of

incident signal and reference beams n1, n2 are estimated

as 4.08 and 0.408, respectively. After exposition to the

asymmetric optical loss, the average photon number of

the final signal beam n′1 is also estimated as 0.464 and

becomes comparable to that of reference beam n2.

Fig. 3 shows calculation results of correlation variance

Δ1,2
2 as a function of squeezing parameter r2 with beam-

splitter transmittance T of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0,

respectively. Optical loss L2 was set at zero and L1 was

set at (a) 0.0, (b) 0.5, and (c) 0.9. Squeezing parameter

r1 of incident squeezed vacuum state SQ1 was fixed at

3.0. Because of this correlation variances Δ1,2
2 have high

sensitivity to the change of beam-splitter transmittance T
as compared with Fig. 2.

Fig. 3 (a) is a result under the lossless condition

(L1=L2=0) same as Fig. 2 (a). Correlation variances

Δ1,2
2 monotonically increase when beam splitter trans-

mittance T increases. In Fig. 3 (b) with optical loss

L1 of 0.5, correlation variance Δ1,2
2 only with T=0.7

gives the value less than one and has the minimum value

of 0.720 at squeezing parameter r2 of 0.500. In Fig. 3

(c) with L1=0.9, correlation variances Δ1,2
2 only with

T=0.9 shows the value less than one and then satisfies

the inseparability criterion. It gives the minimum value of

0.922 with T = 0.9 at squeezing parameter r2 of 0.106.

At this condition the average photon numbers of incident

signal and reference beams n1, n2 are estimated as 90.32

and 9.03, respectively. The average photon number of

the final signal beam n′1 is also estimated as 10.05 and

becomes comparable to that of reference beam n2 after

exposition to the asymmetric optical loss.
As a result of Fig. 2 and 3 the asymmetric property

of two-mode squeezed vacuum states has an ability to

compensate the effect of asymmetric optical-loss condi-

tions (L1=0.5, 0.9). We could find out some conditions

where the inseparability condition is maintained. And at

these conditions the average photon number of final signal

beam n′1 and that of reference beam n2 are almost same.
Fig. 4 shows calculation results of correlation variance

Δ1,2
2 at the condition with extremely large optical loss

L1 of 0.99 and L2 of zero. Fig. 4 (a) shows results

with squeezing parameter r1 of 1.5, and beam-splitter

transmittance T varying from 0.96, 0.97, 0.98, 0.99, and

to 0.995, and (b) shows results with r1 of 3.0 and T
varying from 0.986, 0.988, 0.990, 0.992, and to 0.994. In

both cases (a) and (b) correlation variances Δ1,2
2 gives

the value less than one with T=0.99 and the minimum

value of 0.990 at squeezing parameter r2 of 0.01. At

this condition the average photon numbers of signal and

reference beams n1, n2 are estimated as 4.48 and 0.0448

in (a) and 99.35 and 0.994 in (b), respectively. After

exposition to the asymmetric optical loss, the average

photon number of final signal beam n′1 is also estimated

as 0.0454 in (a) and 1.004 in (b), respectively, and is

comparable to that of reference beam n2.
From these results it is expected that correlation vari-

ance Δ1,2
2 gives its minimum and the value less than

one with high beam-splitter transmittance even under

the symmetric optical-loss condition with extremely high
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Fig. 3. Calculation results of correlation variance Δ1,2
2 in a log scale as a function of squeezing parameter r2 with transmittance T of beam splitter

of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, respectively. Squeezing parameter r1 is fixed at 3.0. Optical loss L2 is zero and L1 is set at (a) 0.0, (b) 0.5, and
(c) 0.9.
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Fig. 4. Calculation results of correlation variance Δ1,2
2 in a linear scale as a function of squeezing parameter r2 at extremely large optical loss

L1 of 0.99. (a) Results with squeezing parameter r1 of 1.5, and beam splitter transmittance T of 0.96, 0.97, 0.98, 0.99, and 0.995, respectively. (b)
Results with squeezing parameter r1 of 3.0, and beam splitter transmittance T of 0.986, 0.988, 0.990, 0.992, and 0.994, respectively. Optical loss L2

is set at zero for both cases.

L1. At this condition squeezing parameter seems to go

to almost zero. It means that the incident single-mode

vacuum state SQ2 is almost vacuum state. So, there is

a possibility that we can save one single-mode squeezer

SQ2(r2) in the optical model as shown in Fig. 5. Only

one single-mode squeezer SQ1(r1) and a beam splitter

with high transmittance T are required for generating

highly asymmetric two-mode squeezed vacuum states

which is efficient light source in asymmetric optical-loss

conditions with extremely high L1.

IV. SUMMARY

The author is interested in applying two-mode

squeezed vacuum states to quantum illumination radar.

In quantum illumination radar the two-mode entangled

light beams are exposed to an asymmetric optical-loss

which causes the violation of their inseparability crite-

rion. In this article we assumed asymmetric two-mode

squeezed vacuum states. In these states the signal beam

has larger quadrature phase amplitudes and an average

photon number than the reference beam. We calculated
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Fig. 5. Optical model for generating asymmetric two-mode squeezed vacuum states which is effective in asymmetric optical-loss conditions with
extremely high L1. Incident single-mode squeezed vacuum state SQ1 characterized by squeezing parameter r1 is combined with a vacuum state using
beam splitter BS(T ) with high transmittance T .

a correlation variance of quadrature phase amplitudes

between entangled signal and reference beams after expo-

sition to the asymmetric optical-loss condition. And we

studied their non-classical correlation based on Duan’s

and Simon’s inseparability criterion. We could find out

some conditions where the asymmetric property of two-

mode squeezed vacuum states has an ability to compen-

sate the effect of asymmetric optical-loss conditions and,

therefore, can maintain the inseparability condition. Es-

pecially in highly asymmetric optical-loss conditions, we

could find a possibility that we can save one single-mode

squeezer. At this condition only one single-mode squeezer

and a beam splitter with high transmittance are required

for generating asymmetric two-mode squeezed vacuum

states. This is advantageous for developing an entangled

light source towards quantum illumination radar.
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