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Quantum reading is the art of exploiting the quantum properties of light to retrieve classical
information stored in an optical memory with low energy and high accuracy. Focusing on the ideal
scenario where noise and loss are negligible, we review previous works on the optimal strategies for
minimal-error retrieving of information (ambiguous quantum reading) and perfect but probabilistic
retrieving of information (unambiguous quantum reading). The optimal strategies largely overcome
the optimal coherent protocols (reminiscent of common CD readers), further allowing for perfect
discrimination. Experimental proposals for optical implementations of optimal quantum reading
are provided.

I. INTRODUCTION

In the engineering of optical memories (such as CDs
or DVDs) and readers, a tradeoff among several param-
eters must be taken into account. High precision in the
retrieving of information is surely an indefeasible assump-
tion, but also energy requirements, size and weight can
play a very relevant role for applications. Clearly, size
and weight of the device increase with the energy, and
using a low energetic radiation to read information re-
duces the heating of the physical bit, thus allowing for
smaller implementation of the bit itself. Moreover, many
physical media (e.g., superconducting devices) dramat-
ically change their optical properties if the energy flow
overcomes a critical threshold.

In the problem of quantum reading [1–9] of optical de-
vices one’s task is to exploit the quantum properties of
light in order to retrieve some classical digital information
stored in the optical properties of a given media, making
use of as few energy as possible. The quantum reading
of optical memories was first introduced in Ref. [1]. A
realistic model of digital memory was considered, where
each cell is composed of a beamsplitter with two pos-
sible reflectivities. A single optical port is available to
probing the beam splitter, while the other port intro-
duces thermal noise in the reading process, so that the
problem considered is the discrimination of two lossy and
thermal Gaussian channels. It was shown that, for fixed
mean number of photons irradiated over each memory
cell, even in the presence of noise and loss, a quantum
source of light can retrieve more information than any
classical source - in particular in the regime of few pho-
tons and high reflectivities. This provided the first ev-
idence that the use of quantum light can provide great
improvements in applications in the technology of digital
memories such as CDs or DVDs.

In practical implementations noise can sometimes be
noticeably reduced [10]. On the other hand, in general
loss inherently affects quantum optical setups. Neverthe-
less, a theoretical analysis of the ideal, i.e. lossless and
noiseless, quantum reading provides a theoretical insight

of the problem and a meaningful benchmark for any ex-
perimental realization. In this hypothesis quantum read-
ing of optical devices can be recasted to a discrimination
among optical devices with low energy and high preci-
sion.
In the ideal reading of a classical bit of information

from an optical memory, namely in the discrimination
of a quantum optical device from a set of two, different
scenarios can be distinguished. A possibility is the on-
the-fly retrieving of information (e.g. multimedia stream-
ing), where the requirement is that the reading opera-
tion is performed fast - namely, only once, but a modest
amount of errors in the retrieved information is tolerable.
This scenario corresponds to the problem of minimum en-
ergy ambiguous discrimination of optical devices [14–16],
where one guesses the unknown device and the task is to
minimize the probability of making an error.
On the other hand, in a situation of criticality of errors

and very reliable technology, the perfect retrieving of in-
formation is an issue. Then, unambiguous discrimination
of optical devices [17], where one allows for an inconclu-
sive outcome (while, in case of conclusive outcome, the
probability of error is zero) becomes interesting.
In Ref. [2] an optimal strategy for the first scenario -

namely, the minimum energy ambiguous discrimination
of optical devices - has been provided for the ideal case.
This strategy, that exploits fundamental properties of the
quantum theory such as entanglement, allows for the am-
biguous discrimination of beamsplitters with probability
of error under any given threshold, while minimizing the
energy requirement. The proposed optimal strategy has
been compared with a coherent strategy, reminiscent of
the one implemented in common CD readers, showing
that the former saves orders of magnitude of energy if
compared with the latter, and moreover allows for per-
fect discrimination with finite energy.
In Ref. [6] the results of Ref. [2] were extended to the

