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Abstract—Back in the 1960s, based on Wiener’s thought,
Shikao Ikehara (first student of N.Wiener) encouraged the
progress of Hisaharu Umegaki’s research from a pure
mathematical aspect in order to further develop the research
on mathematical methods of quantum information at Tokyo
Institute of Technology. Then, in the 1970s, based on the
results accomplished by Umegaki Group, Ikehara instructed
the author to develop and spread quantum information
science as technology. While Umegaki Group’s results have
been evaluated as major achievements in pure mathematics,
their contributions to current quantum information science
have not been fully discussed. This paper will clarify
Umegaki Group’s contributions to design theory of quantum
communication with specific examples.

I. INTRODUCTION

In the real world, we have no performance evaluation
measures for communication system with operational
meanings of information transmission and processing
other than various signal detection criteria established by
Wiener, and Shannon entropy by Shannon. The same is
true even where the physical system for implementation
is generalized into quantum system or relativistic system,
which means that modern communication theory is the
most successful field among other scientific theories in
human history.

Quantum information science originates from quantum
communication theory, based on which, quantum commu-
nication such as quantum key distribution and quantum
symmetric key cipher has been developed. These are
formulated based on and as quantum versions of statis-
tical signal detection theory and Shannon’s information
transmission theory. The former has a beautiful form as
a design theory for detection and estimation techniques
of signals transmitted in a quantum state established by
Helstrom [1], Holevo [2] and Yuen [3]. The theory of
Shannon information transmitted in a quantum state was
started by Stratonovich, Holevo, et al and studied by
Yuen [4] and Hirota [5] from the viewpoint of quantum
state control as well as by Jozsa Group [6] and Masashi
Ban of Tamagawa University Group [7] in the context of
accessible information.

On the other hand, in mathematics, theories may be
developed without regard for the operability of infor-
mation handled by humans or with a focus on physi-
cal phenomena of a specific device. Shannon’s entropy

clearly defines very common signals processed in human
social activities and it is applied to the communication
system with the operational meanings for the relevant
information processing. Quantum information theory as
mathematics can be modeled on it. However, unlike Shan-
non information, quantum entropy lacks versatility regard
for operational meaning on information transmission. It is
defined in consideration of mathematical form or applica-
tion to physics. Therefore, no new information scientific
technology is expected from simple generalization of
the concepts of Wiener and Shannon. Only when its
contribution to Wiener-Shannon system is proved, the
mathematics is deemed to have contributed to information
science.

It was Holevo who discovered a liaison between quan-
tum entropy and Shannon information. In the study of
accessible information ( an application of Shannon’s
mutual information) to quantum system, its upper bound
is now called Holevo bound, which is given in the form
of quantum entropy, and its formula is called Holevo
information. Holevo derived the upper bound in flow of
the result of Stratonovich on N th extended system in
relation to Shannon mutual information in quantum sys-
tem (see Reference 8). Prior to that, Tamagawa University
Group had published a paper providing specific examples
of maximization of accessible information and super-
additivity in N th extended systems. Jozsa Group proved
that the maximum amount of accessible information
reaches Holevo information in the limit of pure quantum
state system without external noise. Jozsa presented the
results at the 3rd International Conference on Quan-
tum Communication, Measurement (QCM 1996). While
Holevo had shifted to research on quantum stochastic
process, I recommended him that he should generalize
Jozsa’s works. In a very short while, Holevo and Tam-
agawa University Group discussed the proof method in
the general model of external noise system with Kitaev,
and only after a week later, Holevo showed us the
proposed proof on a white board at Tamagawa University.
We conveyed the results to Jozsa and Holevo published
his proof in IEEE’s Transaction on Information Theory.
Jozsa Group also started their consideration and the
proof was completed by Shumacher-Westmoreland and
published in the Physical Review. Although published at
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different times, these are now called Holevo-Shumacher-
Westmoreland theorem as the formula of discrete channel
capacity of classical-quantum composite system [9, 10].

