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Abstract—An approximation formula of the error prob-
ability of M -ary PSK coherent state signal by a homodyne
receiver is considered in the case that the communication
channel contains in-line erbium amplifiers. Applying Cahn’s
calculation method [1] to our problem, an approximation
formula for M -ary PSK coherent state signal in that case
is obtained.

I. INTRODUCTION

In the literature [2], phase shift keying (PSK) and
quadrature amplitude modulation (QAM) coherent state
signals were investigated in terms of quantum signal
detection theory, and the error probability and the mu-
tual information that are achieved by optimal quantum
receivers and ideal homodyne receivers were computed
for each coherent state signal. As for the case of the
homodyne receiver for PSK coherent state signals, all the
calculation was executed by numerical integral, because
it is difficult to find the closed-form expression of the
error probability by the homodyne receiver except for the
cases of binary PSK (BPSK) and quaternary PSK (QPSK)
coherent state signals. However, a useful approximation
formula of the error probability of M -ary PSK signal has
been already obtained by Cahn in the context of radio
wave communications [1].

In this article, an approximation formula of the error
probability of M -ary PSK coherent state signal by a two-
quadrature field measurement type homodyne receiver is
considered in the case that the communication channel
contains in-line erbium amplifiers. First, we summarize
quantum mechanical treatment of optical transmission
lines with in-line erbium amplifiers according to the
literature [3]. It is well known that a two-quadrature
field measurement type homodyne receiver is realized
by an eight-port homodyne detector (e.g., [4]). To apply
this result to our case, we give a simple analysis of the
eight-port homodyne detector by means of the Skellam
distribution [5]. Finally, we combine these two quantum
mechanical treatments of the channel and detector. Based
on this, an approximation formula of the error probability
of M -ary coherent state signal by the homodyne receiver
is derived by means of Cahn’s calculation method.

II. CHANNEL MODEL

In this article, we employ Mecozzi’s model of N
loss-gain optical transmission lines with in-line erbium
amplifiers [3]. Let Γk denote the loss of the kth segment
and Gk the gain of the kth segment, where 1 ≥ Γk > 0
and Gk ≥ 1. The spontaneous emission factor of the
kth in-line erbium amplifier is denoted by nk,sp ≥ 1. A
schematic of this channel is shown in Fig. 1.
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Fig. 1. Channel model of N loss-gain optical transmission lines [3]

The mode of the input to this channel is expressed by
the photon annihilation operator â0, i.e., [â0, â

†
0] = 1̂.

According to the literature [3], the output mode âN is
given by

âN =
√
Gnet â0

+
√
nASE − (Gnet − 1) ĝ1 +

√
nASE ĝ†2.

Here the net gain is defined by Gnet =
∏N

j=1 ΓjGj

and the total number of amplified spontaneous emis-
sion (ASE) noise photons is nASE =

∑N
k=1 f(N, k +

1)nk,sp(Gk − 1), in which the function f is defined by
f(k, h) ≡

∏k
j=h ΓjGj with convention f(N,N+1) ≡ 1.

Suppose the mode â0 is in a coherent state |α〉 having
complex amplitude α = AI + iAQ ∈ C (AI = Re[α],
AQ = Im[α], and i =

√
−1) and the other two modes

ĝ1 and ĝ†2, which respectively correspond to the total
absorption and spontaneous emission processes, are in
the vacuum states. So, we let |Ψ〉 ≡ |α〉0 ⊗ |0〉1 ⊗ |0〉2.
Straightforward calculations yield the following results:

〈âN 〉 = 〈Ψ|âN |Ψ〉 =
√

Gnet α, (1)

〈â†N 〉 = 〈Ψ|â†N |Ψ〉 =
√

Gnet α
∗, (2)

33Tamagawa University Quantum ICT Research Institute Bulletin
Vol.9 No.1 : 33―39（2019）



where ∗ stands for the complex conjugate,

〈â2N 〉 = 〈Ψ|â2N |Ψ〉 = Gnetα
2, (3)

〈â†2N 〉 = 〈Ψ|â†2N |Ψ〉 = Gnetα
∗2, (4)

and

〈â†N âN 〉 = 〈Ψ|â†N âN |Ψ〉 = Gnet|α|2 + nASE, (5)

〈âN â†N 〉 = 〈Ψ|âN â†N |Ψ〉 = Gnet|α|2 + nASE + 1.