case of unambiguous ideal quantum reading - namely,
the minimum energy unambiguous discrimination of op-
tical devices. The optimal strategy for unambiguous dis-
crimination of beamsplitters with probability of failure
under a given threshold, while minimizing the energy re-
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quirement, was provided. It was shown that the optimal
strategy does not require any ancillary mode - while in
the presence of noise and loss ancillary states improve
the performance of the quantum reading setup [1, 18].
Both strategies for ambiguous and unambiguous quan-
tum reading reduce to the same optimal strategy for
perfect discrimination if the probability of error (in the
former case) or the probability of failure (in the latter
case) is set to zero. Then, some experimental setups
implementing such optimal strategies which are feasible
with present day quantum optical technology, in terms of
preparations of single-photon input states, linear optics
and photodetectors, were provided.

This paper comprehensively reviews the main results
that we obtained in Refs. [2, 6] reformulating them in a
coherent and homogeneous presentation. The paper is
structured as follows. In Sec. II we formally introduce
and discuss the ideal quantum reading of optical mem-
ories. In Sec. III we consider the particular case where
each memory cell is represented by a beamsplitter. In
Sec. IV we compare the optimal quantum reading strat-
egy with the optimal coherent protocol, making use of co-
herent input states and homodyne detection. In Sec. V
we propose some experimental optical implementations
of quantum reading. We conclude summarizing our re-
sults in Sec. VI.

II. IDEAL QUANTUM READING OF OPTICAL
MEMORIES

A M -modes quantum optical device [19] is described
by a unitary operator U relating M input optical modes
with annihilation operators ai onHi, toM output optical
modes with annihilation operators a′i on Hi′ , where Hi

denotes the Fock space of the optical mode i. We denote
the total Fock space as H =

⊗
i Hi.

An optical device is called linear if the operators of the
output modes are related to the operators of the input
modes by a linear transformation, namely(

a′

a′†

)
= S

(
a
a†

)
, S :=

(
A B
B̄ Ā

)
(1)

where S is called scattering matrix, X̄ denotes the com-
plex conjugate of X, a = (a1, . . . aN ) is the vector of an-
nihilation operators of the input mode, and analogously
a′ for the output modes. If B = 0 in Eq. (1) the device is
called passive and conserves the total number of photons,

that is 〈ψ|N |ψ〉 = 〈ψ|U †NU |ψ〉 with N :=
∑

i a
†
iai the

number operator on H. In the following, for any pure
state |ψ〉, we denote with ψ := |ψ〉 〈ψ| the corresponding
projector. For any Fock space H, we denote with |n〉 a
Fock basis in H (|0〉 denotes the state of the vacuum).

Suppose we want to discriminate between two linear
optical passive devices U1 and U2. If a single use of the
unknown device is available, the most general strategy
consists of preparing a bipartite input state ρ ∈ B(H⊗K)

(K is an ancillary Fock space with mode operators bi),
applying locally the unknown device and performing a
bipartite POVM Π on the output state (Ux ⊗ IK)ρ =
(Ux ⊗ IK)ρ(U †

x ⊗ IK) (x can be either 1 or 2).

ρ
��
��

H
Ux

K Π
��
�	. (2)

The choice of Π in Eq. (2) depends on the figure of
merit taken into account. For example, for ambiguous
discrimination Π = {Π1,Π2} and one’s task is to mini-
mize the probability of error

PE(ρ, U1, U2) := Tr[(U1 ⊗ IH)(ρ)Π2 + (U2 ⊗ IH)(ρ)Π1],

with 0 ≤ PE(ρ, U1, U2) ≤ 1/2. When p1 = p2 = 1/2 the
minimal probability of error has been proven to be given
by the following function [20] of ρ,

PE(ρ
∗, U1, U2) =

1

2
(1− || [(U1 − U2)⊗ IK] ρ||1) , (3)

where ||X||1 = Tr[
√
X†X] denotes the trace norm.