Additionally, Holevo and Tamagawa University Group
derived continuous channel capacity and formula for
reliability function in Gaussian System [11, 12]. As a
result, Holevo information, which is expressed in the form
of quantum entropy and serves as a parameter of the
extreme point of Shannon system, has greatly contributed
to the real world.

On the other hand, a formal formulation of Shannon
theory was developed as mathematics in a quantum en-
tropy form without considering the operational meaning
like Shannon information. The question in this paper is
whether it has operational meaning in the actual commu-
nication system.

II. PROGRESS IN QUANTUM ENTROPY

A. Approach of Holevo and Umegaki
Let us here denote the most fundamental formula in

Shannon’s communication theory in the following.

H(X) = −
∑
x

P (x) logP (x) (1)

H(X|Y ) = −
∑
y

∑
x

P (y)P (x|y) logP (x|y) (2)

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y ) (3)

Shannon’s information H(X) and mutual information
I(X,Y ) have a clear operational meaning according to
the coding theorem. In physics, mutual information is
sometimes regarded as a measure of classical correlation
between two statistical systems. Meanwhile, entropy was
introduced in 1951 by Kullback in statistics [13]. In that
case, there is a strong intention to express the distance
between probability distributions representing the charac-
teristics of two statistical systems. Therefore, they start
based on the following relative entropy:

Dc(P (x)||Q(x)) =
∑
x

P (x) log
P (x)

Q(x)
(4)

One can generalize the above into the composite sys-
tem. If we denote the joint probability on the composite
system as follows: P (x, y), Q(x, y) = P (x)P (y) we
have

Dc(P (x, y)||Q(x, y)) =
∑
x

∑
y

P (x, y) log
P (x, y)

P (x)P (y)

= I(X,Y ) (5)

Thus, from a mathematical definition point of view, the
relative entropy looks like “General”.
On the other hand, von Neumann defined entropy

for quantum systems in response to the development of
quantum statistical mechanics. The entropy of a quantum

system with the quantum density operator:
ρXq ∈ D(HS) is

S(Xq) ≡ S(ρXq ) = −Tr{ρXq log ρXq} (6)

This is called von Neumann entropy. Research on a
quantum version of relative entropy, which is regarded
as a mathematical generalization of Shannon’s entropy
theory, was begun for the first time in the world by
Hisaharu Umegaki at Tokyo Institute of Technology.
This was driven by the motivation of Shikao Ikehara to
recommend the succession of Wiener thought [14,15].
Umegaki, for the first time in the world, defined the
following quantum relative entropy on the von Neumann
algebra in 1962 and formulated its various features [16-
18].

Definition− 1(Umegaki)

Dq(ρ||σ) = Tr{ρ[log ρ− log σ]} (7)
supp(ρ) ⊆ supp(σ) (8)

On the other hand, Helstrom and Holevo inherited the
idea of Wiener- Shannon, and they defined that, in a
communication system using quantum phenomena, the
sender prepares a set of quantum density operators:
ϵ = {p(x), ρxYq

}. That is, a message x is mapped
to a quantum density operator which corresponds to a
concrete signal. The quantum density operator of the set
is described as follows:

ρYq =
∑
x

p(x)ρxYq
(9)

The receiving system performs a quantum measurement
on the quantum system, and becomes a model for deter-
mining the classical parameter {x} as a message. This
is a problem of Accessible information (Shannon mutual
information of classical-quantum composite systems).

Iacc = max
Π

I(Xc, Yq) (10)

where Π is detection operator or positive operator valued
measure (POVM). That is, to preserve Shannon’s view
of the world, Holevo considers the set whose signal
element is the classical parameter of the quantum density
operator, ϵ = {p(x), ρxYq

}. And the quantum entropy of
the classical-quantum composite system was defined in
1973 as follows.

Definition− 2(Holevo)

χ(ϵ) = S(ρYq )−
∑
x

p(x)S(ρxYq
) (11)

This is called the Holevo information. As stated in
the introduction, the Holevo -Shumacher-Westmoreland
theorem guarantees that the limit of Shannon information
transmitted in a quantum system is the maximum value
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of Holevo information. This fact shows that quantum
entropy theory contributes to the Shannon theory.

