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Abstract—We calculate the Holevo capacity of attenuation
channels with phase insensitive amplifiers and find the
optimum arrangement for those amplifiers.

I. INTRODUCTION

The ultimate capability of optical communication sys-

tems has been revealed by computing the Holevo capacity

of bosonic Gaussian channels. An upper bound for the

information transmitted by coherent states with thermal

noise was anticipated by Gordon [1]. The direct coding

theorem for discrete mixed states was given by Holevo [3]

and Schumacher-Westmoreland [2] independently, and it

was extended to continuous channels with constrained

inputs by Holevo [8]. By virtue of these results, it was

shown rigorously for the first time that Gordon’s upper

bound is identical to the operational channel capacity [8].

Basing on Holevo’s general treatment of Gaussian states

and bosonic channels [5], [6], we obtained the Holevo

capacity for noisy attenuation channels with one-mode

Gaussian input states [4], in particular for attenuation

channels with phase insensitive linear amplifiers (PIAs)

or phase sensitive amplifiers (PSAs) [9]. We then imposed

the following restrictions:

1) The amplifiers are arranged at equal intervals on an

attenuation channel

2) A gain Gi of each amplifier is set so that the

amplification can cancel the reduction of signal

energy caused by attenuation with a transmittance

ki, i.e. Gi = 1/ki.

In this paper we remove the restriction (1) and consider

the optimization problem for arrangement of PIAs.

II. HOLEVO CAPACITY FOR ATTENUATION CHANNELS

WITH PIAS

We consider an optical communication system where

an attenuation channel with transmittance K =
k1k2 · · · knkn+1 is devided into n+1 attenuation channels

with a transmittance ki(i = 1, . . . , n+ 1) and PIAs with

a gain Gi = k−1
i (i = 1, . . . , n) are put (see Figure 1).
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Fig. 1. Schematic diagram of an attenuation channel with PIAs.

We assume the sender uses coherent states as physical

carriers conveying classical information. In order to de-

scribe changes of coherent states through an attenuation

channel with PIAs, it is convenient to introduce an idea of

quantum Gaussian state, which is characterized by a mean

vector and a correlation matrix [6]. The mean vector and

correlation matrix for a coherent state |α〉, α = x + iy,

are given as

mα =
√
2�

(
x
y

)
, Aα =

�

2
I2, (1)

with the 2 × 2 identity matrix I2. The PIA is a usual

linear amplifier, which is described by the transformation

in the Heisenberg picture,

a′ = G
1/2
i a+ (Gi − 1)1/2a0, (2)

where a (resp. a′) is an input modal photon annihilation

operator (resp. an output one), a†0 is a creation operator

representing the additive noise introduced by the ampli-

fication, and Gi(≥ 1) denotes a power gain of amplifier.

Let us consider a Gaussian state with a mean m and a

correlation matrix A. Then the output state from the PIA

with a power gain Gi is the Gaussian state with the mean

vector G
1/2
i m and the correlation matrix

φGi
(A) = GiA+ �

Gi − 1

2
I2. (3)

The PIA preserves the heterodyne signal-to-noise ratio

(SNR) at the output [7].
On the other hand an attenuation channel with a

transmittance ki (0 ≤ ki ≤ 1) is described by the

transformation

a′ = k
1/2
i a+ (1− ki)

1/2a0 (4)

Let us consider a Gaussian state with a mean m and a

correlation matrix A again. Then the output state from an

attenuation channel with a transmittance ki has the mean

vector k
1/2
i m and the correlation matrix

ψki
(A) = kiA+ �

1− ki
2

I2. (5)

Thus if we input a coherent state |α〉 for our optical

communication system depicted by Fig. 1, we have the

Gaussian state with the mean
n+1∏
i=1

ki

n∏
i=1

Gimα (6)
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and the correlation matrix

ψkn+1
◦ φGn

◦ ψkn
◦ · · · ◦ φG1

◦ ψk1
(Aα) (7)

as the output. Here ◦ denotes the composition of func-

tions. In particular, as Gi = k−1
i holds for our system,

the mean vector (6) is k
1/2
n+1mα and the correlation matrix

is

ψkn+1

(
Aα + �

n∑
i=1

1

ki
− n�

)
= Aα + �NI2 (8)

with

N = kn+1

(
n∑

i=1

1

ki
− n

)
. (9)

We evaluate effects of arranging the PIAs by computing

the Holevo capacity with an input constraint E. Here we

impose the input constraint onto codewords (α1, ...., αM )
as

|α1|2 + ...+ |αM |2 ≤ ME. (10)

Through the attenuation channel with the PIAs, coherent

states |α〉 are changed into thermal states

Sα =
1

πN

∫
exp

(
−|z − α|2

N

)
|z〉〈z|d2z, (11)

where N is given by Eq. (9). Thus our setting can be

formulated as a classical-quantum channel

α → Sα, (12)

with the input constraints (10). For this channel the

Holevo capacity is obtained [8] as

C = log

(
1 +

E

N + 1

)
+ (N + E) log

(
1 +

1

N + E

)

−N log

(
1 +

1

N

)
=: g(E,N).

(13)

The value of the Holevo capacity shows the ultimate

transmission rate, which is obtained by employing the op-

timum coding and the optimum entangled measurement.

Note that the first term in Eq.(13)

Chet = log

(
1 +

E

N + 1

)
(14)

gives the classical capacity for the separative heterodyne

measurement.

