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Abstract—In the literature [23], simple expressions of
the random coding and the expurgation exponents for M -
ary phase shift keying (PSK) coherent state signal were
respectively derived, and their numerical behaviors are
illustrated. In this article, a simple expression of the sphere-
packing exponent for M -ary PSK coherent state signal is de-
rived, based on the formula of the sphere-packing exponent
for classical-quantum channels by Dalai [18], [19]. Using
the simple expression, the case of 16-PSK is numerically
computed as an example for a better understanding of how
the exact value of the reliability function at high rates is
determined.

I. INTRODUCTION

The channel coding theorem for classical-quantum

channels is one of the central theorems in quantum in-

formation theory [1], [2]. Remarkable results in the early

days of the study on this theorem can be found in the liter-

atures [3], [4], [5], [6]. In 1996, a significant breakthrough

on the channel coding theorem for classical-quantum

channels was brought by Hasuladen, Jozsa, Schumacher,

Westmoreland, and Wootters [7]. They proved the channel

coding theorem for discrete classical-quantum channels

with pure states. Shortly thereafter, the channel coding

theorem for discrete classical-quantum channels with gen-

eral states was proved by Holevo [8] and by Schumacher

and Westmorelandand [9], independently. Further, this

result was extended to channels with constrained inputs

by Holevo [10] and the capacity of quantum Gaussian

states was calculated by Holevo, Sohma, and Hirota [11].

The proof mentioned above is based on the asymptotic

property of typical sequences. Like in the case of clas-

sical information theory [12], [13], [14], an alternative

approach based on the reliability function E(R), which

tells us how quickly the decoding error Pe vanishes at

rates R below the channel capacity C in the codeword

length N with the form Pe ≈ e−NE(R), has begun

to be investigated in quantum scenario. The random

coding exponent Er(R) (which is a lower bound of the

reliability function), the expurgation exponent Eex(R)
(a lower bound), and the zero-rate reliability function

E(+0) for classical-quantum channel with pure states

were formulated in the literature [15] by Burnashev and

Holevo. This successfully provides an alternative proof

of the channel coding theorem for classical-quantum

channel with pure states. The general version of the

random coding exponent Er(R) was conjectured in the

literature [15], but still open. The general version of

the expurgation exponent Eex(R) can be found in the

literature [16] by Holevo. The error exponents, Er(R),
Eex(R), and E(+0), for constrained inputs, in particular,

for the quantum Gaussian channel in one mode, were

precisely investigated in the literature [17] by Holevo,

Sohma, and Hirota. As for upper bounds of the reliability

function, significant progress was made by Dalai. He gave

a formulation of the sphere-packing exponent Esp(R) for

discrete classical-quantum channels with general states in

line with Shannon-Gallager-Berlekamp’s approach [18],

[19], and proposed a new framework for lower bound of

the decoding error at low rates via the zero-error capacity

[19]. Further discussions on the sphere-packing exponent

and the associated decoding error bound can be found in

the literatures [20], [21], [22].

By the parallel use of Dalai’s formula of the sphere-

packing exponent Esp(R) and Burnashev-Holevo’s for-

mula of the random coding exponent Er(R), the reli-

ability function E(R) for pure state channels at high

rates was exactly determined. In the literature [23] by

the author, simple expressions of the random coding and

the expurgation exponents for M -ary phase shift keying

(PSK) coherent state signal were reported. As an exten-

sion of this preceding work, the derivation of a simple

expression of the sphere-packing exponent Esp(R) for

M -ary PSK is of natural interest as well as computation

of the exact value of the reliability function for M -ary

PSK by the parallel use of the random coding exponent

and it. In line with this interest, a simple expression of

the sphere-packing exponent Esp(R) for M -ary PSK will

be shown and a numerical calculation of the reliability

function E(R) will be done in the case of 16-PSK

coherent state signal.