As mentioned above, Umegaki developed with a foun-
dation of mathematical statistics, and Holevo developed
quantum communication theory while faithfully inherit-
ing Shannon’s world.

B. More progress
Although quantum entropy can be developed by math-

ematical formalism, there is no guarantee that it will
have the operational meaning applicable in the real world
like Shannon theory. Wiener criticized simple mathe-
matical generalization, claiming that unless a research
directly transforms the technical system in the real world
through mathematical generalization, it is not an authentic
mathematical study. This is called Wiener’s criteria for
mathematical generalization research. This paper dis-
cusses whether quantum entropy theory satisfies Wiener’s
criteria.

Based on Umegaki’s quantum relative entropy, we can
formally replace Shannon’s formula with its quantum
version. Masanori Ohya carried it out faithfully and
contributed to the development of quantum entropy theory
as mathematics by collaborating with both Japanese and
foreign researchers such as Accardi, Belavkin and Petz
[19].

Let us construct the Shannon’s mutual information
by quantum entropy form. When the quantum density
operator is ρXqYq ∈ D(HX ⊗HY ), we have

S(Xq, Yq) = −Tr{ρXqYq log ρXqYq} (12)

Therefore, the quantum mutual information can be de-
fined as follows.

Iq(Xq, Yq) = S(Xq) + S(Yq)− S(Xq, Yq) (13)

However, since the quantum entropy is not information in
the meaning of a message, the above expression does not
have an operational meaning of a general communication
system. On the other hand, mathematically, the Holevo
information can be expressed in this context. Let us
assume that the quantum density operator as a set of
classical-quantum composite systems is given by

ρXqYq =
∑
x

p(x)|x >< x|Xq ⊗ ρxYq
(14)

So we have

S(Xc, Yq) = H(Xc) +
∑
x

p(x)S(Yq|x) (15)

From the above, also we have

χ(ϵ) = Icq(Xc, Yq) (16)

In this way, the quantum mutual information contains
formally the Holevo information, but the operational
meaning is completely different, and only the Holevo
information has significance for the Shannon system that

has a great impact on the real world. On the other hand,
from a mathematical point of view, the quantum mutual
information can be expressed in terms of quantum relative
entropy. That is,

Iq(Xq, Yq) = Dq(ρXqYq ||ρXq ⊗ ρYq ) (17)

Furthermore, the Holevo information is also described
by quantum relative entropy as follows:

χ(ϵ) =
∑
x

p(x)Dq(ρ
x
Yq
||ρYq ) (18)

Thus, from the mathematical point of view, quantum
relative entropy is the most fundamental notion. Based on
this, quantum entropy theory has advanced rapidly in the
21st century as a mathematical study applying quantum
statistical physics [20]. In the next section, we focus on
Pinsker inequalities that give linkages to statistics and
signal detection theory in the classical theory.

III. QUANTUM PINSKER INEQUALITY

Relative entropy is essentially the distance between two
probability distributions in statistics. Thus,it is natural to
consider the relationship with various mathematical dis-
tances. In general, the distance between two probability
distributions is called a statistical distance or Kolmogorov
distance, and is defined as follows.

||P (x)−Q(x)||c =
∑
x

|P (x)−Q(x)| (19)

Such a concept of distance is often discussed in the
language of distinguishability, and it is a source of great
misunderstanding when one applies such mathematics to
another problem. Here, it is discussed as a distance. The
most important inequality in distance relations in statistics
is the following Pinsker inequality shown by Pinsker in
1964.

