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Metrology with entangled coherent states - a quantum scaling paradox
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There has been much interest in developing phase estimation schemes which beat the so-called
Heisenberg limit, i.e., for which the phase resolution scales better than 1/n, where n is a measure
of resources such as the average photon number or the number of atomic qubits. In particular, a
number of nonlinear schemes have been proposed for which the resolution appears to scale as 1/nk

or even e−n, based on optimising the quantum Cramer-Rao bound. Such schemes include the use
of entangled coherent states. However, it may be shown that the average root mean square errors
of the proposed schemes (averaged over any prior distribution of phase shifts), cannot beat the
Heisenberg limit, and that simple estimation schemes based on entangled coherent states cannot
scale better than 1/n1/4. This paradox is related to the role of ‘bias’ in Cramer-Rao bounds, and is
only partially ameliorated via iterative implementations of the proposed schemes. The results are
based on new information-theoretic bounds for the average information gain and error of any phase
estimation scheme, and generalise to estimates of shifts generated by any operator having discrete
eigenvalues.

PACS numbers: 42.50.St, 03.67.-a, 06.20.Dk, 42.50.Dv

I. INTRODUCTION

Phase estimation is ubiquitous in metrology, and forms
the underlying principle for the estimation of physical
quantities via interferometry. For example, a physical
variable of interest, such as temperature or refractive in-
dex or pressure or gravitational wave strength, may in-
fluence the relative phase between two pathways in an
optical interferometer, and estimation of the change in
phase then allows estimation of the physical variable.

At the fundamental quantum level, the accurate es-
timation of (relative) phase requires being able to dis-
tinguish between members of a set of overlapping quan-
tum states, where each member has undergone a different
phase shift. For optical phase shifts, the ability to do so
very much depends on photon number properties. For ex-
ample, the overlap of two pure states |ψ⟩ and e−iNϕ|ψ⟩,
having a small relative phase shift ϕ ≪ 2π, is easily cal-
culated to be

|⟨ψ|e−iNϕ|ψ⟩|2 = 1− ϕ2(∆N)2 +O(ϕ4).

Hence, a correspondingly large photon number variance,
on the order of 1/ϕ2, is necessary for the overlap to be
small enough to allow an accurate distinction between
these states. More generally, the maximum possible res-
olution of a given phase estimation scheme will depend
on the resources available, such as the average photon
number per probe state for optical probe states, or the
number of atomic qubits of the probe state in Ramsey
interferometry.

The optimal scaling of the resolution with the re-
sources, for a given estimation scheme, is of considerable
interest. A common tool for determining such scalings
is the quantum Cramer-Rao bound [1, 2], which sug-
gests, for example, that using the NOON state [|n⟩|0⟩+
|0⟩|n⟩]/

√
2 as a probe state can achieve a phase resolu-

tion that scales as 1/n [3], while using the n-qubit state

⊗n|z⟩ can achieve a phase accuracy scaling as 2−n [4].
The quantum Cramer-Rao bound similarly suggests that
entangled coherent states can achieve a similar 1/n scal-
ing as for NOON states [5, 6], and surpass NOON states
for small values of n [5, 7].

However, recent results on the accuracy of phase esti-
mation schemes, based on quantum information proper-
ties of the probe state, raise a scaling paradox [8]. For
example, they imply that a NOON state cannot achieve
more than one bit of phase information per use, indepen-
dently of n, and that the corresponding accuracy does
not approach zero as n is increased. More generally, the
results imply that the accuracy promised by the quantum
Cramer-Rao bound, for a given probe state, often cannot
be achieved, unless the phase shift is already known to
about that accuracy!

The scaling paradox arises essentially because the
quantum Cramer-Rao bound has a restricted applica-
tion, to regions in which the estimation scheme is lo-
cally unbiased. For the above-mentioned phase estima-
tion schemes, these regions are comparable in size to the
accuracy promised by the Cramer-Rao bound. This lim-
itation can be overcome, to some extent, via considering
iterative implementations of the proposed schemes. Such
implementations use multicomponent probe states, each
component of which estimates a different bit of the phase
shift. In many cases (but not all), one can recover the
promised scaling of the Cramer-Rao bound in this way,
albeit with a large scaling factor in general [8].