III. OPTIMIZATION OF ARRANGEMENT OF PIAS

Let us find the values of k1, ..., kn, kn+1 that maximize

the Holevo capacity (13), where we fix the values of

the input constraint E and the total transmittance K(=
k1 · · · knkn+1). From Eq. (8) we find that the Holevo

capacity (13) is equal to that of the attenuation channel

which has thermal states with the additive Gaussian noise

�

n∑
i=1

1

ki
− n�, (15)

as input states. This means that when kn+1 is fixed to

a certain value k the values of k1, ..., kn minimizing

(15) under the constraint k1 · · · kn = K/k maximize the

Holevo capacity. Here we have the inequality

n∑
i=1

1

ki
≥ n

(
n∏

i=1

1

ki

)1/n

, (16)

where the equality holds for k1 = k2 = · · · = kn, that is,

ki =

(
K

k

)1/n

, i = 1, . . . , n. (17)

Thus we find that for a fixed kn+1 = k the maximum

value of the Holevo capacity is given by

Cn(k) = g(kE,Nn) (18)

with

Nn = k · n
((

k

K

)1/n

− 1

)
. (19)

Note that Cn(k) converges to

C∞(k) = g(kE,N∞) (20)

with

N∞ = k(log k − logK), (21)

as n → ∞. Similarly for a fixed kn+1 = k we obtain

the maximum value of the classical capacity for the

heterodyne detection as

Chet,n(k) = log

(
1 +

E

f(k)− n

)
, (22)

with

f(k) = n

(
k

K

)1/n

+
1

k
. (23)

As the function f(k) achieves the maximum value

(n+ 1)K−1/(n+1) when

k = K1/(n+1), (24)

it is found that the maximum value of Chet,n(k) is given

by

Chet,n = log

(
1 +

E

(n+ 1)K−1/(n+1) − n

)
, (25)

when PIAs are arranged at equal intervals on the attenu-

ation channel. Note that as n → ∞ the optimum value of

k given by Eq. (24) converges to 0 and Chet,n converges

to

Chet,∞ = log

(
1 +

E

1− logK

)
, (26)

which can be compared to the classical capacity of the

attenuation channel with no amplifier, Chet,0 = log(1 +
KE).

Let us see how usage of amplifiers improves the classi-

cal capacity and compare its effect with that of quantum

collective measurement. Figure 2 shows graphs of the
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Fig. 2. Dependence of the classical capacity for the heterodyne
detection with n=0, 20, ∞ and the Holevo capacity with no amplifier
on the total transmittance K when E = 10.

classical channel capacities Chet,n (n = 0, 20,∞) and

the Holevo capacity without amplifiers, g(KE, 0), with

respect to the total transmittance K, where an input signal

energy E is equal to 10. Here the solid line represents

the classical capacity Chet,∞, the dashed line the classical

capacity Chet,20, the dashdot line the classical capacity

without amplifiers, Chet,0, the dotted line the Holevo

capacity without amplifiers. These graphs indicate that

(i) 20 amplifiers are almost enough for the heterodyne

detection and (ii) the Holevo capacity without amplifiers

exceeds the classical capacity for the heterodyne detection

with amplifiers when transmittance K > 10−1. Note that

this tendency holds for other values of E.

It is difficult to obtain the value of k which maximizes

the Holevo capacity Cn(k) analytically and we rely on

a numerical computation. Let us consider the ratio r of

distance between the sender and n-th amplifier to that

between the sender and the receiver. In the following

we use the ratio r instead of the transmittance k as a

parameter in order to help our intuitive understanding.

The relation between k and r is given as k = K1−r.

Remark that in our setting r = 0 means that we do not

use any amplifiers. Figure 3 shows graphs of Holevo

capacities Cn(K
1−r) of attenuation channels with n

amplifiers (n = 1, 2, 3, 20,∞), when a total transmittance

is K = 0.01 and an input signal energy is E = 10.

In the figure the horizontal axis represents the ratio r
corresponding to a position of the last (n-th) amplifier.

This figure shows that the optimum positions take smaller

values than those for the heterodyne detection, which

are given by n/(n + 1). In particular, when n = 1,

putting an amplifier near the receiver makes values of

the Holevo capacity smaller than that for the attenuation

channel with no amplifier, C1(K). In addition the ratio

r giving the optimum position does not converge to 1
as n → ∞ unlike the case of heterodyne detection.

As the Holevo capacity is obtained by optimizing the

measurement process, putting an amplifier at the receiver

Fig. 3. Dependence of the Holevo capacity of the attenuation channel
with n amplifiers on the position r of the last (n-th) amplifier when
K = 0.01 and E = 10.

Fig. 4. Dependence of the Holevo capacity and the classical capacity
for the heterodyne detection on the total transmittance K when E =

100.

(r = 1) makes it worse. Figure 4 shows graphs of the

Holevo capacities Cn and the classical capacities Chet,n

(n = 20,∞) with respect to the total transmittance K
when an input signal energy is E = 100. Here the Holevo

capacities Cn are given by maximizing Cn(K
1−r) with

respect to r numerically.

IV. CONCLUSION

We have computed Holevo capacities and classical

capacities achieved by arranging PIAs on an attenuation

channel optimally. This only gives an elementary analysis

on how to enhance the ability of the attenuation channel

because the PIA should not be an optimal amplifier. We

will study on an effective way of enhancing it in a more

general setting in our future work.
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