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An Expression for SU(2) Rotations
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Abstract—Segercrantz’s decomposition of an arbitrary ro-
tation into three consecutive rotations (1966) generalizes the
well-known decomposition of the rotation in terms of Euler
angles. In that result, rotations have been expressed in terms
of an algebra which does not seem to be widely known. In this
work, it is pointed out that this expression is closely related
to an expression for rotations as SU(2) elements in order to
increase accessibility to Segercrantz’s work (1966).

I. INTRODUCTION

Mathematics on rotations is fundamental in many fields

including mechanics, quantum physics, control theory,

aerodynamics, celestial mechanics and so on. Motivated

by some issues on quantum computation, the present

author has obtained a concrete expression for the min-

imum number of rotations required for constructing an

arbitrarily given target rotation (under some constraint),

and more importantly, an algorithm for giving an optimal,

i.e., minimum-achieving construction [1]. In the course of

obtaining this result, the author carefully checked several

basic results on rotations, and explanations of such basics

were included in this bulletin when he presented some

results on rotations [2], [3], [4], [5]. These results are

related to that constructive result [1]; some of them may be

viewed as a basis for [1], some may be viewed as remarks

to [1], and some may be viewed as by-products of [1].

One of the basics described in these articles [1], [3], [4],

[5] is a well-known decomposition of a rotation into three

consecutive rotations with Euler angles, or a decomposition

due to Segercrantz [6], which generalizes Euler’s with

flexibility of choices of axes. While this result itself is

sometimes mentioned in the literature, it does not seem

credited to Segercrantz [6] properly, at least, judging from

citations.

Mathematically speaking, a rotation is an element of

SO(3). [This notion SO(3), together with a closely related

one SU(2), will be described in what follows for those

unfamiliar with these notions.] In quantum physics, the

use of SU(2) is standard because it suits the theoretical

framework of quantum physics well. In some other fields,

the use of quaternions, in place of SU(2) or closely related

matrices, in treating rotations may be usual.

Returning to credit to Segercrantz [6], that work [6]

seems to be often ignored in the literature. This may

be because of that article’s lack of description of the

adopted notation, which has been defined in a publica-

tion of an observatory [7], or limited circulation of [7].

Therefore, it would be helpful if the essence of the result

of Segercrantz [6] could be understood without resort

to ‘spinor ring algebra’ [7] (and in terms of SU(2) and

the Pauli matrices, rather than quaternions, for those who

prefers the Pauli matrices to quaternions).

The aim of this memorandum is to give a mathematical

expression for rotations, which would be helpful for read-

ing Segercrantz’s article [6]. As already mentioned, that

article [6] uses quaternions and an unfamiliar notation [7].

On the other hand, this memorandum gives a similar

expression for rotations as SU(2) elements, which seems

essentially the same as that of Segercrantz’s article [6]

but is described elementarily without direct resort to that

unfamiliar algebra.

This article is organized as follows. In Section II, we fix

notation. In Section III, well-known expressions for rota-

tions are reviewed. In Section IV, the expression mentioned

above is presented to accomplish the aim of this article.

Section VI contains a summary. An appendix is given to

describe a well-known relation between SU(2) and SO(3).

II. DEFINITIONS

The set of 2×2 unitary matrices with determinant 1 and

the set of 3×3 real orthogonal matrices with determinant 1
are denoted by SU(2) and SO(3), respectively. They stand

for the special unitary group and the special orthogonal

group, respectively.1

We put S2 = {v̂ ∈ R
3 | ‖v̂‖ = 1}, and let R̂v̂(θ) denote

the rotation by angle θ about the straight line (through the

origin) directed with v̂, where the direction of the angle is

determined by the rule of right-hand screws.

We let X,Y and Z denote the Pauli matrices:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Throughout, I denotes the 2 × 2 identity matrix. The

transpose of a vector v̂ is denoted by v̂T.