II. A DISCRETE CLASSICAL-QUANTUM CHANNEL

WITH PURE STATES

Consider a discrete classical-quantum channel with

pure states, k ∈ A �→ |ψk〉 ∈ B, having an input

alphabet A = {1, 2, . . . ,M} and an output alphabet

B = {|ψ1〉, |ψ2〉, · · · , |ψM 〉} that consists of M state

vectors in a Hilbert space H under consideration. A

prior probability distribution p = (p1, p2, . . . , pM ) on the

Tamagawa University Quantum ICT Research Institute Bulletin
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input alphabet A corresponds to coding for this channel.

According to the channel coding theorem for pure state

channels [7], [15], the channel capacity for this discrete

classical-quantum channel with pure states is given by

C = max
p

[
H(

M∑
k=1

pk|ψk〉〈ψk|)
]
, (1)

where H(ρ̂) ≡ −Trρ̂ ln ρ̂ is the von Neumann entropy

for a density operator ρ̂.

The reliability function is defined by

E(R) ≡ lim sup
N→∞

[
− lnPe(N,R)

N

]
(2)

for 0 < R < C, where N is the length of a codeword, R
the transmission rate, and Pe(N,R) the minimum proba-

bility of decoding error. For a discrete classical-quantum

channel with pure states, the minimum probability of

decoding error can be written as

Pe(N,R) = inf
W,X

[
1

M ′

M ′∑
i=1

(1− 〈W̃i|X̂i|W̃i〉)
]
, (3)

where W is a codebook defined by

W =
{
|W̃i〉 = |ψ(1)

i 〉 ⊗ |ψ(2)
i 〉 ⊗ · · · ⊗ |ψ(N)

i 〉
: i = 1, 2, . . . ,M ′, |ψ(n)

i 〉 ∈ B
}
, (4)

and M ′ is the size of the codebook, and where the

decoding process X is represented by a positive operator-

valued measure (POVM)

X =
{
X̂j : X̂j ≥ 0 ∀j,

∑
all j

X̂j = 1̂(N)
}
, (5)

and 1̂(N) is the identity operator on the N -th tensor of

the signal Hilbert space H⊗N .

III. ERROR EXPONENTS FOR M -ARY PSK

COHERENT STATE SIGNAL

From this point, let us focus on the case of M -ary PSK

coherent state signal, which is characterized by the output

alphabet

B =
{
|ψk〉 = |α exp[i

2π(k − 1)

M
]〉

: k = 1, 2, . . . ,M
}
, (6)

where |α〉 is a coherent state of light having complex

amplitude α and i =
√−1. The average number of

photons per signal for M -ary PSK is given by |α|2, which

is independent from the number M .

A. The Random Coding Exponent

According to the literature [23], a simple expression of

the random coding exponent for M -ary PSK is given by

Er(R) =

(
− ln

M∑
k=1

λ2k

)
−R (7)

for 0 < R < Rcr, and

Er(R) = max
0≤s≤1

[(
− ln

M∑
k=1

λ1+s
k

)
− sR

]
(8)

for Rcr ≤ R < C, where the critical rate Rcr of the

random coding exponent and the channel capacity C are

respectively given by

Rcr = −
∑M

k=1 λ
2
k lnλk∑M

k=1 λ
2
k

(9)

and

C = −
M∑
k=1

λk lnλk, (10)

and where the eigenvalues of the density operator ρ̂(u) =
(1/M)

∑M
k=1 |ψk〉〈ψk| for the uniform distribution u =

(1/M, . . . , 1/M) on A are given by

λk =
1

M

M∑
�=1

A(1,�) cos
[
Θ(1,�) − 2π

M
k(�− 1)

]
(11)

with

A(k,�) = exp

[
−2|α|2 sin2

[ π
M

(�− k)
]]
, (12)

Θ(k,�) = |α|2 sin
[2π
M

(�− k)
]
. (13)

B. The Expurgation Exponent

From the literature [23], a simple expression of the

expurgation exponent for M -ary PSK is given by

Eex(R) = max
s≥1

[
−sR (14)

− s ln
1

M

M∑
�=1

exp

[
−4|α|2

s
z̃(1,�)

] ]

for 0 < R ≤ R′cr, and

Eex(R) = − ln
1

M

M∑
�=1

exp
[−4|α|2z̃(1,�)

]−R (15)

for R′cr < R < Rc, and Eex(R) = 0 for Rc ≤ R < C,

where the critical rate R′cr of the expurgation exponent

and the cutoff rate Rc [24] are respectively given by

R′cr = − ln
M∑
k=1

λ2k (16)

− 4|α|2
M

·
∑M

�=1 z̃(1,�) exp[−4|α|2z̃(1,�)]∑M
k=1 λ

2
k
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and

Rc = − ln
1

M

M∑
�=1

exp[−4|α|2z̃(1,�)] (17)

with z̃(k,�) = sin2[π(�− k)/M ].