(6)

Further, the quantum state at the output mode âN for
coherent state input |α〉 at the input mode â0 is given by

ρ̂(α) =
1

πnASE

∫
d2η exp[−|η −

√
Gnet α|2

nASE
]|η〉〈η|,

(7)

where d2η ≡ d(Re[η])d(Im[η]) and |η〉 is a coherent
state having complex amplitude η.

Let |ζ〉 be a coherent state having complex amplitude
ζ = ζI + iζQ (ζI = Re[ζ] and ζQ = Im[ζ]). Because
of the overcompleteness property of the coherent states,
the collection {(1/π)|ζ〉〈ζ| : ζ ∈ C} becomes a positive
operator-valued measure (POVM). This corresponds to
two-quadrature field measurement. The probability den-
sity function of the outcome ζ by this POVM is

p(ζ|α) =
1

π
〈ζ|ρ̂(α)|ζ〉

=
1

π(nASE + 1)
exp[−|ζ −

√
Gnet α|2

nASE + 1
].

(8)

Substituting ζ = ζI + iζQ and α = AI + iAQ, this
probability density function can be rewritten as

p(ζI , ζQ|AI , AQ)

=
1√

π(nASE + 1)
exp[− (ζI −

√
Gnet AI)

2

nASE + 1
]

× 1√
π(nASE + 1)

exp[− (ζQ −
√
Gnet AQ)

2

nASE + 1
].

(9)

Hence the expected values of the outcome by this two-
quadrature measurement are

µPOVM
I =

√
Gnet AI , µPOVM

Q =
√
Gnet AQ, (10)

and the variances are

(σ2
I )

POVM = (σ2
Q)

POVM =
nASE + 1

2
. (11)

III. EIGHT-PORT HOMODYNE DETECTOR

Before calculating the error probability of M -ary PSK
coherent sate signal, we revisit a quantum theory of an
eight-port homodyne detector (e.g., [4], [8], [9], [10],
[11], [12], [13], [14], [15]). From the preceding studies on
the eight-port homodyne detector, the probability density
function (8), or (9), has been justified in various ways.

Fig. 2. Eight-port homodyne detector

In this section, this statistical property of the eight-port
homodyne detector is restated by means of the Skellam
distribution (See Appendix A).

A schematic of the detector is shown in Fig. 2. This
consists of four half beam splitters (HBSs), one π/2-
phase shifter, and four photodetectors. The input mode
â is used for receiving signals and the input mode b̂ is
for the local oscillator. The remaining two input modes
ĉ and d̂ are in the vacuum.

In each HBS, the corresponding mode operators satisfy
the following relations [6]:

â′ =
1√
2
(â− ĉ) and ĉ′ =

1√
2
(â+ ĉ); (12)

b̂′ =
1√
2
(b̂− d̂) and d̂′ =

1√
2
(b̂+ d̂); (13)

â′′ =
1√
2
(â′ − d̂′) and d̂′′ =

1√
2
(â′ + d̂′); (14)

b̂′′′ =
1√
2
(b̂′′ − ĉ′) and ĉ′′ =

1√
2
(b̂′′ + ĉ′), (15)

where b̂′′ = eiπ/2b̂′ = ib̂′. With a small algebra, we obtain
the following expressions of the output modes from the
HBSs.