For unambiguous discrimination Π = {Π1,Π2,ΠF },
Tr[(U1 ⊗ IH)(ρ)Π2] = Tr[(U2 ⊗ IH)(ρ)Π1] = 0 and one’s
task is to minimize the probability of inconclusive out-
come (failure)

PF (ρ, U1, U2) := Tr[(U1 ⊗ IH + U2 ⊗ IH)(ρ)ΠF ], (4)

with 0 ≤ PF (ρ, U1, U2) ≤ 1.
In the following, whenever the results we present

hold for PE(ρ, U1, U2) (in an ambiguous discrimination
scenario) as well as for PF (ρ, U1, U2) (in an unam-
biguous discrimination scenario), we will simply write
P (ρ, U1, U2).
Upon denoting with ED(ρ) := Tr[ρ(N⊗IK)] the energy

that flows through the unknown device, the total energy
of the input state is E(ρ) := ED +Tr[ρ(IH ⊗NK)].
We can now introduce the ideal quantum reading prob-

lem [2, 6]. For any set of two optical devices {U1, U2} and
any threshold q in the probability of error (failure), find
the minimum energy input state ρ∗ that allows to am-
biguously (unambiguously) discriminate between U1 and
U2 with probability of error (failure) not greater than q,
namely

ρ∗ = arg min
ρ s.t. P (ρ,U1,U2)≤q

E(ρ). (5)

where P (ρ, U1, U2) = PE(ρ, U1, U2) for the ambiguous
discrimination problem and P (ρ, U1, U2) = PF (ρ, U1, U2)
for the unambiguous discrimination problem.
First, notice that for any POVM Π we have P ((U1 ⊗

IK)ρ, I, U2U
†
1 ) = P (ρ, U1, U2) and E((U1⊗IK)ρ) = E(ρ),

so we can restrict our analysis to the case in which U1 = I
and U2 = U , and identify P (ρ, I, U) = P (ρ, U).
Then, notice that without loss of generality the con-

straint in Eq. (5) can be restated as P (ρ, U) = q. Indeed,
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for any POVM Π we have that P (ρ, U) is a continuous
function maximized in |0〉 〈0| [indeed PE(|0〉 〈0| , U) =
1/2 and PF (|0〉 〈0| , U) = 1]. So for any ρ with P (ρ, U) <
q there exists a 0 < α ≤ 1 such that P [(1 − α)ρ +
α |0〉 〈0| , U ] = q. Since E[(1 − α)ρ + α |0〉 〈0|] < E(ρ),
the constraint in Eq. (5) becomes P (ρ, U) = q.

Proposition 1 (Optimal state is pure). For any optical
device U and any threshold q in the probability of error
PE(ρ, U) [probability of failure PF (ρ, U)], there exists a
state ρ∗ which minimizes Eq. (5) such that ρ∗ is pure.

Proof. Notice that Eq. (5) is equivalent to C(ρ, U) :=
pP (ρ, U) + (1 − p)E(ρ), for any fixed value of p. If ρ∗
is the state that minimizes C(ρ, U), for q := P (ρ∗, U)
we have that E(ρ∗) gives the minimum possible value for
the energy. Since P (ρ, U) and E(ρ) are linear functions
of ρ, it follows that C(ρ, U) is a linear function of ρ and
its minimum is attained on the boundary of its domain,
namely for a pure state |ψ∗〉.

As a consequence of Proposition 1, Eq. (5) can be re-
stated as

ψ∗ = arg min
ψ s.t. P (ψ,U)=q

E(ψ). (6)

For pure states, the probability of error in the ambiguous
discrimination when p1 = p2 = 1/2 given by Eq. (3)
becomes

PE =
1

2

(
1−

√
1− | 〈ψ| (U ⊗ IK) |ψ〉 |2

)
. (7)

For pure states, the probability of failure in the unam-
biguous discrimination when p1 = p2 = 1/2 given by
Eq. (4) has been proved to be given by [17]

PF (ψ
∗, U) = | 〈ψ|U ⊗ IK |ψ〉 |. (8)

Proposition 2 (No ancillary modes are required). For
any optical device U and any threshold q in the probability
of error PE(ρ, U) [probability of failure PF (ρ, U)], there
exists a state ρ∗ which minimizes Eq. (5) such that ρ∗ ∈
H.

