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We present a generalised form of optimal phase estimation using quantum Fisher information in
two-mode continuous-variable states with linear and nonlinear phase shifts. Two important examples
of continuous-variable states are rigorously investigated for optimal phase estimation. Toward the
practical application of the states, the idea of calibrating the strength of nonlinearity has been
proposed in a nonliear medium.

I. INTRODUCTION

Since the beginning of development of quantum op-
tics, it has been recognised that quantum metrology is
an important field not only for examining the fundamen-
tal characteristics of measurements in quantum physics
but also for practical applications using entanglement [1–
4]. Many interesting properties in nonclassical entangled
states have been examined in the field of quantum optics
and quantum information [5], and particularly, the non-
classical two-mode states are of use for quantum phase
enhancement in optical interferometry [3, 4].

For discrete nonclassical quantum states, a two-mode
path-entangled Fock state (called NOON state) has
clearly shown that the quantumness can beat a classical
limit of optimal phase estimation [12]. Due to the diffi-
culties of implementing a large photon NOON state and
of maintaining its robustness against particle losses [13],
other nonclassical discrete quantum states have studied
such as BAT states, which are built by passing a number-
squeezed state through a beam splitter (BS) [14], and
mm′ states consisting m photons in mode 1 and m′ in
mode 2 and vice versa [15].

Several continuous-variable (CV) quantum states have
been also investigated for quantum metrology [1, 16]. In
addition to the advantages of their practical feasibility,
one of the primary advantages is that we can explore
the parameters space of the quantum states continuously
in contrast to discrete one. Since the squeezed states
have been firstly proposed and implemented for quan-
tum metrology [3, 13, 17], it is known that a class of two-
mode CV states can be decomposed in the superposition
of NOON states with different photon numbers. Two
interesting examples of these states, called entangled-
coherent states (ECSs) [6, 18–25] and entangled states
with a squeezed vacuum and a coherent state (EVCs)
[29–32], have been recently demonstrated with the cur-
rent optical technology [25, 32].

The phase uncertainty is limited by the bound of clas-

sical Fisher information and allowing quantum measure-
ments provides us the quantity of quantum Fisher in-
formation indicating maximised classical Fisher informa-
tion and minimised the phase uncertainty [37]. Quan-
tum Fisher information implies the optimal positive-
operator valued measure (POVM) and gives an ulti-
mate/theoretical lower bound for measuring phase un-
certainty in the prepared state. To construct optimal
POVM is in general challenging and to consider specific
measurement setups could be useful to demonstrate the
phase enhancement beyond the classical limit of opti-
mal phase estimation. For example, the parity measure-
ment in pure ECSs can outperform the quantum phase
enhancement compared with the limits given by NOON
states but does not achieve the saturation of the quantum
Fisher information [22].

We present a generalised form of optimal phase es-
timation using QFI in two-mode CV states with lin-
ear/nonlinear phase shifts. We focus on the investiga-
tion of the phase sensitivity in both ECSs and EVCs,
which have been recently built with the current optical
technology. The paper is organised as follows. Section II
introduces a background in the optical setup with phase
shifts and the aspect of quantum Fisher information. A
generalised two-mode nonclassical CV state is presented
in Section III and two well-known nonclassical states have
been examined and compared for optimal phase estima-
tion in Section IV. In Section V, potential application of
ECSs has been investigated for calibrating the strength of
nonlinearity. Finally, a summary and remarks are given
in Section VI.

II. BACKGROUND

Three physical stages are in general required in quan-
tum metrology as shown in Fig. 1. We first initialise a
two-mode quantum state |Ψ〉12 in the preparation stage
and operate a generalized non-linear phase shift U(φ, k),
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FIG. 1. Schematic of the optical setup

which is applied to mode 2 in the second stage, given by

U(φ, k) = eiφ(a
†
2a2)

k

, (1)

where a†i (ai) is a creation (annihilation) operator in spa-
tial mode i [23, 33, 34]. The exponent k represents the
order of the non-linearity in the phase operation. k = 1
corresponds to a linear phase shift on the state while
k �= 1 gives a general non-linear effect during the phase
operation. One of the well-known examples for a nonlin-
ear phase operation can be achieved through the Kerr-
type interaction for k = 2 [6, 35]. Several theoretical
works have recently been investigated that nonlinearity
could help the improvement of phase estimation limits in
linear systems [6–11]. Finally, any optimal measurement
can be considered at the measurement stage.