Theorem− 1(Pinsker)

Dc(P (x)||Q(x)) ≥ 1

2 ln 2
||P (x)−Q(x)||2c (20)

By utilizing this, generalization to the mutual infor-
mation for the composite system becomes possible as
follows:

Theorem− 2

I(X,Y ) ≥ 2

ln 2
∆2

c (21)

∆c =
1

2
||P (x, y)− P (x)P (y)||c (22)

In quantum systems, the quantum density operator
corresponds to the probability distribution in classical
statistics. So the basic distance is “trace distance” defined
as follows:

∆q = Tr{Πopt(ρ− σ)} =
1

2
||ρ− σ||q (23)
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where Πopt is detection operator or a positive operator
valued measure (POVM). The relationship between rela-
tive entropy and statistical distance shifts to the relation-
ship between quantum relative entropy and trace distance.
It was expressed by the cooperation among Hiai, Ohya,
and Tsukada as follows [21].

Theorem− 3(QuantumPinskerInequality)

Dq(ρ||σ) ≥
1

2 ln 2
||ρ− σ||2q (24)

This can be further generalized to a quantum composite
system. Let us assume quantum density operators in
composite system as follows: ρXqYq ∈ D(HX ⊗ HY ),
∆q = 1/2||ρXqYq − ρXq ⊗ ρYq ||q then we have the
relation between quantum mutual information Iq(Xq, Yq)
and trace distance.

Theorem− 4

Iq(Xq, Yq) ≥
1·
ln 2

||ρXqYq
−ρXq

⊗ρYq
||2q =

2

ln 2
∆2

q (25)

At this stage, quantum entropy theory does not play an
important role in the Wiener-Shannon systems, and does
not contribute as a design theory for real communication
technologies.

IV. UPPER BOUND THEORY OF GUESSING
PROBABILITY IN QKD

In the quantum entropy theory, only the Holevo infor-
mation contributes to the Wiener and Shannon systems
related to information communication systems, and it
opened up the real world of optical quantum commu-
nication systems. On the other hand, in the context of
Umegaki and Ohya’s research, the Holevo information
can be formally expressed as a special example of quan-
tum mutual information from Eq(16). Here let us denote
the trace distance as follows:

∆q =
1

2
||
∑
x

p(x)|x >< x|Xq ⊗ ρxYq

−
∑
x

p(x)|x >< x|Xq ⊗ ρYq ||q (26)

then it is easy to show the following theorem [22] based
on Eqs(17, 18, 25, 26):

Theorem− 5

χ(ϵ) ≥ 2

ln 2
∆2

q (27)

Even at this stage, the trace distance of the two quan-
tum density operators in the above show only the charac-
teristics of the quantum system, and the relationship with
the evaluation of the technical operation in the Wiener-
Shannon system is not clear. That is, the contribution
to the real system is not visible. In order to show
that the theory of quantum entropy contributes to the
Wiener-Shannon’s communication theory, it is necessary

to show that the trace distance defined before observation
contributes directly to traditional performance evaluation
measures in Wiener-Shannon system.

Before entering the main topic, we discuss with regard
to the trace distance in the theory of quantum key
distribution (QKD), because there is a theory that is mis-
understood. It is supposed in QKD theory that there are
quantum density operators formed by real protocols and
quantum density operator formed by ideal protocols. They
introduced Helstrom’s quantum signal detection theory
as a model to discriminate between these two quantum
density operators and show the following average error
probability or detection probability from the Helstrom
formula.

Pe =
1

2
[1−∆q(ρ

R
AE , ρ

I
AE)] (28)

Pd =
1

2
[1 + ∆q(ρ

R
AE , ρ

I
AE)] (29)

where ∆q = 1
2 ||ρ

R
AE − ρIAE ||q is the trace distance. At

present, the reason for the security of QKD is to interpret
this trace distance as “ Failure probability ” that the
real protocol does not realize as an ideal protocol, and
its value is about 10−12. In the first place, there is no
communication system that transmits and receives real
and ideal quantum density operators, so this model cannot
be a tool for discussing the security of QKD. ∆q is
a parameter and cannot have a probability meaning by
itself. So such operational meaning of the trace distance
that contributes to traditional information science, as de-
scribed in many papers and books, is completely wrong.
On the other hand, in 2009, Yuen provided a significant

inequality. That is, when the attacker accesses the number
of signals M = 2|K| with key sequence length |K| for
real protocols in the context of the security of QKD, for
the statistical distance ∆c of the probability distributions
after quantum measurement, the upper bound of the
guessing probability is given as follows [23,24,25].