Proof. We show that for any pure input state ψ there
exists a pure state ψ′ that does not resort to ancil-
lary modes and that allows for quantum reading with
the same probability of error (failure) but with lower
energy. Let us denote with |n〉 = |n1, . . . , ndimH〉 a
Fock basis in H with respect to which U is diago-
nal and with |m〉 = |m1, . . . ,mdimK〉 a Fock basis in
K. Let us denote with eiδi the eigenvalue of U cor-
responding to mode i-th, and let δ = (δ1, . . . , δdimH),
namely U |n〉 = eiδ·n |n〉. Any pure input state can
be written as |ψ〉 =

∑
n,m cn,m |n,m〉 for some cn,m,

then one has 〈ψ|U ⊗ IK |ψ〉 =
∑

n,m |cn,m|2eiδ·n and

E(ψ) =
∑

n,m |cn,m|2(∑i ni +
∑

j mj). For any |ψ〉 let

us define |ψ′〉 := ∑
n c

′
n |n,0〉 with c′n :=

√∑
m |cn,m|2,

then one has 〈ψ′|U⊗IK |ψ′〉 = 〈ψ|U⊗IK |ψ〉 and E(ψ′) =

∑
n,m |cn,m|2(∑i ni). Since P (ψ′, U) = P (ψ,U) and

E(ψ′) ≤ E(ψ) - the former immediately following from
Eq.s (7) and (8) - the statement is proved.

Since no ancillary modes are required, the energy
ED(ψ) that flows through the unknown device is equal
to the total energy of the input state E(ρ), so minimiz-
ing the former instead than the latter - namely, replacing
E(ψ) with ED(ψ) in Eq. (6) - does not change the opti-
mal state.

III. IDEAL QUANTUM READING OF
BEAMSPLITTERS

A beamsplitter is a two-mode linear passive quan-
tum optical device such that A ∈ SU(2) in Eq. (1).
In the following we will use the basis {|n,m〉} with
respect to which A is diagonal with eigenvalues e±iδ,
0 ≤ δ ≤ π. With this choice, for any |ψ〉 =∑∞

n,m=0 αn,m |n,m〉, we have U |n,m〉 = eiδ(n−m) |n,m〉,
so that 〈ψ|U |ψ〉 =

∑∞
n,m=0 |αn,m|2eiδ(n−m) and

〈ψ|N |ψ〉 = ∑∞
n,m=0 |αn,m|2(n+m). We notice that both

these expressions only depend on the squared modulus of
the coefficients αn,m, so we can assume αn,m to be real
and positive.
Here �x	 (
x�) denotes the maximum (minimum) in-

teger number smaller (greater) than x.

Proposition 3 (Optimal quantum reading of beamsplit-
ters). For any beamsplitter U and for any threshold q in
the probability of error (probability of failure), there exists
a state ψ∗ which minimizes Eq. (6) such that

|ψ∗〉 = α
|0, n∗〉+ |n∗, 0〉√

2
+

√
1− α2 |00〉 , (9)

where

|α| =
√

1−K(q)

1− cos(δn∗)
,

K(q) =

{
2
√
q(1− q) for ambiguous reading

q for unambiguous reading
,

n∗ = arg min
�x∗�,�x∗	

E(ψ∗),

x∗ = min(x > 0|δx = tan(δx/2)).

Proof. First we prove that the optimal state in Eq. (6)
is a superposition of NOON states. For any state |ψ〉 =∑

n,m αn,m |n,m〉, the state |ψ′〉 =
√
1/2

∑
l α

′
l(|l, 0〉 +

|0, l〉) with |α′
l|2 =

∑
|n−m|=l |αnm|2 is such that

〈ψ′|N |ψ′〉 =
∞∑

n,m=0

α2
nm|n−m| ≤ 〈ψ|N |ψ〉 , (10)

| 〈ψ′|U |ψ′〉 | =
∣∣∣∣∣

∞∑
n,m=0

α2
nm cos(δ|n−m|)

∣∣∣∣∣ ≤ | 〈ψ|U |ψ〉 |.
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So we have 〈ψ|U |ψ〉 ∈ R and the constraint in Eq. (6)
becomes 〈ψ|U |ψ〉 = K(q).