The new information-theoretic bounds for phase es-
timation yield general bounds on phase resolution and
information gain, applicable to any phase estimation
scheme, and take into account any prior information
available about the phase shift. They are reviewed below,
and compared with the quantum Cramer-Rao bounds for
the case of entangled coherent states in particular. It is
shown that using such a state as a probe state cannot
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achieve an average resolution that asymptotically scales
better than n−1/4, whereas, in contrast, unentangled co-
herent states can achieve a scaling of n−1/2. This is in
contrast to the quantum Cramer-Rao bound scalings of
n−1 and n−1/2 respectively. Moreover, it is shown that
it is not straighforward to achieve the latter n−1 scaling
for entangled coherent states (and may not even be pos-
sible to do so), due to the presence of a strong vacuum
background contribution to the phase properties of such
states. The behaviour of the two types of bound for small
average photon number n is also examined.

II. PHASE ESTIMATION SCHEMES

As shown in Fig. 1, a generic phase estimation scheme
involves application of a phase shift to a probe state,
and subsequent estimation of the phase shift via some
measurement. Such schemes can be very general, and
include the case of complex (possibly adaptive) measure-
ments made across the components of an entangled mul-
ticomponent probe state. The generator G of the phase
shift will be taken throughout this paper to have integer
eigenvalues, ensuring that the phase-shifted state ρϕ sat-
isfies the fundamental phase-shift property ρϕ+2π = ρϕ.
However, many of the results below hold for more general
operators G [8].

FIG. 1. Generic structure of phase estimation schemes. A
probe state ρ0 undergoes a phase shift ϕ, generated by some
operator G, and a measurement on the probe state is used
to make an estimate, ϕest, of ϕ. The phase shift may arise
from the probe state passing through a particular environ-
ment (e.g., in one arm of an interferometer), or via some ex-
ternal modulation (e.g., in a communication scenario). The
probe state may comprise, for example, a single-mode opti-
cal field, a multimode field, an atomic qubit, or several such
qubits. The generator G may be any suitable Hermitian op-
erator defined on the Hilbert space of the probe state: for
example N or N2 for a single-mode field having photon num-
ber operator N ; N1 + N2 + · · · + Nm for a multimode field

comprising m single-mode fields; or σ
(1)
z + σ

(2)
z + · · · + σ

(n)
z

for a probe state comprising n atomic qubits. The measure-
ment may comprise, for example, individual measurements
on components of the probe state (with some type of aver-
aging of the individual outcomes to form an estimate), or a
complex measurement across all components of an entangled
probe state.

A central question of interest is how good can a given
estimation scheme be? The answer will in general not
only depend on the probe state, the generator, and the

measurement, but also on the measurement of perfor-
mance used. Several performance bounds are discussed
in this section.

III. PHASE ESTIMATION BOUNDS

A. Quantum Cramer-Rao bound

One can first ask how well a given phase estimation
scheme performs for a particular phase shift value ϕ. A
natural measure of the performance for this case is the
local root mean square error, RMSEϕ, defined by

RMSEϕ :=

[∫
dϕest p(ϕest|ϕ) (ϕest − ϕ)2

]1/2
, (1)

where p(ϕest|ϕ) denotes the conditional probability of es-
timating ϕest for an applied phase shift ϕ. Note that
there is an ambiguity in defining the phase reference in-
terval over which the integration is performed; however,
the bounds given below are independent of the choice of
this interval [9].
The quantum Cramer-Rao bound is valid for the spe-

cial case that the estimate is locally unbiased at ϕ, i.e.,
when

⟨ϕest⟩ϕ′ :=

∫
dϕest p(ϕest|ϕ′)ϕest = ϕ′

for all ϕ′ in some neighbourhood of ϕ. In particular, for
locally unbiased estimates one has [1, 2]