â′′ =
1

2
(â− b̂− ĉ− d̂); (16)

b̂′′′ =
1

2
(−â+ ib̂− ĉ− id̂); (17)

ĉ′′ =
1

2
(â+ ib̂+ ĉ− id̂); (18)

d̂′′ =
1

2
(â+ b̂− ĉ+ d̂). (19)

Here we define î1 = â′′†â′′, î2 = b̂′′′†b̂′′′, î3 = ĉ′′†ĉ′′,
and î4 = d̂′′†d̂′′. The final output modes îI = î4− î1 and
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â′′ =
1
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(−â+ ib̂− ĉ− id̂); (17)

ĉ′′ =
1

2
(â+ ib̂+ ĉ− id̂); (18)

d̂′′ =
1

2
(â+ b̂− ĉ+ d̂). (19)

Here we define î1 = â′′†â′′, î2 = b̂′′′†b̂′′′, î3 = ĉ′′†ĉ′′,
and î4 = d̂′′†d̂′′. The final output modes îI = î4− î1 and

îQ = î3 − î2 are respectively expressed as

îI =
1

2

(
â†b̂+ b̂†â+ â†d̂+ d̂†â

−b̂†ĉ− ĉ†b̂− ĉ†d̂− d̂†ĉ
)

(20)

and

îQ =
i

2

(
â†b̂− b̂†â− â†d̂+ d̂†â

−b̂†ĉ+ ĉ†b̂− ĉ†d̂+ d̂†ĉ
)
. (21)

Further we obtain

î2I =
1

4

(
â†2b̂2 + â2b̂†2

+2â†â+ 2â†âb̂†b̂+ 2b̂†b̂+ R̂1

)
(22)

and

î2Q = −1

4

(
â†2b̂2 + â2b̂†2

−2â†â− 2â†âb̂†b̂− 2b̂†b̂+ R̂2

)
, (23)

where R̂1 and R̂2 are the remaining terms that vanish
when modes ĉ and d̂ are in the vacuum.

A. Case of Coherent State

Suppose the input signal is a coherent state
|α = AI + iAQ〉 and the local oscillator light is a co-
herent state |β〉 of β > 0. That is, the whole input state
of the detector is |Φ〉inabcd = |α〉a ⊗ |β〉b ⊗ |0〉c ⊗ |0〉d.

From Eqs. (20) and (21), the expected values of the
outcome by this detector are

〈̂iI〉 = 〈̂i4 − î1〉 = AIβ, (24)
〈̂iQ〉 = 〈̂i3 − î2〉 = AQβ. (25)

By using Eqs. (22) and (23) together with the results
above, the corresponding variances are calculated as

〈(∆îI)
2〉 = 〈̂i2I〉 − 〈̂iI〉2 =

1

2
(|α|2 + β2), (26)

〈(∆îQ)
2〉 = 〈̂i2Q〉 − 〈̂iQ〉2 =

1

2
(|α|2 + β2). (27)

Since the input state |Φ〉inabcd contains only coherent
states and the vacuum, the output state is obtained as

|Φ〉outabcd = |1
2
(α− β)〉a ⊗ |1

2
(−α+ iβ)〉b

⊗|1
2
(α+ iβ)〉c ⊗ |1

2
(α+ β)〉d. (28)

From this, the corresponding photon statistics are sum-
marized as follows.

• mode â′′: Poisson with parameter |α− β|2/4.
• mode b̂′′′: Poisson with parameter |α− iβ|2/4.
• mode ĉ′′: Poisson with parameter |α+ iβ|2/4.
• mode d̂′′: Poisson with parameter |α+ β|2/4.

A distribution of the difference of two Poisson random
valuables is known as the Skellam distribution. From Eqs.

(71) and (72) of Appendix A, the expected value µI and
the variance σ2

I of the mode îI are respectively given as

µI =
1

4
|α+ β|2 − 1

4
|α− β|2 = AIβ (29)

and

σ2
I =

1

4
|α+ β|2 + 1

4
|α− β|2 =

1

2
(|α|2 + β2), (30)

which are identical to Eqs. (24) and (26). Substituting
these parameters into Eq. (70) of Appendix A, the prob-
ability mass function of the number nI of output photon
is

PI(nI) = exp[−1

2
(|α|2 + β2)]

