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Abstract—We calculate the Holevo capacity of attenua-
tion channel with phase sensitive amplifiers and find the
optimum arrangement for those amplifiers.

I. INTRODUCTION

The ultimate capability of an optical communication
system can be evaluated by computing the Holevo ca-
pacity of continuous channel with an energy constraint.
Basing on the Holevo’s formula[3], [4], we computed it
for the attenuation channel assisted by linear amplifiers
arranged at equal intervals[7]. Furthermore, we posed the
problem of optimum arrangement for phase insensitive
amplifiers(PIAs), and found that the position of the last
amplifier is crucial while the other amplifiers should be
arranged at equal intervals[2]. In this paper we consider
the optimum arrangement of phase sensitive amplifiers
(PSAs) and find how much capacity is achieved by using
them.

II. ATTENUATION CHANNEL WITH PSAS

Let us start with recalling the description of the Gaus-
sian state based on the quantum characteristic function.
We consider a quantum system described by the anni-
hilation operator a satisfying the canonical commutation
relation [a, a†] = I , where I is the unit operator and †
denotes an adjoint operation, and introduce the canonical
pair

q =

√
�
2
(a+ a†),

p = i

√
�
2
(a† − a).

(1)

Then the quantum characteristic function of a density
operator ρ is defined by

χ(z) = Trρ exp[i(xq + yp)], (2)

where z is a two-dimensional vector z = (x, y)T and
T denotes transposition. Note that we confine ourselves
to one-mode Gaussian state throughout this paper. In
particular the quantum characteristic function of Gaussian
state is given by

χ(z) = exp

(
imT z − 1

2
zTαz

)
, (3)

with a 2-dimensional mean vector m and a 2× 2 corre-
lation matrix α. We denote the Gaussian state with the

mean vector m and the correlation matrix α by ρ(m,α).
A pure Gaussian state is called a squeezed state which
has a correlation matrix of the form

α(r) =
�
2

(
e−2r 0
0 e2r

)

where r is a real number, which is called a squeezing
parameter. We consider an optical communication system
where an attenuation channel with a transmittance K =
k1k2 · · · knkn+1 is devided into n+1 attenuation channels
with transmittances ki(i = 1, . . . , n + 1) and phase
sensitive amplifiers(PSAs) with gains Gi = k−1

i (i =
1, . . . , n) are put (see Figure 1). Such defined optical
communication system is called a PSA channel in the
following.

Fig. 1. Schematic diagram of an attenuation channel with PSAs.

The attenuation channel with a transmittance ki (0 ≤
ki ≤ 1) is described by the transformation

a′ = k
1/2
i a+ (1− ki)

1/2a0, (4)

where a0 is an annihilation operator in another mode
in the Hilbert space H0 of an ”environment”, which
is initially in the vacuum state[4]. The phase sensitive
amplifier (PSA) with a power gain Gi (Gi > 1) is an
ideal parametric amplifier represented by

q′ = G
1/2
i q, p′ = G

−1/2
i p

where the q is maximally amplified while the quadrature p
is correspondingly maximally attenuated [5]. The change
of Gaussian state caused by attenuation or phase sensitive
amplification can be described in terms of the mean
vector and the correlation matrix. Let us consider a
Gaussian state with a mean vector m = (mq,mp)

T and
a correlation matrix

α =

(
αqq 0
0 αpp

)
.

Then the output state from the attenuation channel with
a transmittance ki has the mean vector

(k
1/2
i mq, k

1/2
i mp)

T
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and the correlation matrix

ψki
(α) = kiα+ �

1− ki
2

I2,

with the 2× 2 identity matrix I2. On the other hand the
output state from the PSA with a power gain Gi has the
mean vector

(G
1/2
i mq, G

−1/2
i mp)

T

and the correlation matrix

φGi(α) =

(
Giαqq 0

0 G−1
i αpp

)
.

Now we are ready to obtain the mean vector m′ and
the correlation matrix α′ of the output Gaussian state
Φ(ρ(m,α(r))) from the PSA channel. The mean vector
m′ = (m′

q,m
′
p)

T is given by

m′
q =k

1/2
1 G

1/2
1 · · · k1/2n G1/2

n k
1/2
n+1mq = k

1/2
n+1mq

m′
p =k

1/2
1 G

−1/2
1 · · · k1/2n G−1/2

n k
1/2
n+1mp

=k1 · · · knk1/2n+1mp

=K/k
1/2
n+1mp.