C. The Sphere-Packing Exponent

The general formulation of the sphere-packing ex-

ponent for classical-quantum channels is given in the

literatures [18], [19]. For a pure state alphabet B =
{|ψk〉 : 1 ≤ k ≤ M}, the sphere-packing exponent is

reduced into the form

Esp(R) = sup
s≥0

[E0(s)− sR] (18)

for R∞ < R < C, where

E0(s) = max
p

E0(s,p), (19)

E0(s,p) = − lnTr

(∑
k

pk|ψk〉〈ψk|
)1+s

(20)

and where

R∞ = − lnmin
p
λmax(

∑
k

pk|ψk〉〈ψk|) (21)

and λmax(·) denotes the largest eigenvalue of the argu-

ment. Our task is to derive a simple expression of the

sphere-packing exponent for M -ary PSK.

As shown in Eq.(19), the formula of the sphere-packing

exponent involves the maximization problem with respect

to the input distribution p. Fortunately, the problem is the

same as in the case of random coding exponent. With the

same manner used in the literature [23], one can find

that the maximizer of this problem for M -ary PSK is the

uniform distribution u = (1/M, . . . , 1/M). Therefore,

the sphere-packing exponent for M -ary PSK coherent

state signal is expressed as

Esp(R) = max
s≥0

[(
− ln

M∑
k=1

λ1+s
k

)
− sR

]
(22)

for R∞ < R < C, where the rate R∞ is formulated

as in Eq.(21) and the channel capacity C has been

given by Eq.(10). To find the closed-form expression

of R∞ for M -ary PSK, we use the convexity of the

largest eigenvalue of density operators of the output

states. The convexity of the largest eigenvalue is a well-

known property (e.g. [25]). To verify this property in our

situation, let us define F (ρ̂) ≡ λmax(ρ̂), where λmax(ρ̂)
denotes the largest eigenvalue of a density operator ρ̂. For

density operators ρ̂1 and ρ̂2, we observe F (ρ̂1)1̂− ρ̂1 ≥ 0
and F (ρ̂2)1̂− ρ̂2 ≥ 0, respectively. Therefore{
tF (ρ̂1) + (1− t)F (ρ̂2)

}
1̂−

{
tρ̂1 + (1− t)ρ̂2

}
≥ 0

holds for 0 ≤ t ≤ 1. Taking a quadratic form of the left-

hand side by a normalized eigenvector |ϕ〉 belonging to

the largest eigenvalue of tρ̂1 + (1− t)ρ̂2, we have

tF (ρ̂1) + (1− t)F (ρ̂2) ≥ F (tρ̂1 + (1− t)ρ̂2).

Thus the function F is a convex function on the set of

density operators.

Next, we use this convexity to find the minimizer of

Eq.(21) in the case of M -ary PSK. For an arbitrary chosen

distribution p = (p1, . . . , pM ), we have

F (ρ̂(p)) =
M∑

m=1

1

M
F (ρ̂(p))

=

M∑
m=1

1

M
F (ρ̂(p(m)))

≥ F (
M∑

m=1

1

M
ρ̂(p(m)))

= F (
M∑
k=1

1

M
|ψk〉〈ψk|)

= F (ρ̂(u)), (23)

where ρ̂(p) and p(m) are defined as in the literature [23].

Thus the uniform distribution u minimizes the largest

eigenvalue. Therefore the rate R∞ for M -ary PSK is

given by

R∞ = − lnmax{λk : 1 ≤ k ≤M}, (24)

where λk have been given by Eq.(11). Since − lnλmax ≤
− lnλk, we obtain R∞ ≤ Rcr.