×
∣∣∣∣
α+ β

α− β

∣∣∣∣
nI

InI [
1

2
|α2 − β2|]. (31)

Similarly, the mode îQ has the probability mass function
of the number nQ of output photon,

PQ(nQ) = exp[−1

2
(|α|2 + β2)]

×
∣∣∣∣
α+ iβ

α− iβ

∣∣∣∣
nQ

InQ
[
1

2
|α2 + β2|], (32)

and its expected value µQ and variance σ2
Q are respec-

tively given by

µQ =
1

4
|α+ iβ|2 − 1

4
| − α+ iβ|2 = AQβ, (33)

σ2
Q =

1

4
|α+ iβ|2 + 1

4
| − α+ iβ|2 =

1

2
(|α|2 + β2).

(34)

Here we assume β � |α| � 1, which means the use
of strong local oscillator. From Eq. (76) of Appendix A.
we have

PI(nI) ≈
1√
πβ2

exp[−|nI −AIβ|2

β2
] (35)

with expected value AIβ and variance β2/2, and

PQ(nQ) ≈
1√
πβ2

exp[−|nQ −AQβ|2

β2
] (36)

with expected value AQβ and variance β2/2.
For rescaling measurement outcomes by β, we define

zI = nI/β and zQ = nQ/β. Since β is large enough, zI
and zQ can be regarded as real numbers within a finite
precision. So, we now reached to the probability density
functions

pI(zI)dzI ≈ 1√
π
exp[−|zI −AI |2]dzI (37)

with expected value AI and variance 1/2, and

pQ(zQ)dzQ ≈ 1√
π
exp[−|zQ −AQ|2]dzQ (38)
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with expected value AQ and variance 1/2. Defining z =
zI + izQ, the joint distribution of (zI , zQ) is given by

pIQ(zI , zQ|α) = pI(zI)pQ(zQ)

≈ 1

π
exp[−|z − α|2]

=
1

π
|〈z|α〉|2. (39)

This corresponds to a special case of Eq. (8) when Gnet =
1 and nASE = 0.

B. Case of the state of Eq. (7)

Suppose the communication channel of N loss-gain
optical transmission lines is connected to the detector.
That is, we assume â = âN . When the transmission
input mode â0 is in a coherent state |α = AI + iAQ〉,
the expected values and variances of the final outputs are
given as follows: the expected values of îI and îQ are

〈̂iI〉 =
√
GnetAIβ, (40)

〈̂iQ〉 =
√
GnetAQβ (41)

and the variances of îI and îQ are

〈(∆îI)
2〉 =

1

2

{
Gnet|α|2 + nASE + (nASE + 1)β2

}

≈ 1

2
(nASE + 1)β2, (42)

〈(∆îQ)
2〉 =

1

2

{
Gnet|α|2 + nASE + (nASE + 1)β2

}

≈ 1

2
(nASE + 1)β2, (43)

where we have assumed β �
√
Gnet|α| to obtain the

approximations above.
To see the distribution of the final output, we let

P(η) =
1

πnASE
exp[−|η −

√
Gα|2

nASE
]. (44)

With the same manner as in the literature [15], the joint
distribution of (nI , nQ) is given by

PIQ(nI , nQ) =

∫
d2ηP(η)KI(nI , η)KQ(nQ, η), (45)

where

KI(nI , η) = exp[−1

2
(|η|2 + β2)]

×
∣∣∣∣
η + β

η − β

∣∣∣∣
nI

InI [
1

2
|η2 − β2|] (46)

and

KQ(nQ, η) = exp[−1

2
(|η|2 + β2)]

×
∣∣∣∣
η + iβ

η − iβ

∣∣∣∣
nQ

InQ [
1

2
|η2 + β2|].