Then we prove that the optimal state is the su-
perposition of two NOON states. Let |ψ∗〉 =√

1/2
∑

n α
∗
n(|n, 0〉+ |0, n〉) be the optimal state and let

the set {α∗
n} have N ≥ 3 not-null elements. Then there

exist n1 and n2 such that αn1 , αn2 = 0 and cos(δn1) ≤
K(q) ≤ cos(δn2). Define |χ〉 := 1/

√
2
∑

i=1,2 βni(|ni, 0〉+
|0, ni〉) such that 〈χ|U |χ〉 = K(q), and |ξ〉 := 1/

√
2(1−

ε)−1/2
∑

n γn(|n, 0〉+ |0, n〉), where

γn =

{
αn if n = n1, n2√
α2
n − εβ2

n if n = n1, n2
,

and ε ≤ min(αn1/βn1 , αn2/βn2). Notice that 〈ξ|U |ξ〉 =
K(q), and 〈ψ∗|N |ψ∗〉 = ε 〈χ|N |χ〉 + (1 − ε) 〈ξ|N |ξ〉.
If 〈χ|N |χ〉 = 〈ψ∗|N |ψ∗〉 the statement follows with
|ψ〉 = |χ〉. If 〈χ|N |χ〉 = 〈ψ∗|N |ψ∗〉, either 〈χ|N |χ〉 <
〈ψ∗|N |ψ∗〉 or 〈ξ|N |ξ〉 < 〈ψ∗|N |ψ∗〉, that contradicts
the hypothesis that |ψ∗〉 is the optimal state.

Finally we prove that the optimal state is the su-
perposition of a NOON state and the vacuum. Let
|ψ∗〉 = 1/

√
2
∑

i=1,2 αni(|ni, 0〉+ |0, ni〉). Then

〈ψ∗|N |ψ∗〉 = n2 cos(δn1)− n1 cos(δn2) +K(q)(n1 − n2)

cos(δn1)− cos(δn2)
.

It is lengthy but not difficult to verify (see Ref. [2] for an
explicit proof) that it is not restrictive to set n2 = 0, so
one has 〈ψ∗|N |ψ∗〉 = [1−K(q)][1−cos(δn1)]

−1n1. Then
one can see that it is not restrictive to choose π/2 ≤
δn1 ≤ π, where 〈ψ∗|N |ψ∗〉 can be proven [21] to be
a convex function that attains its minimum for n1 =
�x∗	, 
x∗�, with x∗ = min(x ∈ R+|δx = tan(δx/2)). The
statement immediately follows.

Notice that from Proposition 3 it immediately follows
that ambiguous (unambiguous) discrimination between
beamsplitters U and I can be achieved only if the thresh-
old q in the probability of error (failure) satisfies the in-
equality K(q) ≥ cos(δn∗) with K(q) as in the statement
of Proposition 3.

The optimal energy-error tradeoffs in the ambiguous
and unambiguous quantum reading are trivial conse-
quences of Proposition 3, given respectively by

E(PE) =
1− 2

√
PE(1− PE)

1− cos(δn∗)
n∗ (11)

E(PF ) =
1− PF

1− cos(δn∗)
n∗, (12)

where n∗ is constant (for any fixed δ) and is given in the
statement of Proposition 3. Figure 1 shows the optimal
energy-error tradeoff for some values of δ.

0
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3

0 0.1 0.2 0.3 0.4 0.5

E

PE

(a)

0

1

2

3

0 0.2 0.4 0.6 0.8 1

E

PF

(b)

FIG. 1. (Color online) Optimal tradeoff between the energy
E and the probability of error PE (probability of failure PF )
in the ambiguous (a) and unambiguous (b) discrimination of

I and U = exp(i(δa†
1a1 − δa†

2a2)), for δ = π/6 (upper line),
δ = π/4 (middle line), and δ = π/3 (lower line), as given by
Eq. (11).