Fig. 1 (a) shows the rate R∞ of the case of 16-PSK

(M = 16) for 0 < |α|2 ≤ 10, and Fig. 1 (b) the associated

eigenvalues λk, 1 ≤ k ≤ 16, of the density operator

ρ̂(u). In Fig. 1 (b), the envelope curve (black:online)

indicates the largest eigenvalue of ρ̂(u). The shape of

this envelope determines the shape of R∞ in Fig. 1 (a).

To justify the claim that the minimizer of Eq.(21) is the

uniform distribution u, a simple numerical simulation was

done. In the simulation, the largest eigenvalues of density

operators with randomly generated input distribution were

calculated. The simulation result is shown in Fig. 1 (c).

In this simulation, 30 random samples were generated for

each |α|2, varying from |α|2 = 0.05 to |α|2 = 10.00 with

step size 0.05. The solid curve is the largest eigenvalue

of ρ̂(u), which is identical to the envelope curve in Fig.

1 (b), and the dots (orange:online) are the samples. We

numerically observe that the largest eigenvalue of ρ̂(u)
is always less than any largest eigenvalue of the density

operator having a non-uniform distribution.

IV. THE RELIABILITY FUNCTION OF M -ARY PSK

COHERENT STATE SIGNAL AT A HIGH RATE REGION

Like in the case of classical channel, one can find

the exact value of the reliability function of M -ary PSK
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Fig. 1. (a) R∞. (b) λk , 1 ≤ k ≤ 16, and λmax(ρ̂(u)). (c)
λmax(ρ̂(u)) and λmax(ρ̂(p)), p �= u.

coherent state signal at a high-rate region, Rcr < R < C,

by the sandwich of the random coding and the sphere-

packing exponents. To illustrate this, the case of M = 16
and |α|2 = 0.5 is shown in Fig. 2. The figure (a) shows

the random coding, the expurgation, and the sphere-

packing exponents. Optimal values of parameter s for the

sphere-packing exponent is plotted in Fig. 2 (b), together

with the optimal s for the random coding exponent. Fig.

2 (c) shows the optimal s for the expurgation exponent.

Some critical values at M = 16 and |α|2 = 0.5 are

shown in Table I. As mentioned in Remark 5 of the

TABLE I
SOME CRITICAL VALUES AT M = 16 AND |α|2 = 0.5

Rate [bits/symbol] Exponent in e
−nE(R)

C 1.33830 ∼ 0

Rc 1.10234 > 0

Rcr 0.95780 E(Rcr) 0.10029
R∞ 0.72135 Esp(R∞) 0.50000
R′

cr 0.30365 Er(R′
cr) 0.55369

R → +0 E(+0) 1.00000

literature [19], the bound Esp(R∞) ≤ R∞ is tight in

general, in the sense that Esp(R∞) = R∞ is possible. In

Table I, we observe R∞ = 0.72135 × ln(2) = 0.50000
[nats/symbol] ≈ Esp(R∞), numerically. The same ob-

servation about the tightness was confirmed in the range

0 < |α|2 < 10.00 through a numerical calculation. The

curve in the high rate region Rcr < R < C in Fig. 2 (a)

is the exact value of the reliability function E(R) of M -

ary PSK coherent state signal because the upper and the

lower bounds of the reliability function are identical in

this region. Thus the exact value of the reliability function

E(R) for M -ary PSK can be computed from Eqs.(9),

(10), and (22). Furthermore, we observe in Fig.2 (a) that

the difference between Esp(R) and Er(R) is small in

the region of R ≈ Rcr when R > Rcr. Therefore, the

simplified expression (22) may be used to approximate

the exact value of E(R) in the region R � Rcr.

V. CONCLUSION

In this article, a simple expression of the sphere-

packing exponent Esp(R) for M -ary PSK coherent state

signal was derived as in Eq.(22), together with the as-

sociated critical rate R∞ of Eq.(24). Using this simple

expression together with Eqs.(9) and (10), the case of

16-PSK coherent state signal was numerically computed

to see the exact value of the reliability function E(R)
at the high rate region from the critical rate Rcr of the

random coding exponent to the chapacity C.
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