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Abstract—We derive an analytical solution to a minimum-
error measurement for quantum pure states with equal real
inner products whose prior probabilities are equal except
for one. Pulse position modulated (PPM) optical coherent
signals are one important example of these states. We also
show that a Dolinar-like receiver, which is based on feedback
control, for PPM coherent signals achieves near-optimal
performance.

I. Introduction

Quantum state discrimination is a fundamental and

difficult problem in quantum information and quantum

communication. The problem is to discriminate between

the quantum state from a given finite set of known pos-

sible states with given prior probabilities. A well-known

feature of quantum mechanics is that it is impossible to

perfectly discriminate between nonorthogonal quantum

states. Thus, an optimum quantum measurement must be

found that can discriminate between them as accurately

as possible.

The problem of finding an optimal quantum measure-

ment for distinguishing between quantum states was first

formulated in the 1970s by Helstrom, Holevo, and Yuen

et al. [1]–[3]. Holevo and Yuen et al. [2], [3] formu-

lated necessary and sufficient conditions for obtaining an

optimal measurement that minimizes the average proba-

bility of a detection error, which is called a minimum-

error measurement. However, obtaining a closed-form

analytical expression for a minimum-error measurement

is generally a very difficult task. In recent years, many

research studies have been conducted to analytically

obtain a minimum-error measurement for some states.

In the case in which states have some kind of symme-

try and equal prior probabilities, closed-form analytical

expressions for minimum-error measurements have been

derived, for example, with cyclic pure states [4], [5],

ternary mirror-symmetric states [6], linear codes with

binary letter-states [7], pseudo-cyclic codes with q-ary

letter-states [8], and geometrically uniform pure states [9],

[10]. Note that, analytical solutions of a minimum-error

measurement for mixed geometrically uniform states have

also been derived [10]–[14].

Unfortunately, optimal measurements are often prac-

tically difficult to implement. Thus, how to construct

a quantum receiver that can discriminate between the

given states as accurately as possible is a crucial issue.

Dolinar [15] proposed a receiver based on a combina-

tion of a beam splitter, a local coherent light source, a

photon detector, and a feedback circuit, which achieves a

minimum-error measurement for binary optical coherent

states. In this receiver, the posterior probabilities are

updated in each feedback period, and a minimum-error

measurement is performed during the subsequent period.

The symmetry that given binary coherent states have is

broken since updated probabilities are different. Dolinar-

like protocols might be useful for more than two states,

which means that a Dolinar-like receiver for the states

might achieve near-optimal performance. However, an

analytical solution to a minimum-error measurement is

not known when their probabilities are different, even if

the states have symmetry. We want to find a minimum-

error measurement to implement an optimal or near-

optimal receiver. In this paper, we show that there is a

case in which a minimum-error measurement for more

than two quantum states with different proir probabilities

can be analytically derived. We focus on quantum pure

states with equal real inner products. These states can rep-

resent pulse position modulated (PPM) optical coherent

signals, which are currently widely adopted in deep-space

optical communications. We also show that a Dolinar-like

receiver for PPM coherent signals achieves near-optimal

performance and that this receiver can be applied to other

optical signals.

II. Quantum pure states with equal real inner products

Suppose that {|Ψ′m〉}m∈IM are M quantum pure states

with equal real inner products, where IM = {0, 1, · · · ,M−
1}. Each vector |Ψ′m〉 is normalized. Since the binary case

(i.e., M = 2) is trivial, we assume M ≥ 3. The inner

product between |Ψ′j〉 and |Ψ′k〉 is written by

〈Ψ′j|Ψ′k〉 =
{

1, j = k,
K, otherwise,

(1)
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where K < 1 is real. Let us represent each |Ψ′m〉 with

respect to an orthonormal basis {|φn〉}n∈IM . Let Ψ be the

M-dimensional square matrix whose (m + 1)-th colomn

is |Ψ′m〉 = [〈φ0|Ψ′m〉 , · · · , 〈φM−1|Ψ′m〉]T (T is the transpose

operator), i.e.,

Ψ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
〈φ0|Ψ′0〉 · · · 〈φ0|Ψ′M−1〉
...

. . .
...