(47)

Here the kernels (46) and (47) can be obtained from Eqs.
(31) and (32). Therefore, we see that the kernels behave

according to the Skellam distribution. When β � |η| �
1, the kernels are approximated to as follows:

KI(nI , η) ≈ 1√
πβ2

exp[−|nI − Re[η]β|2

β2
] (48)

and

KQ(nQ, η) ≈ 1√
πβ2

exp[−|nQ − Im[η]β|2

β2
],

(49)

where we have used Eqs. (35) and (36). Substituting Eqs.
(48) and (49) into Eq. (45), we obtain

PIQ(nI , nQ)

≈ 1

π(nASE + 1)β2

× exp[−|(nI + inQ)−
√
Gnetαβ|2

(nASE + 1)β2
], (50)

when β �
√
Gnet|α| � 1.

Like in the previous section, we introduce zI = nI/β
and zQ = nQ/β to rescale the outcomes by β. This leads
us to the following result:

pIQ(zI , zQ) ≈ 1

π(nASE + 1)

× exp[−|z −
√
Gnetα|2

nASE + 1
]

=
1

π
〈z|ρ̂(α)|z〉. (51)

This is identical to Eq. (8).

IV. SYMBOL ERROR RATE FOR M -ARY PSK

M -ary PSK coherent state signal is defined by

|A exp[
2πim

M
]〉, m = 0, 1, · · · ,M − 1, (52)

where A > 0. From Eq.(8), the conditional probability
density function of measurement outcome ζ = ζI + iζQ
for the mth PSK coherent state signal after passing
through the channel of N loss-gain optical transmission
lines with in-line erbium amplifiers is

p(ζI , ζQ|m)

=
1

2πσ2
exp[−|ζ −

√
GnetA exp[iθm]|2

2σ2
], (53)

where θm = 2πim/M and σ2 = (nASE + 1)/2.
From this point, we employ Cahn’s method [1] to

derive the error probability of the homodyne receiver for
M -ary PSK coherent state signal.

Letting ζI = r cos θ and ζQ = r sin θ, Eq. (53) is
transformed into

p(r, θ|m) =
r

2πσ2
exp

[
− 1

2σ2
(r2 +GnetA

2

−2r
√
GnetA cos[θ − θm])

]
. (54)
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With the same manner as in the literature [15], the joint
distribution of (nI , nQ) is given by

PIQ(nI , nQ) =

∫
d2ηP(η)KI(nI , η)KQ(nQ, η), (45)

where

KI(nI , η) = exp[−1

2
(|η|2 + β2)]

×
∣∣∣∣
η + β

η − β

∣∣∣∣
nI

InI [
1

2
|η2 − β2|] (46)

and

KQ(nQ, η) = exp[−1

2
(|η|2 + β2)]

×
∣∣∣∣
η + iβ

η − iβ

∣∣∣∣
nQ

InQ [
1

2
|η2 + β2|].

(47)

Here the kernels (46) and (47) can be obtained from Eqs.
(31) and (32). Therefore, we see that the kernels behave

according to the Skellam distribution. When β � |η| �
1, the kernels are approximated to as follows:

KI(nI , η) ≈ 1√
πβ2

exp[−|nI − Re[η]β|2

β2
] (48)

and

KQ(nQ, η) ≈ 1√
πβ2

exp[−|nQ − Im[η]β|2

β2
],

(49)

where we have used Eqs. (35) and (36). Substituting Eqs.
(48) and (49) into Eq. (45), we obtain

PIQ(nI , nQ)

≈ 1

π(nASE + 1)β2

× exp[−|(nI + inQ)−
√
Gnetαβ|2

(nASE + 1)β2
], (50)

when β �
√
Gnet|α| � 1.

Like in the previous section, we introduce zI = nI/β
and zQ = nQ/β to rescale the outcomes by β. This leads
us to the following result:

pIQ(zI , zQ) ≈ 1

π(nASE + 1)

× exp[−|z −
√
Gnetα|2

nASE + 1
]

=
1

π
〈z|ρ̂(α)|z〉. (51)

This is identical to Eq. (8).