RMSEϕ ≥ 1√
Fϕ

≥ 1

2∆G
, (2)

where Fϕ denotes the Fisher information of the estimate,
and ∆G denotes the root mean square spread of the gen-
erator for the probe state. The second inequality is some-
times referred to as the Helstrom-Holevo bound [10], and
is saturated for pure states [2].
It is easy to show, for example, that if the probe

state comprises a NOON state of a single-mode field,
then Eq. (2) reduces to RMSEϕ ≥ 1/n [3]. Note also
that if the probe state comprises a tensor product of
m identical components, with G = G1 + . . . Gm, then
(∆G)2 = (∆G1)

2 + . . . (∆Gm)2 = m(∆G1)
2, and hence

the righthand term scales as 1/
√
m [2].

B. Local unbiasedness

The requirement of local unbiasedness for the valid-
ity of Eq. (2) is surprisingly strong. Suppose, for exam-
ple, that one in fact knows beforehand that the phase
shift applied to the probe state is ϕ0. Clearly, there is
then no need for any physical measurement to make a
perfect estimate: one simply takes ϕest ≡ ϕ0. The lo-
cal root mean square error in Eq. (1) then vanishes, i.e.,
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RMSEϕ0 = 0. At first sight this appears to contradict the
quantum Cramer-Rao bound in Eq. (2), since the latter
implies that in the case the probe state is a NOON state,
then RMSEϕ0 ≥ 1/n. There is, of course, no real contra-
diction: the ‘perfect estimate’ is not locally unbiased, so
that Eq. (1) does not apply (one has ⟨ϕest⟩ϕ = ϕ0, rather
than ϕ). However, this example shows that the restric-
tion to locally unbiased estimates can give misleading
indications as to what may be possible. More practical
examples will be given in later sections.

One may remove the requirement for local unbiased-
ness via a more general form of the quantum Cramer-Rao
inequality due to Helstrom [11]:

(RMSEϕ)
2 ≥ [⟨ϕest⟩ϕ − ϕ]

2
+

[∂⟨ϕest⟩ϕ/∂ϕ]2

Fϕ

≥ [⟨ϕest⟩ϕ − ϕ]
2
+

[∂⟨ϕest⟩ϕ/∂ϕ]2

4(∆G)2
, (3)

where ⟨ϕest⟩ϕ is defined above, and the second inequal-
ity follows via the corresponding inequality in Eq. (2).
Note this formula implies that Eq. (2) also holds in the
case of estimates with a locally constant bias (i.e., with
∂⟨ϕest⟩ϕ/∂ϕ = 1).

More significantly, Eq. (3) implies, for example, that
one cannot obtain a 1/n scaling of the local root mean
square error for NOON states, if the estimate is biased
at ϕ. Thus, only locally unbiased estimates tend to be
considered when using Cramer-Rao bounds to compare
the accuracies of various phase estimation schemes. This
restriction, however, greatly limits the applicability of
such bounds to many of the schemes proposed in the
literature, which are sometimes only locally unbiased for
a finite set of phase shift values.

Finally, another way remove the requirement for local
unbiasedness is to replace the measure of performance by
a different quantity, the local precision, defined by [2]

Pϕ :=

[∫
dϕest p(ϕest|ϕ)

(
ϕest

|∂⟨ϕest⟩ϕ/∂ϕ|
− ϕ

)2
]1/2

.

This quantity satisfies the same inequalities as RMSEϕ

in Eq. (2), but is valid for any estimate, whether biased
or unbiased [2]. In particular, the local precision scales as
1/n for NOON states, for all values of ϕ [3]. However, the
operational meaning of the local precision as a measure
of performance is not clear, due to the nonlinear scaling
term in the denominator. The only exception appears to
be if this term is a constant, k say, over the range of of
phase shifts of interest, as it is then natural to replace the
estimate ϕest by the rescaled estimate ϕ′est = ϕest/k. But
for this case the local precision of ϕest is just the local
root mean square error of ϕ′est, and the bound reduces to
a particular case of the general Helstrom bound above.