〈φM−1|Ψ′0〉 · · · 〈φM−1|Ψ′M−1〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2)

The eigenvalues of Ψ†Ψ († is the conjugate transpose

operator) are 1 − K and 1 + (M − 1)K. Since Ψ†Ψ is

positive semidefinite, 1 + (M − 1)K ≥ 0, i.e., K ≥ Kmin =

−1/(M − 1), must hold. rank Ψ = M holds if K > Kmin;

otherwise (i.e., K = Kmin), rank Ψ = M − 1 holds.

By choosing an appropriate orthonormal basis {|φn〉},
the pure state |Ψ′m〉 can be expressed as

|Ψ′m〉 = b
M−1∑
n=0

|φn〉 + (a − b) |φm〉 , (3)

where

b �

√
1 − K + MK − √

1 − K
M

,

a �

√
1 − K + MK + (M − 1)

√
1 − K

M
. (4)

Indeed, the state |Ψ′m〉 of Eq. (3) satisfies Eq. (1). Also, if

the states {|Ψ′m〉} are not expressed in the form of Eq. (3),

then, by changing the basis {|φn〉}, we can rewrite in the

form of Eq. (3) (see Appendix A). Note that, although

the space spanned by {|Ψ′m〉} is (M − 1)-dimensional

when K = Kmin, we always consider the M-dimensional

complex Hilbert space spanned by {|φm〉}.
Let |Ψm〉 � √

ξm |Ψ′m〉, where ξm is the prior probability

of |Ψ′m〉. Let us consider a finite group G whose every

element is a unitary operator. The pure states {|Ψm〉}m∈IM

are group covariant with respect to G, which we refer to

as G-symmetric states, if, for any m ∈ IM and U ∈ G,

there exists k ∈ IM such that |Ψk〉 = U |Ψm〉 [16]. Here,

we consider the symmetric group on IM , S (IM), which

contains all the permutations on IM . For any permutation

g ∈ S (IM), which transforms m ∈ IM into g(m) ∈ IM ,

the unitary operator Ug is defined as

Ug �
M−1∑
m=0

|φm〉 〈φg(m)| . (5)

It is easily seen that Ug |Ψm〉 = |Ψg(m)〉 holds for any

m ∈ IM . Thus, let G0 be the group containing all the

permutations g ∈ S (IM) satisfying ξg(m) = ξm for any

m ∈ IM and let G � {Ug : g ∈ G0}; then, {|Ψm〉}m∈IM is

G-symmetric. For example, if ξ1 = ξ2 = · · · = ξM−1, then

{|Ψm〉}m∈IM is S (IM\{0})-symmetric, where ‘\’ is the set

difference operator.

III. Optimal discrimination of quantum pure states with

equal real inner products

We will derive a minimum-error measurement for pure

states with equal real inner products. Assume that ξ0 � ξ1
and ξ1 = ξ2 = · · · = ξM−1 hold; i.e., the prior probabilities

except for ξ0 are equal. Such a case can be utilized for

realization of near-optimal receiver that will be described

in the next section.

We consider a quantum measurement that consists of

M detection operators, which is represented by a positive

operator valued measure (POVM) Π � {Πm}m∈IM . Any

POVM Π must satisfy

Πm ≥ 0, ∀m ∈ IM ,
M−1∑
m=0

Πm = I, (6)

where I is the identity matrix and Πm ≥ 0 denotes that

the operator Πm is positive semidefinite. The operator Πm

for each m ∈ IM corresponds to detection of the state ρ̂m.

The average success probability PS is defined by

PS(Π) �
M−1∑
m=0

〈Ψm|Πm|Ψm〉 . (7)

Also, the average success probability PE is defined by

PE � 1 − PS. We want to find a minimum-error mea-

surement, which is an optimal solution to the following

optimization problem:

maximize PS(Π)

subject to Π is a POVM.
(8)

Let H be the M-dimensional complex Hilbert space

spanned by {|φm〉}. In the case of K > Kmin, the states

{|Ψ′m〉} are linearly independent, in which case it is known

that a minimum-error measurement is a von Neumann

measurement [17]–[19]. Also, in the case of K = Kmin, we

can easily see that the exists a von Neumann measurement

that is a minimum-error measurement by considering K =
Kmin + ε (ε > 0) in the limit ε → 0. A von Neumann

measurement that is a minimum-error measurement can

be expressed by Π = {Πm = |πm〉 〈πm|}m∈IM with unit

vectors |πm〉.
Since the states {|Ψm〉} is S (IM\{0})-symmetric, there

exists a minimum-error measurement {|πm〉 〈πm|}m∈IM ⊂
H with S (IM\{0})-symmetric [16], i.e., satisfying