(5)

In other words m and m′ are related by the equation

m′ = LΦm

with

LΦ =

(
k
1/2
n+1 0

0 K/k
1/2
n+1

)
.

The correlation matrix α′ can be obtained recursively. Let
the correlation matrix of output Gaussian state from the
i-th PSA

αi(r) =
�
2

(
ai 0
0 bi

)
, i = 1, 2, ..., n,

and the correlation matrix of the input squeeze state

α0(r) =
�
2

(
a0 0
0 b0

)

with a0 = e−2r, b0 = e2r. Then we have

ai = Gi(kiai−1 + 1− ki) = ai−1 + k−1
i − 1,

bi = G−1
i (kibi−1 + 1− ki) = k2i bi−1 + ki − k2i ,

(6)

with i = 1, 2, ..., n. The correlation matrix

α′ =
�
2

(
a 0
0 b

)

of the output Gaussian state from the PSA channel is
given by

ψkn+1
(αn(r)) .

Computing the values of an and bn through the recurrence
relations (6), we obtain the elements of α′ as

a = kn+1e
−2r + ta

b = K2/kn+1e
2r + tb

(7)

with

ta = kn+1

n∑
i=1

k−1
i − nkn+1 + 1− kn+1.

Here tb is a polynomial function 　 of k1, ..., kn, kn+1,
which can be obtained ony recursively. Thus we have
found the way to compute the mean vector m′ and
the correlation matrix α′ of the output Gaussian state
Φ(ρ(m,α(r))).

III. COMPUTATION OF THE HOLEVO CAPACITY OF
THE PSA CHANNEL

We now pass to the computation of the Holevo ca-
pacity. The capacity for the transmission of classical
information with squeezed states ρ(m,α(r)) through the
PSA channel Φ is given as

C(r) = sup
π

[
S

(∫
Φ(ρ(m,α(r))π(dm)

)

−
∫

S (Φ(ρ(m,α(r)))π(dm)

]
,

(8)

by using the Holevo’s capacity formula[6]. Here S is
the von Neumann entropy S(ρ) = −Trρ log ρ and π is
an apriori probability distribution subject to the energy
constraint

TrH

∫
ρ(m,α(r))π(dm) ≤ �(Ntr + 1/2), (9)

where H = �(a†a + 1/2) and Ntr is a constant repre-
senting an average photon number. In order to compute
the Holevo capacity C(r), let us recall firstly that the von
Neumann entropy for a one-mode Gaussian state with a
correlation matrix γ is given by

g

(√
det γ

�
− 1

2

)
, (10)

with g(x) = (x+1) log(x+1)−x log x. We assume that
the a priori probability distribution π(dm) in Eq. (8) can
be restricted to a classical Gaussian distribution with the
mean 0 and a diagonal correlation matrix β. Then the
correlation matrix β′ for the distribution of mean vector
of output Gaussian state Φ(ρ(m,α(r))) is given by

β′ = LΦβL
T
Φ, (11)

and we can rewrite Eq. (8) and Eq. (9) as

C(r) = max
β

g

(√
det(α′ + β′)

�
− 1

2

)
−g

(√
detα′

�
− 1

2

)

(12)
and

1

2
Spα(r) +

1

2
Spβ ≤ �

(
Ntr +

1

2

)
, (13)

where ”Sp” denotes trace of matrix as distinct from trace
of operator ”Tr”. Since Spβ ≥ 0 holds in Eq. (13), we
have Spα(r) ≤ �(2Ntr + 1), which leads to

r− ≤ r ≤ r+
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and the correlation matrix
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2
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�
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�
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PSA channel Φ is given as

C(r) = sup
π

[
S

(∫
Φ(ρ(m,α(r))π(dm)

)

−
∫

S (Φ(ρ(m,α(r)))π(dm)