C. Information-theoretic bounds

Recently, new bounds on phase estimation have been
derived, which are valid for both biased and unbiased
estimates, and which allow prior information about the
phase shift (such as used to make the ‘perfect estimate’
in the above example) to be taken into account. The
first bound limits the Shannon mutual information be-
tween the phase shift and the estimate, H(ϕest|ϕ), i.e.,
the amount of information which can be gained per esti-
mate about the phase shift, and is given by [8]

H(ϕest|ϕ) ≤ AG(ρ0) ≤ H(G|ρ0). (4)

Here AG(ρ0) is the increase in von Neumann entropy
corresponding to a projective measurement of G on the
probe state, also known as the G-asymmetry of the probe
state [12], and H(G|ρ0) denotes the Shannon entropy of
the probability distribution of G for the probe state.
Note, for example, that estimation using a NOON state

in an interferometer, with G = N2 where N1 and N2

are the number operators of the modes, it follows that
AG(ρ0) = H(G|ρ0) = log 2. Hence no more than one
bit of information about the phase shift can be extracted
from a NOON state, independently of n. A similar result
holds if G is replaces by any (possibly nonlinear) function
of N1 and N2 [8]. Note, however, that this one bit can
still be very useful, as part of a more complex ‘bit-by-
bit’ phase estimation scheme based on multicomponent
probe states, as will be seen in the next section.
One may also derive an information-theoretic bound

for the average estimation error, i.e., for the root mean
square error

RMSE :=

[∫
dϕ dϕest p(ϕest, ϕ) (ϕest − ϕ)2

]1/2
(5)

of the estimate, where p(ϕest, ϕ) the joint probability
distribution for ϕest and ϕ. Note that if ℘(ϕ) denotes
the prior probability density for the applied phase shift,
then one has the relations p(ϕest, ϕ) = p(ϕest|ϕ)℘(ϕ) and
(RMSE)2 =

∫
dϕ℘(ϕ) (RMSEϕ)

2. The latter relation
shows that the average estimation error is a suitable mea-
sure of the average performance of the estimate, which
takes prior information about the phase shift into account
via ℘(ϕ).
As shown in Ref. [8], Eq. (4) implies the lower bounds

RMSE ≥ (2πe)−1/2eH(ϕ)e−AG(ρ0)

≥ (2πe)−1/2eH(ϕ)e−H(G|ρ0), (6)

for the root mean square error, which strengthen and
generalise earlier results in the literature [13, 14]. Here
H(ϕ) := −

∫
dϕ℘(ϕ) log℘(ϕ) denotes the Shannon en-

tropy of the prior distribution, and reduces to log 2π in
the case of random phase shifts, i.e., when ℘(ϕ) ≡ 1/2π.
The second inequality is saturated for pure probe states.
For example, again taking a NOON state with G = N2

one finds the lower bound RMSE ≥ (8πe)−1/2eH(ϕ), for
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all values of n. Hence, no scaling of the root mean square
error with n is possible in this case — contrary to what
is suggested by the corresponding quantum Cramer-Rao
bound RMSEϕ ≥ 1/n following from Eq. (2). This ap-
parent scaling paradox arises because of the restriction of
the latter bound to locally unbiased measurements, and
is examined more closely in the following sections, and
with particular reference to entangled coherent states in
Sec. V.

Finally, note that, for the ‘perfect estimate’ discussed
at the beginning of Sec. III B, one has the prior distribu-
tion ℘(ϕ) = δ(ϕ− ϕ0). Hence H(ϕ) = ∞, and the lower
bound in Eq. (6) yields RMSE ≥ 0 – consistent with the
fact that RMSE = 0 for this estimate. This highlights
the fact that the information-theoretic bounds, unlike the
quantum Cramer-Rao bound in Eq. (2), are valid whether
or not the estimate is locally unbiased.