With optical interferometric scenarios, we consider the
case of applying the phase operation to just one mode,
although it should be noted that other cases can be en-
visaged (see [36] and a footnote in [23]). When the gen-
eralized phase operation U(φ, k) is applied to mode 2 of
|Ψ〉12 , the resultant state is equal to

|Ψ(φ, k)〉12 = (11⊗ U(φ, k))|Ψ〉12. (2)

From phase estimation theory [37], the phase uncer-
tainty is bounded by the quantum Fisher information

δφ ≥ 1√
F

≥ 1√
FQ

, (3)

where F (FQ) denotes classical (quantum) Fisher infor-
mation and the value of FQ (for pure states) is simply

given by

FQ = 4
[
〈ψ̃k|ψ̃k〉 − |〈ψ̃k|ψk(φ)〉|2

]
= 4(Δnk)2, (4)

with |ψ̃k〉 = ∂|ψk(φ)〉/∂φ and (Δnk)2 = 〈(nk)2〉 − 〈nk〉2
(〈nk〉 = 12〈ψ|(a†2a2)k|ψ〉12). It is important to note two
key issues here. 1) For specific measurement scenarios,
the number of measurements plays an important role to
reach optimal phase estimation [38–40] but one can al-
ways find a set of POVM which provides a saturation
lower bound with F = FQ in Eq. (3). 2) 〈n1〉 de-
notes an average (or mean) photon number and the issues
of the number of measurements have been addressed in
Ref. [22].

III. NONCLASSICAL
CONTINUOUS-VARIABLE STATE IN TWO

MODES

We here investigate a generalised nonclassical CV state
in two modes mixed from two input CV states through a
BS in the preparation stage (see Fig. 1) and this scheme
has been already demonstrated in optical regime [32].
The advantage of this CV setup is that we are in princi-
ple able to tune the parameters/amplitudes of the input
CV states continuously, which could provides useful ap-
plications for CV quantum metrology in the future (see
details in Section V).
We assume that a coherent state and a nonclassical CV

state are prepared in each mode such as

|α〉1 = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n〉1 = e−

|α|2
2

∞∑
n=0

αn

n!
(a†1)

n|0〉1, (5)

|CV 〉2 =
∞∑

m=0

C2m|2m〉2 =
∞∑

m=0

C2m√
(2m)!

(a†2)
2m|0〉2. (6)

Note that the nonclassical CV state in mode 2 only con-
tains even photon-number states [29]. After a typical
50:50 BS is applied between the states, the resultant state
is equal to

|Ψ〉12 = BS
1/2
1,2 |α〉1|CV 〉2, (7)

= e−
|α|2
2 BS

1/2
1,2

∞∑
n,m=0

αn

n!

C2m√
(2m)!

(a†1)
n(a†2)

2m|0〉1|0〉2,

= e−
|α|2
2

∞∑
p=0

1(√
2
)p p∑

q=0

[
Rα

p,q(b
†
1)

q (b†2)
p−q

]
|0〉1|0〉2,

where

Rα
p,q =

[p/2]∑
m=0

C2m αp−2m

(p− 2m)!
√

(2m)!

min[2m,q]∑
k′=max[0,q−p+2m]

(−1)
k′ (p− 2m)!

(q − k′)! (p− q − 2m+ k′)!
(2m)!

(k′)! (2m− k′)!
. (8)

The First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science
— Towards Macroscopic Quantum Communications —

November 26-28, 2012, Tokyo, Japan



Proceedings of the First International Workshop on ECS and Its Application to QIS;T.M.Q.C., 27-33 (2013) 29

Through the linear/nonlinear phase operation in mode 2, the outcome state is given by

|Ψ(φ, k)〉12 = e−
α2

2

∞∑
p=0

1(√
2
)p p∑

q=0

[
eiφ(p−q)kRα

p,q

√
q!
√
(p− q)!

]
|q〉1|p− q〉2. (9)

Then, the phase uncertainty of the state is bounded by 1/
√
FQ
k given by quantum Fisher information

FQ
k = 4

(
〈Ψ̃k|Ψ̃k〉 − |〈Ψ̃k|Ψ(φ, k)〉|2

)
,

= 4 e−α2

⎡
⎣ ∞∑
p=0

1

2p

p∑
q=0

(Rα
p,q)

2q!(p− q)!(p− q)2k − e−α2

∣∣∣∣∣
∞∑
p=0

1

2p

p∑
q=0

(Rα
p,q)

2q!(p− q)!(p− q)k

∣∣∣∣∣
2
⎤
⎦ , (10)

where

|Ψ̃k〉 = ∂|Ψ(φ, k)〉/∂φ = e−
α2

2

∞∑
p=0

i(p− q)k(√
2
)p p∑

q=0

[
(p− q)keiφ(p−q)kRα

p,q

√
q!
√
(p− q)!