]
,

(8)

by using the Holevo’s capacity formula[6]. Here S is
the von Neumann entropy S(ρ) = −Trρ log ρ and π is
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TrH

∫
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where H = �(a†a + 1/2) and Ntr is a constant repre-
senting an average photon number. In order to compute
the Holevo capacity C(r), let us recall firstly that the von
Neumann entropy for a one-mode Gaussian state with a
correlation matrix γ is given by

g

(√
det γ

�
− 1

2

)
, (10)

with g(x) = (x+1) log(x+1)−x log x. We assume that
the a priori probability distribution π(dm) in Eq. (8) can
be restricted to a classical Gaussian distribution with the
mean 0 and a diagonal correlation matrix β. Then the
correlation matrix β′ for the distribution of mean vector
of output Gaussian state Φ(ρ(m,α(r))) is given by

β′ = LΦβL
T
Φ, (11)

and we can rewrite Eq. (8) and Eq. (9) as

C(r) = max
β

g

(√
det(α′ + β′)

�
− 1

2

)
−g

(√
detα′

�
− 1

2

)

(12)
and

1

2
Spα(r) +

1

2
Spβ ≤ �

(
Ntr +

1

2

)
, (13)

where ”Sp” denotes trace of matrix as distinct from trace
of operator ”Tr”. Since Spβ ≥ 0 holds in Eq. (13), we
have Spα(r) ≤ �(2Ntr + 1), which leads to

r− ≤ r ≤ r+

with

r± =
1

2
log[2Ntr + 1± 2

√
Ntr(Ntr + 1)].

Here it is easy to show that the equality in Eq. (13) should
hold for the optimum correlation matrix β, and hence we
use the energy constraint

1

2
Spα(r) +

1

2
Spβ = �

(
Ntr +

1

2

)

in place of Eq. (13). Using Eq. (13) and Eq. (11) we
obtain the constraint for the correlation matrix of output
Gaussian state

β′ =
�
2

(
c 0
0 d

)

as
�
4

(
c

kn+1
+

kn+1d

K2

)
= �Ns,

with
Ns = Ntr +

1

2
− 1

2
cosh 2r

that is,

c = 4kn+1Ns −
k2n+1

K2
d. (14)

Here from the positivity of β′, we have

0 ≤ d ≤ 4K2

kn+1
Ns. (15)

Since the second term in Eq. (12) is a constant and
g(
√
x − 1/2) is an increasing function, we can obtain

the capacity by maximizing

det(α′ + β′)
�2

=
1

4
(a+ c)(b+ d) (16)

under the conditions Eq. (14) and Eq. (15). Substituting
Eq. (14) into the right-hand side of Eq.(16), we obtain
a quadratic function Q(d), whose axis of symmetry is
d = 
 with


 =
K2

kn+1

(
2Ns +

1

2kn+1
a− kn+1

2K2
b

)
.

The maximum value of Q(d) under the constraint (15) is
given as follows.

(i) When 
 < 0, that is,

a <
k2n+1

K2
b− 4kn+1Ns,

the maximum value of Q(d) is achieved as

Qmax =
1

4
(a+ 4kn+1Ns)b

by

d = 0

c = 4kn+1Ns.
(17)

(ii) When 
 > 4K2Ns/kn+1, that is,

a >
k2n+1

K2
b+ 4kn+1Ns,

the maximum value of Q(d) is achieved as

Qmax =
1

4
a

(
b+

4K2

kn+1
Ns

)

by

c =0

d =
4K2

kn+1
Ns.

(18)

(iii) When 0 ≤ 
 ≤ 4K2Ns/kn+1, the maximum value
of Q(d) is achieved as

Qmax = K2

(
Ns +

1

4kn+1
a+

kn+1

4K2
b

)2

by

c =kn+1

(
2Ns − 1

2kn+1
a+

kn+1

2K2
b

)

d =
K2

kn+1

(
2Ns +

1

2kn+1
a− kn+1

2K2
b

)
.

(19)

Thus we can obtain the Holevo capacity as

C(r) = g

(√
Qmax − 1

2

)
− g

(√
ab− 1

2

)
.