IV. SCALING PARADOX AND ITERATIVE
ESTIMATION SCHEMES

The quantum Cramer-Rao bound in Eq. (2) sug-
gests that, all else being equal, probe states should
have as large a variance of G as possible, whereas the
information-theoretic bound in Eq. (6) suggests that they
should have as large an entropy of G as possible. These
can lead to conflicting results in various cases, as seen in
the NOON state examples above, which have large vari-
ance but small entropy. More generally, for generators
with integer eigenvalues, if follows from Eq. (6) that [8]

RMSE ≥ 1√
2πe [(∆G)2 + 1/2]

,

which scales as 1/∆G for ∆G ≫ 1. While this is con-
sistent with the quantum Cramer-Rao bound in Eq. (2),
the bound in Eq. (6) is typically much stronger.

For example, for a single-mode field with average pho-
ton number ⟨N⟩, and a nonlinear phase shift generator
G = Nk⟩, one can easily find states with the scalings

∆G ∼ ⟨N2k⟩1/2 ∼ ⟨N⟩k,

suggesting via the quantum Cramer-Rao bound that a
local root mean square error scaling as 1/⟨N⟩k is possible
[7, 15] — greatly improving on the Heisenberg scaling
limit 1/⟨N⟩ for k > 1. However, noting that the entropy
of N and Nk are identical for any state, the information-
theoretic bound may be used to show that the average
estimation error is always bounded by [8]

RMSE ≥ eH(ϕ)

√
2πe3⟨N + 1⟩

. (7)

Hence, no better than Heisenberg scaling is possible for
the average performance of the estimate, in such nonlin-
ear scenarios.

The paradoxical differences in scalings between the two
bounds arise from the restriction of the quantum Cramer-
Rao bound to locally unbiased measurements. In partic-
ular, many of the proposed phase estimation schemes in
the literature are only locally unbiased, or approximately
so, for a small range of phase shift values. Indeed, this
range is often of the same order of magnitude as the
lower bound in Eq. (2), as is discussed in more detail
in Refs. [8] and [9]. In such cases, the quantum Cramer-
Rao bound can only be applied if the phase shift is known
to fall within this narrow range, i.e., if the phase is al-
ready known to an accuracy comparable to that promised
by the bound! Thus, while these schemes appear to of-
fer increased phase resolution with increasing resources
n, they can only achieve this if the phase shift before
measurement is correspondingly known more and more
accurately with increasing n.

In contrast, the information-theoretic bound in Eq. (6)
explicitly takes prior information about the phase shift
before measurement into account, via the term eH(ϕ).
For example, if the phase shift is known to be randomly
taken from an interval of widthW , then this term gives a
scaling factor of W for the RMSE. Thus, the bound ex-
plicitly separates out the scaling contributions from the
choice of probe state on the one hand, and prior infor-
mation about the phase shift on the other.

FIG. 2. Iterative phase estimation schemes. In this concep-
tual diagram, each circular region represents a component of a
multicomponent probe state. The components corresponding
to the five largest regions, on the left of the figure, are used to
estimate the first bit of ϕ/(2π); the next five components are
used to estimate the second bit, and so forth. For example,
each size region may correspond to a different NOON state,
with n = 1, 2, 4, 8, 16 from left to right, or to a different en-
tangled coherent state, with exponentially increasing α from
left to right.

The First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science
— Towards Macroscopic Quantum Communications —

November 26-28, 2012, Tokyo, Japan



Proceedings of the First International Workshop on ECS and Its Application to QIS;T.M.Q.C., 19-26 (2013) 23

Finally, it is of interest to note that the scaling promise
suggested by quantum Cramer-Rao bounds can some-
times (but not always) be achieved via the implementa-
tion of iterative versions of the proposed schemes, based
on multicomponent probe states. The idea is that dif-
ferent components, each having a different number of
resource n, are used to estimate successive bits of the
phase shift, as depicted in Fig. 2. When the total num-
ber of resources required for the probe state are added
up (e.g., the total photon number or the total number of
atomic qubits), and compared with the resolution of the
estimate, one can often obtain the scaling suggested by
the quantum Cramer-Rao bound for a single-component
probe state, although generally with a larger scaling con-
stant. Several examples have been discussed elsewhere
[8], including a case where a 2−n scaling, suggested via
the quantum Cramer-Rao bound [4], cannot be achieved
even with an iterative implementation.