Ug |πm〉 = |πg(m)〉. Let g j,k be the permutation of IM that

interchanges j and k with j, k ∈ IM\{0}. The unitary

operator Ugj,k satisfies

Ugj,k |πm〉 = |πm〉 , m ∈ IM , j, k ∈ IM\{0,m},
Ugm,k |πm〉 = |πk〉 , m, k ∈ IM\{0}. (9)

By substituting |πm〉 = ∑M−1
n=0 |φn〉 〈φn|πm〉 we have

〈φ j|πm〉 = 〈φk |πm〉 , m ∈ IM , j, k ∈ IM\{0,m},
〈φ j|πm〉 = 〈φ j|πk〉 , m, k ∈ IM\{0}, j ∈ IM\{m, k},
〈φm|πm〉 = 〈φk |πk〉 , m, k ∈ IM\{0}. (10)
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Thus, we can reduce the M2 unknown parameters (i.e.,

〈φ0|π0〉 , · · · , 〈φM−1|πM−1〉) to five: we can write, for any

distinct j,m ∈ IM\{0}, 〈φ0|π0〉 � x0, 〈φ j|π0〉 � x1,

〈φm|πm〉 � x2, 〈φ j|πm〉 � x3, and 〈φ0|πm〉 � x4. Since

〈φk |Ψm〉 are real numbers, we can assume, without loss

of generality, that x0, · · · , x4 are also real numbers.

We now show that x1, · · · , x4 can be written by using

x0. Let us choose the phases of {|φm〉} and {|πm〉} such that

x0 ≥ 0 and x1x4 ≥ 0 hold. Let Γ � [|π0〉 , · · · , |πM−1〉].
From Eq. (6), Γ is unitary, i.e., Γ†Γ = ΓΓ† = I holds.

Thus, we have

x2
0 + (M − 1)x2

1 = 1,

x2
0 + (M − 1)x2

4 = 1,

x2
1 + x2

2 + (M − 2)x2
3 = 1,

x0x4 + x1{x2 + (M − 2)x3} = 0,

x2
1 + 2x2x3 + (M − 3)x2

3 = 0, (11)

which yields

x1 = s1

√
1 − x2

0

M − 1
,

x2 = s2

M − 2

M − 1
− x0

M − 1
,

x3 = − s2 + x0

M − 1
,

x4 = x1, (12)

where s1 = ±1 and s2 = ±1.

The average success probability can be written as

PS = ξ0{ax0 + (M − 1)bx1}2
+ (1 − ξ0){bx1 + ax2 + (M − 2)bx3}2. (13)

Substituting Eq. (12) into this equation gives

PS = ξ0

[
ax0 + bs1

√
(M − 1)(1 − x2

0
)
]2

+
1 − ξ0

(M − 1)2

[
bs1

√
(M − 1)(1 − x2

0
)

−{a + b(M − 2)}x0 + (a − b)(M − 2)s2

]2
.(14)

s1, s2, and x0 can be obtained by maximizing PS of

Eq.(14). After some algebra, we have s1 = sgn(b) � b/|b|
and s2 = −1. Also, it follows that x0 is a solution to the

following quartic polynomial:

4∑
k=0

fk xk
0 = 0, (15)

where f0, · · · , f4 are expressed by Eq.(16).

Since the quartic polynomials can be solved analyti-

cally, one can obtain an analytical solution to Eq. (15). We

omit the analytical expression because of its complexity.

IV. Dolinar-like receiver for PPM optical coherent

signals

A. Configuration of Dolinar-like receiver

Let us consider a Dolinar-like near-optimal receiver

for PPM optical coherent signals expressed by Eq. (3)

with equal prior probabilities. The PPM coherent signals

{|Ψ′m〉}m∈IM are expressed by

|Ψ′m〉 =
M−1⊗
n=0

|αn〉 = |α0〉 ⊗ · · · ⊗ |αM−1〉 (17)

with αk = αδk,m, where δk,m is the Kronecker delta, |αk〉
(= |α〉 or |0〉) is a coherent state, and α is a positive real

number. We have

|Ψ′0〉 = |α〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉 ,
|Ψ′1〉 = |0〉 ⊗ |α〉 ⊗ · · · ⊗ |0〉 ,