IV. SYMBOL ERROR RATE FOR M -ARY PSK

M -ary PSK coherent state signal is defined by

|A exp[
2πim

M
]〉, m = 0, 1, · · · ,M − 1, (52)

where A > 0. From Eq.(8), the conditional probability
density function of measurement outcome ζ = ζI + iζQ
for the mth PSK coherent state signal after passing
through the channel of N loss-gain optical transmission
lines with in-line erbium amplifiers is

p(ζI , ζQ|m)

=
1

2πσ2
exp[−|ζ −

√
GnetA exp[iθm]|2

2σ2
], (53)

where θm = 2πim/M and σ2 = (nASE + 1)/2.
From this point, we employ Cahn’s method [1] to

derive the error probability of the homodyne receiver for
M -ary PSK coherent state signal.

Letting ζI = r cos θ and ζQ = r sin θ, Eq. (53) is
transformed into

p(r, θ|m) =
r

2πσ2
exp

[
− 1

2σ2
(r2 +GnetA

2

−2r
√
GnetA cos[θ − θm])

]
. (54)

Integrating with respect to r, we have

p(θ|m)

=

∫ ∞

0

dr · p(r, θ|m)

=
1

2π
exp[−γ

2
]

{
1 +

√
4π

√
γ

2
cos[θ − θm]

× exp[
γ

2
cos2[θ − θm]]

×
(
1

2
+

1

2
erf[

1√
2

√
2
γ

2
cos[θ − θm]]

)}
,

(55)

where the signal-to-noise ratio (SNR) γ = GnetA
2/σ2

and the error function erf[x] = (2/
√
π)

∫ x

0
dt · exp[−t2].

Here we let m = 0. If γ is sufficiently large, it can be
approximated as

p(θ|m = 0) ≈ cos θ√
π(2/γ)

exp[− sin2 θ

(2/γ)
] (56)

for |θ| < π/2 (or cos θ > 0), where the approximation
erf[x] = 1− erfc[x] ≈ 1− exp[−x2]/x

√
π for x � 1 has

been used. Therefore, the correct detection probability of
the 0th signal is

P (0|0) =

∫ π/M

−π/M

dθ · p(θ|0)

≈ erf[

√
γ

2
sin[

π

M
]], (57)

where
∫
dx · exp[−ax2] = (

√
π/a/2)erf[

√
ax] + const

has been used. Because of the symmetry of the signal
constellations, we have P (m|m) = P (0|0) for every m.
Therefore, the average probability of correct detection is

P̄c(M -ary PSK) =
1

M

M−1∑
m=0

P (m|m) = P (0|0)

≈ erf[

√
γ

2
sin[

π

M
]], (58)

and hence the average probability of error is

P̄e(M -ary PSK) = 1− P̄c(M -ary PSK)

≈ erfc[

√
γ

2
sin[

π

M
]]. (59)

V. CONCLUSION

We gave an approximation formula of the error proba-
bility of M -ary PSK coherent state signal by a homodyne
receiver in the case that the communication channel
contains in-line erbium amplifiers, by means of the cal-
culation method in the literature by Cahn [1]. Further,
we simply verified the relationship between the POVM
{(1/π)|ζ〉〈ζ|} and eight-port homodyne detector in terms
of the Skellam distribution.
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APPENDIX

A. Skellam distribution

In 1937, Irwin considered the distribution of the differ-
ence between two independent Poisson random variables
with the same parameter [16]. Skellam successfully re-
moved the condition that two Poisson random variables
have the same parameter [5]. Now such a distribution
is called the Skellam distribution. Further, Fisz showed
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that the Skellam distribution converges to the Gaussian
distribution when the parameters are large enough [17].
Here we summarize their results according to the litera-
ture [17].

Let X and Y be independent Poisson variables with
respective parameters λX > 0 and λY > 0:

PX(�) = exp[−λX ]
λ�
X

�!
, � = 0, 1, 2, . . . (60)

and

PY (m) = exp[−λY ]
λm
Y

m!
, m = 0, 1, 2, . . . . (61)

The characteristic function CX(ξ) of the distribution PX

is calculated as

CX(ξ) =

∫ ∞

−∞

( ∞∑
�=0

PX(�)δ(x− �)

)
eiξxdx

=
∞∑
�=0

PX(�)eiξ�

= exp[−λX ]
∞∑
�=0

(λXeiξ)�

�!