V. ENTANGLED COHERENT STATES

Entangled coherent states (ECS) may be defined in
various ways (see Ref. [16] for a recent review of such
states), but for our purposes will be taken to be super-
positions of tensor products of Glauber coherent states.
In particular, consider an ECS of the form

|ψα⟩ =
1√

2(1 + e−|α|2)
(|α⟩|0⟩+ |0⟩|α⟩) . (8)

Such two-mode states have been shown to share precisely
1 bit of entanglement [17], and maximally violate a Bell
inequality of the Clauser-Horne-Shimony-Holt type [18].

The above ECS is seen to be similar in form to NOON
states, with number states being replaced by coherent
states, and indeed it has been shown [5–7] that for large
|α| the quantum Cramer-Rao bound scales in the same
way with the total average photon number,

n := ⟨N1 +N2⟩,

for both types of state [5–7]. Further, for small values of
n, ECS outperform NOON states, as quantified by the
Cramer-Rao bound, both for linear and nonlinear phase
shifts [5, 7]. This suggests that ECS may be valuable
states for quantum metrology.

However, in light of the preceding sections, it is seen
that it is important to take into account that the quan-
tum Cramer-Rao bound is restricted in operational sig-
nificance, to the case of estimation schemes that are (at
least approximately) locally unbiased over the phase shift
range of interest. Hence, the performance of the average
estimation error for schemes based on entangled coherent
states is carefully assessed below, using the more general
information-theoretic bound in Eq. (6).

A. Large average photon number

Consider then an inteferometric setup in which the sec-
ond component of the ECS ψα⟩ is subjected to a phase
shift ϕ [5]. For a linear phase shift the generator is then
G = N2. To evaluate the bound for the RMSE in Eq. (6),
one needs to determine the entropy of N2 for the probe
state.
Taking α > 0 without loss of generality, let p̃m :=

e−α2

α2m/m! denote the photon number probability dis-
tribution for a single-mode coherent state. It is straight-
forward to calculate from Eq. (8) that the probability
distribution of N2 for the ECS |ψα⟩ is then

pm =
p̃m + δm0(1 + 2p̃0)

2(1 + e−α2)
≈ 1

2
(p̃m + δm0)

where the approximation is valid for sufficiently large α.
Thus, the distribution of N2 is well approximated by

an equal mixture of the Poisson distribution {p̃m} with
the trivial distribution {δm0} – where these distributions
are effectively nonoverlapping since p̃0 ≪ 1 for large
α. Hence, as is easily verified, the entropy of this dis-
tribution is approximately equal to the average of the
entropies of the Poisson and trivial distributions, plus
log 2. The above approximation for pm also implies that
n = 2⟨N2⟩ ≈ α2. Finally, since the Poisson distribution
{p̃m} is well approximated by a Gaussian distribution of
the same mean (α2) and variance (α2) for large α, where
the entropy of a Gaussian of variance v is known to be
(1/2) log 2πev, it follows that

H(G|ψα) ≈
1

4
log 2πeα2 + log 2 ≈ 1

4
log 2πen+ log 2.