]
|q〉1|p− q〉2. (11)

IV. TWO EXAMPLES

A. Case 1 : Coherent state superposition (CSS)

One of the interesting input states in mode 2 is a coher-
ent state superposition (CSS) [5] (also called Schrödinger
cat state) given by

|CSS±(α′)〉 = N±
α′(|α′〉 ± |−α′〉), (12)

where |α′〉 is a coherent state with amplitude α′ and

N±
α′ = 1/

√
2(1± e−2|α′|2). (13)

Even/odd CSSs with small α′ have been already demon-
strated in experiments [25, 41] and we particularly focus
on the even CSS because it consists of even photon num-
bers only as given in Eq. (6).

In order to calculate the coefficient Rα′
p,q in Eq. (8),

|CSS+(α
′)〉2 is rewritten by

|CSS+(α
′)〉2 =

∞∑
m=0

Ccss
2m |2m〉2. (14)

and

Ccss
2m = e−

α′2
2
2N+

α′(α′)2m√
(2m)!

. (15)

Then, when the coherent state |α〉 is fed with the even
CSS through a BS, the initialised state at the preparation
stage is given by

|ΨECS(α, α
′)〉 = BS

1/2
1,2 |α〉1|CSS+(α

′)〉2. (16)

It is well-known that a NOON-type typical ECS can be
generated by mixing a coherent state with a CSS through
a BS. For α′ = α, the resultant two-mode states from
|CSS+(α)〉2 and |α〉1 become the typical even ECSs given

by

|ΨECS(α, α)〉12 = N+
α

[|√2α〉1|0〉2 + |0〉1|
√
2α〉2

]
. (17)

After a phase shifter, it can be represented by

|ΨECS(α, α, φ, k)〉12 = [11⊗ U(φ, k)] |ΨECS(α, α)〉12,(18)

= e−|α|2N+
α

∞∑
n=0

(
√
2α)n

n!

[
(a†1)

n + eiφ(n)
k

(a†2)
n
]
|0〉1|0〉2.

B. Case 2 : Squeezed vacuum states (SVSs)

Instead of |CSS+(α
′)〉2 above, a squeezed vacuum

state (SVS) is an alternative nonclassical state given by

|SV S(r)〉2 =
∞∑

m=0

Csvs
2m |2m〉2, (19)

where

Csvs
2m =

√
(2m)!

cosh r

(−1)m

2mm!
(tanh r)m. (20)

Several experiments show that squeezing operation
through second-harmonic generation can be achieved
with the current technology [26–28]. Applying a BS, the
entangled state from a squeezed vacuum and a coherent
state (EVC) is given by

|ΨEV C(α, r)〉12 = BS
1/2
1,2 |α〉1|SV S(r)〉2, (21)

through a phase shifter in mode 2, it becomes

|ΨEV C(α, r, φ, k))〉12 = [11⊗ U(φ, k)] |ΨEV C(α, r)〉12.(22)
Recently, the two-mode EVC has been theoretically in-
vestigated for linear phase shift with/without particle
losses [29] and experimentally examined in order to
demonstrate the characteristics of multi-photon states
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FIG. 2. Fidelity of CSS and SVS (F(α′, r)) with the inset
figure given in Eq. (27). From the inset, the fidelity is close
to 1 for α′ < 0.5 when the average photon numbers of CSS
and SVS are the same.

[32].

C. Comparison of QFI between ECS and EVC

To compare the phase sensitivity among the different
quantum states, the same average photon number can be
used as the physical resource count for the states [6, 22,
24]. For ECS and EVC, to match the photon numbers of
CSS and SVS is required for because the other input in
mode 1 is a coherent state |α〉1 as a common ingredient in
the setup. The relationship between α′ and r for the same
average photon number of |CSS+(α

′)〉2 and |SV S(r)〉2
is following.

∞∑
m=0

2m |Ccss
2m |2 =

∞∑
m=0

2m |Csvs
2m |2 (23)

α′2 tanhα′2 = sinh2 r. (24)

Thus,

r = arcsin h
(√

α′2 tanhα′2
)
. (25)

As shown in Fig. 2, the fidelity is given by

F(α′, r) = 〈CSS+(α
′)|SV S(r)〉

=
2N+

α′√
cosh r

exp

[
−α′2

2
(tanh r + 1)

]
. (26)

Note that the states with small α′ and r approach to a
vacuum state and F ≈ 1. If the average photon numbers
are matched as given in Eq. (25), the fidelity becomes

F(α′) =
2N+

α′ exp
[−α′2/2

]
(1 + α′2 tanhα′2)1/4

exp

[
− α′3

2
√
α′2 + cothα′2

]
,

(27)

drawn in the inset of Fig. 2.
The quantum Fisher information of ECSs given by
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FIG. 3. The bound of phase uncertainty 1/
√
FQ with respect

to α for k = 1, 2 (the solid line donotes EVC and the dashed
one does ECS).