...

|Ψ′M−1〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |α〉 . (18)

Since the inner product of the two coherent states |α〉 and

|0〉 is 〈α|0〉 = e−α2/2, the inner product 〈Ψ′j|Ψ′k〉 = K with

distinct j and k is

K = 〈α|0〉 〈0|α〉 = e−α
2

. (19)

This receiver, which is based on feedback control, can

be expressed by a sequential measurement in which the

time duration of the measurement, normalized to 0 < t ≤
1, is split into N intervals {t j−1 < t ≤ t j} j∈{1,··· ,N}, where

t j � j/N. The receiver performs a collective measurement

with M measurement operators during each time interval

t j−1 < t ≤ t j, where one adapts subsequent collective

measurements based on the results of the previous ones.

We can expand the coherent state |Ψ′m〉 as |Ψ′m〉 = |ψ′m〉⊗N

with

|ψ′m〉 =
∣∣∣∣∣∣ α0√

N

〉
⊗
∣∣∣∣∣∣ α1√

N

〉
⊗ · · · ⊗

∣∣∣∣∣∣αM−1√
N

〉
. (20)

According to the Bayesian updating scheme (see

Ref. [20]), the posterior probabilities ξ
( j)
m of the state |Ψ′m〉

after performing the j-th measurement is determined as

ξ
( j)
m �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P( j)

S
, m = o( j),

1 − P( j)
S

M − 1
, otherwise,

(21)

where P( j)
S

is the average success probability at the time

t j and o( j) ∈ IM is the result of the j-th measure-

ment. As the j-th measurement, we perform a minimum-

error measurement for {|ψ′m〉}m∈IM with prior probabilities

{ξ( j−1)
m }m∈IM . Since {|ψ′m〉}m∈IM are pure states with equal

real inner products, a minimum-error measurement for

them can be derived as shown in Sec. III. Figure 1 shows

a schematic representation of a Dolinar-like receiver for

ternary PPM coherent signals {|Ψ′m〉}m∈I3
. Note that the

proposed receiver can be considered to be a generalization
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f4 = − q2M4 − 2q(2qK2 − 2K2 − qK + K − 2q)M3

+ (11q2K2 − 10qK2 − K2 − 8q2K + 8qK − 4q2 − 2q)M2

− 2(4q2K2 − 2qK2 − 2K2 − 4q2K + 3qK + K − 2q)M + 4qK2 − 4K2 − 4qK + 4K − 1,

f3 = − 2(q − 1)(M − 2)/M{ √1 − K(M − 1)
√

KM − K + 1

× (2qKM2 − qM2 − 3qKM − KM + 2qM + 2K − 1)

+ (K − 1)(2qKM3 − 6qKM2 + qM2 + 5qKM + KM − 2qM − 2K + 1)},
f2 = (M − 1){q2M3 + (5q2K2 − 6qK2 + K2 − 3q2K + 4qK − K − 3q2)M2

+ (−12q2K2 + 16qK2 − 4K2 + 12q2K − 18qK + 6K + 4q − 1)M

+ 8q2K2 − 12qK2 + 4K2 − 12q2K + 20qK − 8K + 4q2 − 8q + 3},
f1 = 2(q − 1)(M − 2)/M3[

√
1 − K(M − 1)

√
KM − K + 1{(2K − 1)qM4 − (6qK + K − 4q)M3

+ (9qK + 3K − 8q − 1)M2 + (−8qK − 3K + 8q + 2)M + 4K − 4}
+ (K − 1){3qKM5 + q(−14K + 3)M4 + (25qK + 3K − 12q)M3

+ (−21qK − 9K + 16q + 3)M2 + (8qK + 9K − 8q − 6)M − 4K + 4}],
f0 = 1/M4[−2

√
1 − K(M − 2)(M − 1)