Substitution into Eq. (6) gives the approximate lower
bound

RMSE(ECS) ≳ eH(ϕ)

2(2πe)3/4n1/4
≈ 0.060 eH(ϕ)

n1/4
(9)

for phase estimation based on an ECS, in the limit of
large n.
This scaling as 1/n1/4 strongly contrasts with the 1/n

scaling of the quantum Cramer-Rao bound for ECS [5,
6]. Indeed, as seen in Fig. 3, the scaling in Eq. (9) is
surpassed by the corresponding scaling for unentangled
coherent probe states of the form |α⟩|α⟩, for which one
finds the approximate lower bound

RMSE(COH) ≳ eH(ϕ)

πe
√
2n

≈ 0.083 eH(ϕ)

n1/2
(10)

in the limit of large n, via a similar calculation (a nu-
merical check shows that both approximate bounds are
accurate for n ≳ 20). However, both types of probe state
improve on the scaling corresponding to use of a single
NOON state, for which Eq. (6) gives

RMSE(NOON) ≥ eH(ϕ)

√
8πe

≈ 0.121 eH(ϕ) (11)

for any (integer) value of n.
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FIG. 3. Dependence of quantum Cramer-Rao and
information-theoretic bounds, on the total average photon
number n, for entangled coherent states and factorisable co-
herent states. The dotted curves show the quantum Cramer-
Rao bound for the local performance, RMSEϕ in Eq. (2), as
a function of n, with the upper (green) dotted curve corre-
sponding to probe states of the form |α⟩|α⟩, and the lower
(blue) dotted curve to ECS probe states as per Eq. (8).
Thus the Cramer-Rao bound suggests that ECS have a bet-
ter local performance. However, the solid curves show the
information-theoretic bound for the average performance,
RMSE in Eq. (6), with the upper (blue) solid curve corre-
sponding to ECS probe states and the lower (green) solid
curve corresponding to factorisable coherent states (for the
choice of a random prior distribution, ℘(ϕ) = 1/2π). Hence,
it is seen that the bound on average performance is very sim-
ilar for both types of state, for small values of n (n < 5), but
is lower (i.e., better) for factorisable coherent states as n in-
creases – as expected from the asymptotic scalings in Eqs. (9)
and (10).

B. Iterative implementations

It is known that, despite Eq. (11), iterative implemen-
tations based on NOON-state components can recover
the 1/n scaling suggested by the quantum Cramer-Rao
bound, albeit with a larger scaling constant [8]. It is
also shown below that iterative implementations based
on factorisable coherent states can achieve the 1/

√
n

scaling that of the corresponding quantum Cramer-Rao
and information-theoretic bounds. This is because the
canonical phase distribution for the second mode of the
state |α⟩|αe−iϕ⟩ (which is expected to be optimal in the
case of an unknown phase shift on such a state [14, 19])
is approximately Gaussian, with mean ϕ and variance
1/4α2 = 1/2n [19], and hence can resolve phase to an
accuracy on the order of 1/

√
n, where typically M repe-

titions will be required to do so with near certainty, for
M typically in the range 4-8 [8]. However, as will be
seen, it is not clear whether a similar conclusion holds
for iterative implementations based on ECS.

In particular, consider first a multicomponent probe
state ρ0 comprising: M copies of such factorisable states
with total average photon number n1 = 1, to estimate
the first bit of ϕ/2π; M copies with n2 = 22 to esti-

mate the second bit; etc., culminating with M copies
with nm = 22(m−1) to estimate the mth bit (see Fig. 2).
The total average photon number of this multicomponent
probe state is then n = M

∑m−1
j=0 22j = M(4m − 1)/3.

Further, the generator G is the sum of the photon num-
ber operators over all components of ρ0. Since each com-
ponent has an approximately Gaussian photon number
distribution (with variances n1/2, n2/2, . . . , nm/2), and
the variance of the sum of independent Gaussian vari-
ables is a Gaussian with variance equal to the sum of
the component variances, the entropy H(G|ρ0) can be
approximated as

H(G|ρ0) ≈
1

2
log [2πeM(n1 + · · ·+ nm)/2]

=
1

2
log[2πen].