= exp[λX(eiξ − 1)]. (62)

Similarly, the characteristic function CY (ξ) of the distri-
bution PY is given as

CY (ξ) = exp[λY (e
iξ − 1)]. (63)

Letting Y ′ = −Y , the characteristic function CY ′(ξ)
of the distribution PY ′ is immediately obtained as

CY ′(ξ) = exp[λY (e
−iξ − 1)]. (64)

Therefore the characteristic function CZ for the difference
of two Poisson variables, Z = X − Y , is given as

CZ(ξ) = exp[λX(eiξ − 1)] exp[λY (e
−iξ − 1)]

= exp[−(λX + λY ) + λXeiξ + λY e
−iξ].(65)

From this, the first and second moments of the distribu-
tion of Z are given as follows:

M1 = −i
dCZ(ξ)
dξ

∣∣∣∣
ξ=0

= λX − λY , (66)

and

M2 = (−i)2
d2CZ(ξ)
dξ2

∣∣∣∣
ξ=0

= (λX + λY ) + (λX − λY )
2. (67)

Here we let A = 2
√
λXλY > 0 and B =

√
λX/λY >

0, or λX = AB/2 and λY = A/(2B). Then the
expression (65) can be arranged to

CZ(ξ) = e−(λX+λY ) × exp[
A

2

{
Beiξ +

(
Beiξ

)−1
}
]

= e−(λX+λY )
∞∑

n=−∞
BneinξIn(A), (68)

where Iν [z] =
∑∞

n=0(n!Γ[n+ ν + 1])−1 (z/2)
2n+ν

is the modified Bessel function (of the first kind)
[7], and where the formula exp[(z/2)(t + t−1)] =∑∞

n=−∞ tnIn(z) has been used. Therefore the probability
density function of Z = X − Y is calculated as

pZ(z) =
1

2π

∫ ∞

−∞
e−iξzCZ(ξ)dξ

= e−(λX+λY )
∞∑

n=−∞

BnIn(A)

2π

∫ ∞

−∞
e−i(z−n)ξdξ

= e−(λX+λY )
∞∑

n=−∞
BnIn(A)δ(z − n). (69)

Hence the probability mass function of Z is

PZ(n) = e−(λX+λY )

(
λX

λY

)n/2

In[2
√

λXλY ] (70)

for n = · · · ,−2,−1, 0, 1, 2, · · · [5]. This distribution has
the expected value

µZ = E[Z]

= M1

= λX − λY (71)

and the variance

σ2
Z = Var[Z]

= M2 − (M1)
2

= λX + λY . (72)

Here we let W = (Z − µZ)/σZ for normalization.
Namely,

W = κ1Z + κ2 (73)

with constants κ1 = 1/σZ and κ2 = µZ/σZ . Then the
characteristic function of W is given by

CW (ξ) = Cκ1Z+κ2(ξ) = CZ(κ1ξ)e
iκ2ξ. (74)

When λ1 and λ2 are large enough,

CW (ξ) = exp[−ξ2

2
+

µZ

σ3
Z

· (iξ)
3

3!

+
1

σ2
Z

· (iξ)
4

4!
+

µZ

σ5
Z

· (iξ)
5

5!
+ · · · ]

≈ exp[−ξ2

2
]. (75)

Therefore, the random variable W obeys the standard
normal distribution N (0, 1) when λX and λY are large
enough. From this, the distribution of the random variable
Z is approximated [17] to

PZ(n) ≈
1√

2π(λX + λY )
exp[−{n− (λX − λY )}2

2(λX + λY )
].