Theorem− 6(Yuen)

Pguess ≤
1

M
+∆c (30)

∆c =
1

2
||P (x, y)− P (x)P (y)||c

The author’s group were able to conclude from the
discussion with Yuen that the above relationship could
be applied to the level of trace distance before making
specific observations. The final expression is as follows
[22,26].

Theorem− 7
Let the trace distance of the quantum density operators
between an actual protocol and the ideal one be:

∆q = max
Λ

TrΛ(
∑
k

p(k)ρkKE − ρK ⊗ ρE) (31)

k ∈ M, Λ : POVM
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TrΛ(
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k

p(k)ρkKE − ρK ⊗ ρE) (31)
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Then the average guessing probability for real QKD
signals is

1

M
≤ Pguess ≤

1

M
+∆q (32)

The above equation can be obtained from the relation-
ship between the statistical distance and the trace dis-
tance, but another direct proof is shown in the appendix
for the convenience of the readers.

From the results of Theorem 5 and Theorem 7,
Umegaki’s quantum relative entropy contributes to
the design theory of actual communication technolo-
gies in a sense different from the Holevo-Shumacher-
Westmoreland theorems via the Holevo information. Fur-
thermore, theorem 6 leads to electronics applications in
quantum communications.

V. CONTRIBUTION TO ASYMPTOTIC THEORY IN
STATISTICS

In the real world, asymptotic theory does not work,
but is an important for the development of conceptual
and mathematical frameworks, and many research groups
are active on this issue. Since entropy theory has a
high affinity with asymptotic theory, quantum relative
entropy into the relationship with asymptotic theory like
Stein’s lemma is natural. So in this field, Umegaki’s
thought has been inherited to Fumio Hiai, and Umegaki’s
achievements are clear. For details, please refer to the
many explanations by Hiai that convey the heart to his
thesis professor.

VI. CONCLUSION

Quantum communication theory based on the basic
concept of Wiener and Shannon has already contributed
to the real optical communication system in a concrete
manner [27, 28, 29]. I believe that this success originates
from Ikehara’s human resource development activities
for mathematical basic research of quantum information,
which were passed down to the later generations as part
of Umegaki’s extensive mathematical research. I also
believe that philosophies of Ikehara and Umegaki greatly
influenced researchers of the world who contributed to
the development of today’s quantum information science
via the researchers trained at the international conference
[30-39] that I established under the direction of Ikehara. I
hope that this paper gives an opportunity to reaffirm that.
As Wiener pointed out, in order to create new concepts
in the future, the researchers of information science must
lead quantum information science. In other words, a
mathematical research is expected to be carried out in
consideration of real communication system from the
perspective of information science, not quantum statistical
physics.

Examples of entropy theoretical approaches include
Masaki Sohma [40], Masahito Hayashi [41], Keiji Mat-
sumoto [42, 43] and Tomohiro Ogawa [44], and examples
of approaches from signal detection theory include the

researches by Masashi Ban [45], Kenji Nakahira[46],and
Kentaro Kato[47]. They are appreciated as significant
contributors in the world. In Part 2, I will report how
the results produced by the above-mentioned researchers
contributed to electronics applications in the real world.
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APPENDIX

A. Proof of Theorem 7
Let us consider a guessing probability of real system

and that of the ideal case. Now we can apply the theory of
multi-hypothesis quantum detection by Holevo [2]-Yuen
[3]. A set of quantum states in the signal space HS is
given as ρi ∈ HS , i = 1, 2, 3, . . .M . The criterion of
quantum detection strategy is as follows:

Pe = min
Π

(1−
M∑
i=1

p(i)TrΠiρi) (33)

Pd = 1− Pe (34)

where Pe and Pd are average error probability and
detection probability. Here, I employ Portman’s method
[48] as a basis. First, we apply the above to find the
detection probability in QKD system with quantum com-
posite system. Let us consider two different cases such
as detection probability of real one, and that of the ideal
case, and compare both detection probabilities. A set of
density operators for the real one is given by {ρkKE} and a
set of the ideal one is given by ρK⊗ρE , where {k ∈ M}.
Each detection probability in two cases is deduced by
using the formula of Eq(33) or Eq(34). But, here let us
assume that Λ+ = (

∑
k |k >< k|⊗Πopt

k ) as sub-optimum
POVM in composite system, and the density operator for
the ideal one is ρK ⊗ ρE =

∑
k(1/M)|k >< k| ⊗ ρE .