Substitution into the information-theoretic bound in
Eq. (6) then gives precisely the same bound as in Eq. (10)
above. Since the iterative scheme has, by construction,
a resolution of ≈ (2π)/2m+1 ≈ π

√
M/3n, it follows

that the scaling of the corresponding Cramer-Rao bound
(≈ 1/

√
2n from Eq. (2) can be achieved by such a scheme,

albeit with a larger scaling factor.
However, it is not at all clear that on can similarly

achieve a 1/n scaling for entangled coherent states, de-
spite the corresponding quantum Cramer-Rao bound
having such a scaling [5, 6]. This is essentially because
the first part of the superposition in Eq. (8) does not
see any phase shift, due to the vacuum contribution of
the second mode. This vacuum contribution adds signifi-
cant phase noise. For example, noting that the canonical
phase distribution of a single mode field |ψ⟩ is given by

pC(θ) = (1/2π)

∣∣∣∣∣∑
m

⟨m|ψ⟩e−imθ

∣∣∣∣∣
2

,

it is straightforward to calculate the joint canonical
phase distribution pC(θ1, θ2) for the phase-shifted ECS
e−iN2ϕ|ψα⟩. The relative phase distribution pC(ϕr), for
ϕr := θ2 − θ1, is then found by a suitable integration, as

pC(ϕr) =
1 + e−α2[1−cos(ϕr−ϕ)] cos[α2 sin(ϕr − ϕ)]

2π(1 + e−α2)

For large α this is approximated in the neighbourhood
of the phase shift ϕ by a mixture of a uniform distri-
bution 1/2π with a Gaussian distribution of variance
1/α2 = 2/n. The presence of this uniform background
distribution arises from the vacuum component of the
ECS, and means that the above iterative approach can-
not be straightforwardly applied in analogous manner di-
rectly analogous to the case of factorisable coherent states
(where there was no such background term).
Hence, unlike NOON states, it is perhaps not possible

to achieve a 1/n scaling of phase resolution for entan-
gled coherent states. However, further investigation is
required in this regard.
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C. Small average photon number

The quantum Cramer-Rao bounds and information-
theoretic bounds, for RMSEϕ and RMSE respectively,
are plotted in Fig. 3 for relatively small values of the
total average photon number n, for both entangled co-
herent states and factorisable coherent states. It is seen
that the bound on the average performance for an ECS
probe state (upper blue solid curve) always falls above
that for the factorisable case. Hence, as for the case
of large n discussed above, it appears that for ECS to
gain the advantage suggested by the Cramer-Rao bounds
(dotted curves), it is necessary to utilise them in more so-
phisticated phase estimation schemes (such as iterative
schemes), using multicomponent probe states.

VI. CONCLUSIONS

The main conclusion to be drawn from the above is
that the quantum Cramer-Rao bound for RMSEϕ in
Eq. (2) only has direct operational significance for esti-
mates that are locally unbiased in some neighbourhood of
ϕ. Hence caution must be taken when using this bound,
particularly if the range over which the estimate is unbi-
ased is unknown. Further illustration and discussion of
this point is given elsewhere [8, 9].

The information-theoretic bounds for mutual informa-
tion and RMSE in Eqs. (4) and (6) are, in contrast,
completely general. They show that the relevant quan-
tity for maximising average performance is not the vari-
ance of the generator, but its entropy (or, more generally,

its G-asymmetry). They may also be used to show, in
some cases, that iterative implementations of proposed
schemes can actually achieve the promise suggested by
the corresponding Cramer-Rao bound — but typically
a larger scaling constant is required. It may be noted
they have been used elsewhere to find resolution bounds
for general optical probe states and atomic qubit states,
and to evaluate various nonlinear schemes proposed in
the literature [8].
Application of the new bounds to ECS probe states

raises a question as to their average performance in com-
parison to unentangled coherent states. As discussed in
Sec. V, a demonstration of superior performance will re-
quire more sophisticated estimation schemes than those
based on using single-component probe states, and pos-
sibly even than those based on simple iterative imple-
mentations using multicomponent probe states. This
is an important challenge for future research in ECS-
metrology.
Finally, it should be noted that the effects of noise and

loss have not been considered here. Entangled coher-
ent states appear to have greater resilience than NOON
states in this regard [5, 7], which may give them an ad-
vantage in realistic scenarios — particularly if the chal-
lenge in the above paragraph can be met.
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