1As can be checked directly and elementarily, SO(3) stands for the set
of rotations in the three-dimensional Euclidean space [8].
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III. WELL-KNOWN EXPRESSIONS FOR THE ELEMENTS

IN SU(2)

A. Expression With (a, b)

It can be shown easily that any matrix in SU(2) can be

written as [9] (
a b

−b∗ a∗

)
(1)

with some complex numbers a and b such that |a|2+|b|2 =
1.

B. Rv̂(θ)

By the above expression, any matrix in SU(2) can be

written as(
w + iz y + ix
−y + ix w − iz

)
= wI + i(xX + yY + zZ) (2)

with some real numbers x, y, z and w such that w2 +x2+
y2+z2 = 1. Take a real number θ such that cos(θ/2) = w
and sin(θ/2) =

√
1− w2 =

√
x2 + y2 + z2; write x, y

and z as x = −vx sin(θ/2), y = −vy sin(θ/2) and z =
−vz sin(θ/2), where vx, vy, vz ∈ R and v2x + v2y + v2z = 1.

Thus, using real numbers θ, vx, vy, vz ∈ R with v2x + v2y +
v2z = 1, any matrix in SU(2) can be written as

(cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ). (3)

Definition 1:

Rv̂(θ) = (cos θ
2 )I − i(sin θ

2 )(vxX + vyY + vzZ) (4)

where v̂ = (vx, vy, vz)
T ∈ R

3 with ‖v̂‖ =√
v2x + v2y + v2z = 1 and θ ∈ R, with R denoting the set

of real numbers.

The matrices Ry(θ) and Rz(θ) denote the following

special cases of Rv̂, respectively: Ry(θ) = Rŷ(θ), where

ŷ = (0, 1, 0)T, and Rz(θ) = Rẑ(θ), where ẑ = (0, 0, 1)T.

The expression Rv̂(θ) is useful to see the direct relation

between SU(2) and SO(3) (Appendix).

C. Expression With Euler Angles

A better-known parameterization for SU(2) would be(
e−i γ+α

2 cos β
2 − ei

γ−α
2 sin β

2

e−iγ−α
2 sin β

2 ei
γ+α

2 cos β
2

)
= Rz(α)Ry(β)Rz(γ).

(5)

Here, α, β and γ are real numbers, which are called Euler

angles. This parameterization can be obtained by rewriting

(1).

IV. ANOTHER EXPRESSION FOR SU(2)

For

u =

(
u1
u2

)
∈ C

2,

write

ũ =

(−u∗2
u∗1

)
, (6)

u† = (u∗1, u
∗
2) and ũ† = (−u2, u1). (7)

Then, we have another expression for SU(2) elements in

the following proposition, which may be interpreted as a

translation of a known expression used in [6], where the

language of ‘spinor ring algebra’ is spoken.

Proposition 1: Any element in SU(2) can be written as

eiϕuu† + e−iϕũ ũ†

with

u =

(
u1
u2

)
∈ C

2

such that u1u
∗
1 + u2u

∗
2 = 1.

The trivial proof may be omitted since we know that by

means of spectral decompositions2 or diagonalizations, any

unitary matrix with determinant 1 can be written as

eiϕuu† + e−iϕww†

with some pair of orthogonal unit vectors u and w [10],

[11]. Proposition 1 follows from this fact by choosing a

particular vector ũ as w, which should satisfy u†w = 0.

The relation between this expression and Rv̂(θ) in

Definition 1 can be seen as follows. Given

u =

(
u1
u2

)
∈ C

2

with u1u
∗
1 + u2u

∗
2 = 1, we have

eiϕuu† + e−iϕũ ũ†

= (cosϕ)(uu† + ũũ†) + i(sinϕ)(uu† − ũũ†)
= (cosϕ)I

− i(sinϕ)

(
vz vx − ivy

vx + ivy −vz
)
, (8)

where

vx = −Re 2u∗1u2, vy = −Im 2u∗1u2

and

vz = −(u1u
∗
1 − u2u

∗
2).

Thus, we have obtained again Rv̂(θ) in Definition 1 with

θ = 2ϕ from Proposition 1.