IV. COMPARISON WITH COHERENT
STRATEGY

Here we consider the minimum energy discrimination
that makes use of coherent input states |αi〉 and homo-
dyne detections Xϕi to ambiguously [22] discriminate a
single use of a n-modes passive linear optical device ran-
domly chosen in the set {I, U} with equal probabilities


��α1

Ux

����Xϕ1


��α2 ����Xϕ2


��α3 ����Xϕ3

. (13)
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If we consider coherent input states |αi〉 on mode i the
global input state is |ξ〉 = ⊗

i |αi〉 which corresponds to
an energy value

E(ξ) := 〈ξ|N |ξ〉 =
∑
i

|αi|2. (14)

Since for any passive linear device V we have that
V
⊗

i |αi〉 =
⊗

i |βi〉 where |βi〉 are coherent states, we

can assume U to be diagonal, i.e. U =
∑

i e
iδia

†
iai . The

evolution of |ξ〉 under the action of U is then given by

U |ξ〉 =
⊗
i

∣∣eiδiαi

〉
. (15)

A quantum homodyne detection Xϕ is described [23–
25] by the POVM {|x, ϕ〉 〈x, ϕ|}, where |x, ϕ〉 are the
eigenstates of the quadrature eiϕa + e−iϕa†. The prob-
ability of outcome x when the system is prepared in a
coherent state |α〉 with α = eiφα |α| is given by the Gaus-
sian

pϕ(x|α) = |〈α|x, ϕ〉|2 =

√
2

π
e−2(x−|α| cos(ϕ+φα))2 . (16)

We notice that pϕ(x|α) depends on the phases ϕ and φα
only through the sum ϕ + φα. We can then fix ϕ = 0
and vary only the αi. The conditional probabilities of
outcome x = (xi) given I or U are n-dimensional Gaus-
sians, namely

p(x|I) = (2/π)n/2e2|x−v0|2 , p(x|U) = (2/π)n/2e2|x−v1|2 ,
(17)

with v0 = (Reαi) and v1 = (Re eiδiαi).
Any classical postprocessing of the outcome x can be

described by a function q(X|x) that evaluates to 1 if one
guesses the unitary X from outcome x, and to 0 other-
wise, with X = I, U . The probability of error is given
by

PE(ξ) =
1

2

∫
dx p(x|I)q(U |x) + p(x|U)q(I|x), (18)

and thus the optimal postprocessing is

q(X|x) =
{

1 if p(x|X) ≥ p(x|Y )
0 if p(x|X) < p(x|Y )

. (19)

Inserting Eq. (19) and Eq. (17) into the expression in
Eq. (18), the probability of error becomes

PE(ξ) =
1

2

[
1 + (2/π)n/2

∫
A

dx
(
e−2|x−v0|2 − e−2|x−v1|2

)]
,

(20)

where we defined the set

A = {x s.t. |x− v0|2 ≥ |x− v1|2}. (21)

Within this framework it is more convenient to fix the
amount of energy, that is the average number of pho-
tons η, and find the input state |ξ∗〉 that minimizes the
probability of error in the discrimination, i.e.

|ξ∗〉 = arg min
〈ξ|N |ξ〉=η

PE(ξ). (22)

With a little machinery it is possible to prove that
PE(ξ) is a non-increasing function of |v0−v1|2 and then
the minimization of PE(ξ) can be rephrased as a maxi-
mization of |v0 − v1|2. We have then

|v0 − v1|2 =
∑
i

[Re(αi)− Re(eiδαi)]
2

≤
∑
i

[2 sin(δi/2)|αi|]2

≤4 sin2(δ/2)η, (23)

where δ∗ := argmaxδi |δi|, and i∗ labels the correspond-
ing mode. The bounds in Eq. (23) are achieved for

|ξ∗〉 =
⊗
i �=i∗

|0i〉 ⊗ |α∗
i∗〉 , (24)

where α∗
i∗ =

√
η exp(iπ−δ∗

2 ). The corresponding optimal
discrimination strategy is

����α∗
i∗

Ux

����X0


��0 ����I

��0 ����I

, (25)

where ����I means that the corresponding mode is dis-
carded. With this choice of the input state the probabil-
ity of error becomes