(76)
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−iξ − 1)]

= exp[−(λX + λY ) + λXeiξ + λY e
−iξ].(65)

From this, the first and second moments of the distribu-
tion of Z are given as follows:

M1 = −i
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ξ=0

= λX − λY , (66)

and

M2 = (−i)2
d2CZ(ξ)
dξ2

∣∣∣∣
ξ=0

= (λX + λY ) + (λX − λY )
2. (67)

Here we let A = 2
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λXλY > 0 and B =
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λX/λY >

0, or λX = AB/2 and λY = A/(2B). Then the
expression (65) can be arranged to

CZ(ξ) = e−(λX+λY ) × exp[
A
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{
Beiξ +

(
Beiξ

)−1
}
]

= e−(λX+λY )
∞∑

n=−∞
BneinξIn(A), (68)

where Iν [z] =
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n=0(n!Γ[n+ ν + 1])−1 (z/2)
2n+ν

is the modified Bessel function (of the first kind)
[7], and where the formula exp[(z/2)(t + t−1)] =∑∞

n=−∞ tnIn(z) has been used. Therefore the probability
density function of Z = X − Y is calculated as

pZ(z) =
1

2π
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−∞
e−iξzCZ(ξ)dξ

= e−(λX+λY )
∞∑

n=−∞

BnIn(A)

2π
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−∞
e−i(z−n)ξdξ

= e−(λX+λY )
∞∑
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BnIn(A)δ(z − n). (69)

Hence the probability mass function of Z is

PZ(n) = e−(λX+λY )

(
λX

λY

)n/2

In[2
√

λXλY ] (70)

for n = · · · ,−2,−1, 0, 1, 2, · · · [5]. This distribution has
the expected value

µZ = E[Z]

= M1

= λX − λY (71)

and the variance

σ2
Z = Var[Z]

= M2 − (M1)
2

= λX + λY . (72)

Here we let W = (Z − µZ)/σZ for normalization.
Namely,

W = κ1Z + κ2 (73)

with constants κ1 = 1/σZ and κ2 = µZ/σZ . Then the
characteristic function of W is given by

CW (ξ) = Cκ1Z+κ2(ξ) = CZ(κ1ξ)e
iκ2ξ. (74)

When λ1 and λ2 are large enough,

CW (ξ) = exp[−ξ2

2
+

µZ

σ3
Z

· (iξ)
3

3!

+
1

σ2
Z

· (iξ)
4

4!
+

µZ

σ5
Z

· (iξ)
5

5!
+ · · · ]

≈ exp[−ξ2

2
]. (75)

Therefore, the random variable W obeys the standard
normal distribution N (0, 1) when λX and λY are large
enough. From this, the distribution of the random variable
Z is approximated [17] to

PZ(n) ≈
1√

2π(λX + λY )
exp[−{n− (λX − λY )}2

2(λX + λY )
].

(76)

Further, the cumulative distribution function is also ap-
proximated [17] to

FZ(z ≤ n) ≈ 1√
2πσ2

Z

∫ n+1/2

−∞
dz′ exp[−{z′ − µZ}2

2σ2
Z

]

=
1

2
erfc[

µZ − n− 1
2

σZ

√
2

]

= Q[
µZ − n− 1

2

σZ
], (77)

where the complementary error function

erfc[x] =
2√
π

∫ ∞

x

e−τ2

dτ,

and the Q-function (e.g., [18])

Q[x] =
1√
2π

∫ ∞

x

exp[−τ2

2
]dτ =

1

2
erfc[

x√
2
].

In the literature by Fisz [17], he showed numerical ta-
bles of some concrete cases to justify his approximations
(which correspond to Eqs. (76) and (77) in this article).
For more intuitive understanding, an example of graph
of the approximation (76) is shown in Fig. 3, where
λX = 10 and λY = 30. In this example, the expected
value is µZ = 10 − 30 = −20 and the variance is
σ2
Z = 10 + 30 = 40 (i.e., 3σZ ∼ 19). From Fig. 3,

we observe the approximation works well.
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Fig. 3. (color online) Skellam distribution for λX = 10 and λY = 30.
The horizontal axis stands for n. (a) Skellam distribution (blue) and
its Gaussian approximation (red). (b) Difference between the true and
approximated values (green).
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