V. SEGERCRANTZ’S RESULT

In this section, Segercrantz’s result [6] on rotations is

explained. The following theorem is from [6].

Theorem 1: [6, Theorem 1]. Let n̂, ŵ, m̂ ∈ S2

be given. Any element in SO(3) can be written as

R̂n̂(α)R̂ŵ(θ)R̂m̂(γ) for some α, θ, γ if and only if (iff)

ŵ is perpendicular to both n̂ and m̂.

While Davenport’s work [12] is often cited as a source

of this theorem, the fact is that this result was mentioned

in [12] with a comment saying that a reviewer pointed out

this theorem to Davenport.

The form

eiϕuu† + e−iϕũ ũ†

2The term ‘sepectral decomposition’ is usually applied to self-adjoint
operators, but similar decompositions are possible for a wider class of
operators, i.e., that of normal operators, which includes unitary operators.



29

was used in [6] in order to prove Theorem 1, but there, u is

a ‘spinor’ that is defined in [7], which does not seem widely

available. That, in some argument, u may be interpreted as

elements in C
2 with operations u �→ ũ and u �→ u† as

defined above has been stated by the author of [7] in [13]

(his notation for the operations ũ and u† is different from

ours).

Thus, the expression for rotations in Proposition 1 is

close to the form known among those working with

rotations [6] in the framework of ‘spinor ring algebra’

developed in [7]. We also remark that quaternions, rather

than Pauli matrices, have been used in [6].

We shall give another form of Theorem 1, which admits

a direct comparison with the well-known expression in (5)

using the Euler angles. In view of the well-known homo-

morphism from SU(2) onto SO(3) described in Appendix,

we have the following, which is trivially equivalent to

Theorem 1.

Theorem 2: [6, Theorem 1]. Let n̂, ŵ, m̂ ∈ S2

be given. Any element in SU(2) can be written as

Rn̂(α)Rŵ(θ)Rm̂(γ) for some α, θ, γ iff ŵ is perpendicular

to both n̂ and m̂.

VI. CONCLUSION

This article drew the reader’s attention to an expression

for rotations as SU(2) elements. Relations of this expres-

sion to a known expression for rotations as quaternions,

which had been written in terms of a little-known algebra,

were discussed with emphasis on credit for a known result

on decompositons of rotations into triples of rotations.
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APPENDIX

It is well-known that SU(2) is closely related to SO(3).

This appendix gives this relation as a mathematical func-

tion, i.e., as a homomorphism from SU(2) onto SO(3).

For U ∈ SU(2), we denote by F (U) the matrix of

the linear transformation on R
3 that sends (x, y, z)T to

(x′, y′, z′)T through3

U(xX + yY + zZ)U † = x′X + y′Y + z′Z. (9)

Namely, for any (x, y, z)T, (x′, y′, z′)T ∈ R
3 with (9),⎛

⎝x′y′
z′

⎞
⎠ = F (U)

⎛
⎝xy
z

⎞
⎠ .

We also write

R̂v̂(θ) = F
(
Rv̂(θ)

)
, v̂ ∈ S2, θ ∈ R. (10)

This is consistent with the definition of R̂v̂(θ) in Section II.

3Note that in defining the homomorphism in [9], Wigner has used −Y
and −Z in place of our Y and Z , which causes a slight difference between
his homomorphism and ours, that is, F .

Example. We have

R̂y(θ) := F (Ry(θ)) =

⎛
⎝ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞
⎠ (11)

and

R̂z(θ) := F (Rz(θ)) =

⎛
⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠ . (12)

�
Thus, R̂y(θ) and R̂z(θ) coincide with the rotations

R̂ŷ(θ) and R̂ẑ(θ), respectively, defined in Section II, where

ŷ = (0, 1, 0)T and ẑ = (0, 0, 1)T. It can be seen that Rv̂(θ)
with the general v̂ ∈ S2 also represents a rotation (see,

e.g., [14] or [2, Section III]), which is consistent with the

definition in Section II.
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