PE =

√
2

π

∫ 0

−∞
dx e

−2
(
x−√

η sin
|δ∗|
2

)2

=
1

2

[
1− erf

(√
2η sin

|δ∗|
2

)]
. (26)

where erf(x) := 2√
π

∫ x

0
dt exp(−t2) denotes the error

function.
From Eq. (26) one can obtain the tradeoff between the

energy and the probability of error, which is plotted in
Fig. 2, for some choices of U1 and U2. If we consider the
case in which we want to discriminate a 50/50 beamsplit-
ter from the identity, one can notice that, for PE = 0.1,
the coherent state - homodyne detection discrimination
strategy requires a factor of ∼ 4 more photons that the
optimal strategy. Moreover, this factor increases as the
two devices get closer, i. e. for small values of δ. For ex-
ample, when δ = π/12, the factor is ∼ 12. As expected,
one notice that this factor increases when the probability
of error decreases.
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FIG. 2. (Color online) Optimal tradeoff between the energy
E and the probability of error PE in the discrimination of I
and U = exp(i(δa†

1a1 − δa†
2a2)) (δ = π/4 in (a) and δ = π/12

in (b)). The upper line represents the discrimination with
coherent states and homodyne detections, while the lower line
represents the optimal discrimination. Comparing (a) and
(b), we notice that the improvement provided by the optimal
strategy increases as δ decreases.

V. EXPERIMENTAL SETUP FOR QUANTUM
READING

In this Section we provide experimental setups for am-
biguous, unambiguous, and perfect quantum reading,
which are feasible with present quantum optical tech-
nology. The input is a single-photon state, that can be
realized e.g. through spontaneous parametric down con-
version or through the attenuation of a laser beam. The
evolution is given by a circuit of beamsplitters, one of
which is the unknown one, and the final measurement is
implemented through photodetectors.

In Proposition 2 we proved that, for the ambiguous
(unambiguous) quantum reading of optical devices, no

ancillary modes are required. Nevertheless, the proposed
setups for quantum reading make use of three-modes in-
put states - namely, an ancillary mode is employed. This
choice is due to the requirement to have an input state
with fixed number of photons in order to be able to ex-
perimentally take into account loss. For this reason, our
setup minimizes the energy ED(ρ) that flows through the
unknown device, while the total energy of the input state
is fixed.
In the following, for any beamsplitter X we denote

with AX the A matrix of X in Eq. (1), so we write

AX =

(
rX −tX
tX rX

)
, A†

X =

(
rX tX
−tX rX

)
.

We define the reflectivity RX and the transmittivity TX
of X as RX := |rX |2 and TX := |tX |2, respectively, with
RX + TX = 1.
The general setup is given by a Mach-Zender interfer-

ometer with beamsplitters B and B†, acting on modes
2 and 3. In one of the harms of the interferometer (cor-
responding to mode 2), the following beamsplitters are
inserted


��0
1

N D I,U D† N†
Π

��

�	

��0

2

B B†

��1

3

,

where N is a 50/50 beamsplitter, I, U is the unknown
beamsplitter, and D is the beamsplitter diagonalizing U .
The POVM Π is different for ambiguous and unambigu-
ous quantum reading. It is easy to verify that the com-
position of beamsplitters DN reduces to a phase shifter
on mode 2, namely

AD =
1√
2

(
1 1
i −i

)
, ADAN =

(
1 0
0 i

)
. (27)