√
KM − K + 1{q2(2K − 1)M5 + q(−9qK − K + 6q)M4

+ (15q2K + 4qK + K − 13q2 − 1)M3 + (−10q2K − 7qK − 3K + 10q2 + 4q + 2)M2

+ (8qK + 2K − 8q − 1)M − 2K + 2} + {q2(K − 1)KM8

+ (−15q2K2 + 2qK2 − K2 + 16q2K − 2qK + K − 2q2)M7

+ (72q2K2 − 8qK2 + 7K2 − 88q2K + 12qK − 8K + 19q2 − 2q + 1)M6

+ (−168q2K2 − 20K2 + 235q2K − 14qK + 25K − 70q2 + 8q − 6)M5

+ (211q2K2 + 52qK2 + 32K2 − 336q2K − 46qK − 43K + 126q2 + 14)M4

+ (−140q2K2 − 108qK2 − 38K2 + 252q2K + 146qK + 53K − 112q2 − 40q − 18)M3

+ (40q2K2 + 92qK2 + 37K2 − 80q2K − 156qK − 54K + 40q2 + 64q + 18)M2

− 8(K − 1)(4qK + 3K − 4q − 2)M + 8(K − 1)2}]. (16)

of the Dolinar receiver; indeed, they are the same when

M = 2. We assume that a minimum-error measurement

for {|ψ′m〉}m∈IM can be realized or approximately realized

by practical optical devices. A possible example of a

concrete realization of a Dolinar-like receiver is shown

in Fig. 2. The realization of their minimum-error mea-

surement is left for future work.

Fig. 1. Dolinar-like receiver with feedback circuit.

B. Another application

The Dolinar-like receiver described in the previous

subsection can be applied to quantum states with equal

real inner products that are not PPM coherent signals if

t

t

Fig. 2. Possible example of configuration of Dolinar-like receiver

some preprocessing is allowed. As an example, Fig. 3

shows an optical circuit that transforms the quantum

states {|Φm〉}m∈I8
encoded by the (7, 3) simplex code into

PPM coherent signals {|Ψ′m〉}m∈I8
. In this example, the

input state is expressed by |Φm〉 =
⊗6

n=0
|αn〉, where

|αn〉 = |0〉 holds if the corresponding symbol is 0;
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m

m

Fig. 3. Converting (7,3) simplex codeword to PPM coherent signal.

otherwise, |αn〉 = |α〉. |Ψ′m〉 can be expressed by

|Ψ′m〉 = |β0〉 ⊗ |β1〉 ⊗ |β2〉 ⊗ |β3〉 ⊗ |−β4〉 ⊗ |−β5〉
⊗ |−β6〉 ⊗ |

√
2α − β7〉 . (22)

Assume that each half beam splitter in Fig. 3 has the

property such that when the coherent lights |αL〉 and |αD〉
are respectively incident to the left and bottom sides, the

coherent lights of
∣∣∣(αL + αD)/

√
2
〉

and
∣∣∣(αL − αD)/

√
2
〉

are respectively emitted from the right and upper sides.

Then, βk (k ∈ I8) can be expressed as

β0 = (α0 − α1 + α2 − α3 + α4 − α5 + α6)/
√

8,

β1 = (α0 − α1 + α2 + α3 − α4 + α5 − α6)/
√

8,

β2 = (α0 + α1 − α2 − α3 + α4 + α5 − α6)/
√

8,

β3 = (α0 + α1 − α2 + α3 − α4 − α5 + α6)/
√

8,

β4 = (α0 − α1 − α2 − α3 − α4 + α5 + α6)/
√

8,

β5 = (α0 − α1 − α2 + α3 + α4 − α5 − α6)/
√

8,

β6 = (α0 + α1 + α2 − α3 − α4 − α5 − α6)/
√

8,

β7 = (α0 + α1 + α2 + α3 + α4 + α5 + α6)/
√

8. (23)

Let cm � βm/
√

2α (m ∈ {0, 1, 2, 3}), cm � −βm/
√

2α
(m ∈ {4, 5, 6}), and c7 � 1 − β7/

√
2α. For each (7, 3)

simplex codeword, cm with m ∈ I8 is expressed by

Table I, which implies that {|Ψ′m〉} are PPM coherent

signals.

V. Evaluation

We numerically evaluated the performance of

the Dolinar-like receiver for PPM coherent signals

{|Ψ′m〉}m∈IM . Figure 4 shows the average error probability

PE with respect to the average photon number S � |α|2
of |Ψ′m〉. We set the number of intervals as N = 105.

At each time interval t j−1 < t ≤ t j, a minimum-error

measurement for {|ψ′m〉}m∈IM was performed and their

posterior probabilities {ξ( j)
m }m∈IM were computed using

TABLE I
Converting (7,3) simplex codeword to PPM coherent signal.