Moreover we maximize C(r) with respect to arrangement
of PSAs determined by k1, ..., kn+1 to obtain the Holevo
capacity

Copt(r) = max
k1,...,kn+1

C(r),

where transmitances k1, ..., kn+1 satify 0 < ki ≤ 1
(i = 1, ..., n + 1) and K = k1 · · · kn+1 for the total
transmittance K.

Let us evaluate the capacity of the PSA channel.
Figure 2 shows graphs of Holevo capacities Copt(r) of
attenuation channels with n PSAs (n = 1, 5, 10) and an
attenuation channel with no amplifier when K = 0.1 and
Ntr = 1. In the figure the horizontal axis represents the
squeezing parameter r. These graphs show that the PSA
channel requires the squeezed state as the input state,
while squeezing is not useful for the attenuation channel
with no amplifier.

Next we consider arrangement of PSAs. For that we
compare Copt(r) with the Holevo capacity Ceq(r) which
is obtained for PSAs arranged at equal intervals, that is,
k1 = · · · = kn = kn+1. Moreover we maximize them
with respect to the squeezing parameter r to get Copt =
maxr Copt(r) and Ceq = maxr Ceq(r). Figure 3 shows
graphs of the Holevo capacities Copt and Ceq with respect
to the number of amplifiers when Ntr = 1 and K = 0.1.
It indicates that arranging amplifiers at equal intervals is
not the best way to enhance the Holevo capacity.

Figure 4 shows the best arrangement of PSAs when
Ntr = 1 and K = 0.1. In the figure the horizontal axis
represents the index i of sub-channel and the vertical axis
transmission loss of sub-channel 10 log10 1/ki. From the
graphs we can see that in the optimum arrangement length
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Fig. 2. Dependence of Holevo capacities for attenuation channels
with/without phase sensitive amplifiers on the squeezing parameter r.

Fig. 3. Dependance of Holevo capacities for attenumation channels
on the number of amplifiers n 　 when PSAs are arranged optimally
or equally.

of several sub-channels near the receiver are longer than
the others.

Finally we compare the effect of PSA with that of
phase insensitive amplifier (PIA). The PIA is a usual
linear amplifier, which is described by the transformation
in the Heisenberg picture,

a′ = G
1/2
i a+ (Gi − 1)1/2a†0, (20)

where a (resp. a′) is an input modal photon annihilation
operator (resp. an output one), a†0 is a creation operator
representing the additive noise introduced by the ampli-
fication, and Gi(≥ 1) denotes a power gain of amplifier.
We proved [2] that k1 = k2 = · · · = kn = (K/kn+1)

1/n

holds in the optimum arangement of PIAs and that for
a fixed kn+1 = k the maximum value of the Holevo
capacity is given by

Cn(k) = g(kNtr, Nn) (21)

Fig. 4. Optimum arrangement described by values of transmission loss
of sub-channel 10 log 1/ki,i = 1, ..., n+ 1 for n = 5, 10, 20.

Fig. 5. Dependance of Holevo capacities for attenumation channels
with PIAs/PSAs on the total transmission loss when Ntr = 1 and
n = 10.

with

g(E,N) = log

(
1 +

E

N + 1

)
+ (N + E) log

(
1 +

1

N + E

)

−N log

(
1 +

1

N

)

Nn =k · n
((

k

K

)1/n

− 1

)
.

(22)

We maximize Cn(k) numerically with respect to k to
obtain the Holevo capacity C ′

opt achieved by the optimum
arrangement of PIAs. Figure 5 and Figure 6 show graphs
of the capacities Copt and C ′

opt with respect to the total
transmission loss log10 1/K for Ntr = 1 and Ntr = 20
respectively. These graphs indicate that PSAs enhance the
Holevo capacity more than PIAs when power of input
signals are small or total transmittance is small.

IV. CONCLUSION

We have computed the Holevo capacity of PSA channel
and the optimum arrangement of PSAs. We will study
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IV. CONCLUSION

We have computed the Holevo capacity of PSA channel
and the optimum arrangement of PSAs. We will study

Fig. 6. Dependance of Holevo capacities for attenumation channels
with PIAs/PSAs on the total transmission loss when Ntr = 20 and
n = 10.

on optimum amplifiers and their arrangement in a more
general setting.
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