It is easy to check that this phase shifter is irrelevant, so
in the following we will disregard it.
Here we describe an experimental setup implementing

the optimal strategy for ambiguous quantum reading as
given by Proposition 3, namely the ambiguous discrim-
ination of a beamsplitter randomly chosen from the set
{I, U} with equal prior probabilities, with probability of
error PE(ρ, U) under a given threshold q and minimal
energy flow through the unknown device. In the follow-
ing we set K(q) := 2

√
q(1− q). According to Propo-

sition 3, in order to have PE(ρ, U) ≤ q, we must have
K(q) ≥ √

RU .
The experimental setup is then given by


��0
1

I, U M

����I

��0

2

B B† N†
����ΠU


��1
3 ����ΠI

� � � � � � � � � ��
�
�
�
�
�
�

�
�
�
�
�
�
�

� � � � � � � � � �

,
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where the reflectivities and transmittivities of beamsplit-
ters B, M and N† are given by

RB =
K(q)− rU
1− rU

,

RM =
[1−K(q)][K(q)− rU ]

(1− 2q)2
,

RN =
√

1− q.

The optimal measurement for ambiguous discrimina-
tion [20] is implemented by the two beamsplittersM and
N † and by the two photocounters ΠU and ΠI surrounded
by the dashed line (no measurement is performed on out-
put mode 1). The conditional probabilities pX|Y of de-
tecting a photon in photodetector ΠX given that the un-
known device is Y are given by

pU |U = pI|I = 1− q, pI|U = pU |I = q.

Detecting a photon in ΠU or ΠI implies that the unknown
beamsplitter is U or I, respectively, with probability of
error q.

Here we describe an experimental setup implementing
the optimal strategy for unambiguous quantum reading
as given by Proposition 3, namely the unambiguous dis-
crimination of a beamsplitter randomly chosen from the
set {I, U} with equal prior probabilities, with probability
of failure PF (ρ, U) under a given threshold q and mini-
mal energy flow through the unknown device. According
to Proposition 3, in order to have PF (ρ, U) ≤ q, we must
have q ≥ √

RU .

The experimental setup is given by


��0
1

I, U M

����ΠU


��0
2

B B† N

����ΠF


��1
3 ����ΠI

� � � � � � � � ��
�
�
�
�
�
�

�
�
�
�
�
�
�� � � � � � � � �

,

where the reflectivities and transmittivities of beamsplit-
ters B, M and N are given by

RB =
q − rU
1− rU

,

RM =
[
√
1 + rU −√

q(q − rU )]
2

(1 + q)2
,

RN =
√
1− q.

The optimal measurement for unambiguous discrimi-
nation [17] is implemented by the two beamsplitters M
and N and by the three photocounters ΠU , ΠI , and ΠF

surrounded by the dashed line. The conditional proba-
bilities pX|Y of detecting a photon in photodetector ΠX

given that the unknown device is Y are given by

pU |U =pI|I = 1− q,

pI|U =pU |I = 0,

pF |U =pF |I = q.

Detecting a photon in ΠU or ΠI implies that the unknown
beamsplitter is certainly U or I, respectively, while de-
tecting a photon in ΠF declares a failure with probability
q.

VI. CONCLUSION

In this paper we considered ambiguous and unam-
biguous quantum reading of optical memories, on the
assumption that noise and loss are negligible (Sec. II).
We provided the optimal strategy for ambiguous and un-
ambiguous quantum reading of beamsplitters (Sec. III),
showing that the optimal input state is a superposi-
tion of a NOON state and the vacuum. In Sec. IV we
showed that the optimal strategy for ambiguous quan-
tum reading largely overcomes the optimal coherent pro-
tocol (reminiscent of common CD readers), further al-
lowing for perfect quantum reading. Finally in Sec. V
we proposed some experimental implementations of am-
biguous and unambiguous quantum reading, where the
input state was fixed to be a single photon state. By
making use of an ancillary mode it was possible to tune
the amount of energy flowing through the device.
In addition to their relevance in the framework of quan-

tum communication and information theory, the pre-
sented results also have obvious connections with exper-
imental quantum optical applications. For these reasons
we believe that they will have a relevant impact in the fu-
ture development of technology for storage and retrieval
of digital information.
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