Then the detection probability of real case PR
d and that

of the ideal P I
d are

PR
d = TrΛ+p(k)ρkKE (35)

P I
d = TrΛ+ρK ⊗ ρE =

1

M
(36)

Since the trace distance ∆q is defined by Eq(31) as the
maximum with respect to any POVM, the trace distance
between Eq(35) and Eq(36) satisfies

TrΛ+(
∑
k

p(k)ρkKE − ρK ⊗ ρE) ≤ ∆q (37)

Hence we have the following one from Eqs(33-36) as the
upper bound of detection probability for the real system:

PR
d = TrΛ+p(k)ρkKE ≤ 1

M
+∆q (38)

Then, the average guessing probability is given by

Pguess = max
M∑
i=1

p(yi)p(xi|yi)

= max

M∑
i=1

p(i)p(yi|xi)

= Pd (39)

The lower bound of the detection probability is simply
1/M as the pure guessing in the signal detection theory.
It can be given by ∆q = 0 which means that the real
case is equal to the ideal case [22,26]. That is, there is no
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multi-hypothesis quantum detection by Holevo [2]-Yuen
[3]. A set of quantum states in the signal space HS is
given as ρi ∈ HS , i = 1, 2, 3, . . .M . The criterion of
quantum detection strategy is as follows:

Pe = min
Π

(1−
M∑
i=1

p(i)TrΠiρi) (33)

Pd = 1− Pe (34)

where Pe and Pd are average error probability and
detection probability. Here, I employ Portman’s method
[48] as a basis. First, we apply the above to find the
detection probability in QKD system with quantum com-
posite system. Let us consider two different cases such
as detection probability of real one, and that of the ideal
case, and compare both detection probabilities. A set of
density operators for the real one is given by {ρkKE} and a
set of the ideal one is given by ρK⊗ρE , where {k ∈ M}.
Each detection probability in two cases is deduced by
using the formula of Eq(33) or Eq(34). But, here let us
assume that Λ+ = (

∑
k |k >< k|⊗Πopt

k ) as sub-optimum
POVM in composite system, and the density operator for
the ideal one is ρK ⊗ ρE =

∑
k(1/M)|k >< k| ⊗ ρE .

Then the detection probability of real case PR
d and that

of the ideal P I
d are

PR
d = TrΛ+p(k)ρkKE (35)

P I
d = TrΛ+ρK ⊗ ρE =

1

M
(36)

Since the trace distance ∆q is defined by Eq(31) as the
maximum with respect to any POVM, the trace distance
between Eq(35) and Eq(36) satisfies

TrΛ+(
∑
k

p(k)ρkKE − ρK ⊗ ρE) ≤ ∆q (37)

Hence we have the following one from Eqs(33-36) as the
upper bound of detection probability for the real system:

PR
d = TrΛ+p(k)ρkKE ≤ 1

M
+∆q (38)

Then, the average guessing probability is given by

Pguess = max
M∑
i=1

p(yi)p(xi|yi)

= max

M∑
i=1

p(i)p(yi|xi)

= Pd (39)

The lower bound of the detection probability is simply
1/M as the pure guessing in the signal detection theory.
It can be given by ∆q = 0 which means that the real
case is equal to the ideal case [22,26]. That is, there is no

correlation between key sequence K and observation data
E of Eve. So one can denote associated with Shannon
theory in the perfect case as follows:

P (K|E) = P (K), or H(K|E) = H(K) (40)
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