State vector codeword c0c1c2c3c4c5c6c7

|Ψ′
0
〉 0000000 00000001

|Ψ′
1
〉 1010101 10000000

|Ψ′
2
〉 0110011 00000100

|Ψ′
3
〉 1100110 00100000

|Ψ′
4
〉 0001111 00000010

|Ψ′
5
〉 1011010 01000000

|Ψ′
6
〉 0111100 00001000

|Ψ′
7
〉 1101001 00010000

Eq. (21). Note that, in a preliminary experiment, we

obtained almost the same performance when N = 103.

The quantum limit (i.e., the average error probability of

a minimum-error measurement) and the performance of

the receiver proposed by Yamazaki [21] (referred to as

the conventional receiver) are also plotted in Fig. 4.

As M and S increase, the gap between the perfor-

mance of the proposed receiver and the quantum limit

widens. A possible reason is that the proposed receiver

computes the posterior probabilities {ξ( j)
m }m∈IM using only

the last measurement result. However, one can see that

the proposed receiver achieves performance close to the

quantum limit when S is small (e.g., S ≤ 1). In a separate

experiment, we verified that the average error probability

of the proposed receiver was less than 1.04 times of the

quantum limit for any M with M ≤ 10 and S ≤ 1.

VI. Conclusion

We derived an analytical expression for a minimum-

error measurement for quantum pure states with equal

real inner products whose prior probabilities except for

one are equal. We also demonstrated in our numerical

experiments that a Dolinar-like receiver for PPM optical

coherent signals achieves near-optimal performance when

the average photon number is small such as less than one.
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Appendix

A. Supplement of Eq. (1)

For any M pure states {|Ψm〉}m∈IM , the M-dimensional

square matrix whose ( j, k) element is the inner product

〈Ψ j|Ψk〉 is called the Gram matrix of {|Ψm〉}. The follow-

ing lemma holds.

Lemma 1 Let ΛΨ and ΛΦ be the Gram matrices of

two sets of M pure states {|Ψm〉}m∈IM and {|Φm〉}m∈IM ,

respectively. Then, a necessary and sufficient condition

for ΛΨ = ΛΦ is that there exists a unitary operator V
such that |Ψm〉 = V |Φm〉 holds for any m ∈ IM .
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Fig. 4. The average error probabilities PE for (a) ternary and (b) 8-ary PPM coherent signals.

Let HΨ and HΦ be the complex Hilbert spaces

spanned by {|Ψm〉} and {|Φm〉}, respectively. Let us express

|Φm〉 = ∑k |vk〉 〈vk |Φm〉 using an orthonormal basis {|vm〉}
satisfying HΦ ⊆ span{|vm〉}. It follows from Lemma 1

that if ΛΨ = ΛΦ holds, then |Ψm〉 can be written as

|Ψm〉 = ∑k |uk〉 〈vk |Φm〉 with an appropriate orthonormal

basis {|um〉} satisfying HΨ ⊆ span{|um〉}.

Proof The sufficiency is obvious since 〈Ψ j|Ψk〉 =
〈Φ j|V†V |Φk〉 = 〈Φ j|Φk〉 holds. We will prove the ne-

cessity.

Assume that ΛΨ = ΛΦ holds. We have

dim HΨ = rank ΛΨ = rank ΛΦ = dim HΦ.(24)

Let Ψ � [|Ψ0〉 , · · · , |ΨM−1〉], which is N×M matrix (N �
dim HΨ) whose (m + 1)-th colomn is |Ψm〉. Also, let

Φ � [|Φ0〉 , · · · , |ΦM−1〉]. To prove this lemma, it suffices

to show that there exists N-dimensional unitary matrix V
satisfying Ψ = VΦ.

Let V � (Ψ+)†Φ†, where Ψ+ is the Moore-Penrose

pseudo-inverse matrix of Ψ; then, we have

VΦ = (Ψ+)†Φ†Φ = (Ψ+)†ΛΦ = (Ψ+)†ΛΨ
= (Ψ+)†Ψ†Ψ = Ψ, (25)

which follows from ΨΨ+ = I. Also, V satisfies

VV† = (Ψ†)+Φ†ΦΨ+ = (Ψ†)+Ψ†ΨΨ+ = I. (26)

From rank V = N, there exists V−1. Premultiplying VV† =
I by V−1 yields V† = V−1, and thus V is unitary satisfying

Ψ = VΦ. �
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