Eq. (10) is equal to

FQ
ECS(k) = 4

[〈E′ |E′〉 − |〈E′ |ΨECS(α, α, φ, k)〉|2
]
, (28)

for |E′〉 = ∂|ΨECS(α, α, φ, k)〉/∂φ and α = α′ for sim-
plicity. For EVCs, we calculate Rα

p,q and the quantum
Fisher information is given by

FQ
EV C(k) = 4

[〈V ′ |V ′〉 − |〈V ′ |ΨEV C(α, r0, φ, k)〉|2
]
,(29)

where |V ′〉 = ∂|ΨEV C(α, r, φ, k)〉/∂φ and r0 =

arcsin h
(√

α2 tanhα2
)

for the same average photon

number.

In Fig. 3, we numerically obtain the lower bound of
phase uncertainty of ECS and EVC given by QFI for
k = 1, 2. For α < 0.5, the cureves of ECS approach to
that of EVC due to their high fidelity. For k = 1, the
phase uncertainty of ECS is always better that of EVC
for all α while some interesting crossing points exist for
k = 2 (see the inset of Fig. 3).
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FIG. 4. 〈Π̂ECS(k)〉 for k = 1

V. APPLICATIONS: QUANTUM-ENHANCED
CALIBRATION OF NON-LINEARITIES

Toward practical applications of ECSs, one can cal-
ibrate the strength of un-calibrated nonlinearity in a
medium by measuring phase φ(k) for nonlinearity k [23].
In optimal phase estimation, known/calibrated nonlin-
ear medium can be utilized for the enhancement of linear
phase estimation [6, 8–11] and also has potential single-
photon detection without absorption [42–44] and optical
quantum computation [45]. Thus, the method of non-
linearity calibration could give significant motivation for
the application of the nonclassical CV states in quantum
metrology.

Since the parity measurement using EVCs with a linear
phase shift has been recently studied [31], we here focus
on the case of applying parity measurements using ECSs
for k = 1, 2. The parity measurement in mode 2 is given
by the expectation value

〈Π̂(k)〉 = 12〈Ψ(φ, k)|(BS
1/2
1,2 )

† Π̂BS
1/2
1,2 |Ψ(φ, k)〉12, (30)

where Π̂ = eiπa
†
2a2 . For ECSs in Eq. (18), the expectation

value is given by

〈Π̂ECS(k)〉 = Mα

(
4 +

∞∑
n=1

2(−1)n

n!

(
2α2

)n
cos

(
nkφ

))
,

(31)

where Mα =
(
e−|α|2N+

α

)2

(e.g., the case of k = 1 is

given in [22]). We here take the advantage of CV states
that we can continuously measure the expectation values
of parity measurement by changing the parameters of the
states (α and φ). For example, the parameter φ and the
amplitude α can be shifted by the length of the medium
and the strength of the input coherent state.

First we measure the amount of linear phase shift
(k = 1) in a thin unknown medium using a calibrated

FIG. 5. 〈Π̂ECS(k)〉 for k = 2

linear material (e.g., crystal) with φ
(1)
0 = π linear phase

shift (we here assume that the calibrated medium domi-
nantly produces a linear phase shift and nonlinear phase
shift is ignorable in the medium). Once a ECS is prepared
with small α, which could be able to minimize the effect
of nonlinear phase shift in the unknown medium, the thin
unknown and the calibrated known materials are both lo-
cated in mode 2. If we tune the amplitude α and with
different φ(1), the results of the parity measurement give

a curve similar to the central feature at φ(1)+φ
(1)
0 ≈ π in

Fig. 4. Because the curvature rapidly changes at around
φ = π and provides approximated minimum phase un-
certainty for k = 1 [22], one expect to obtain the vaule
of φ(1) very accurately.

Since the amount of the linear phase shift φ(1) is now
known precisely, we can compensate the linear phase shift
given by the unknown medium using another calibrated
linear shifter with −φ(1) in order to emphasise the effect
of the unknown nonlinear phase shift. Therefore, after
inserting additional the calibrated linear phase shifter for
compensation of the linear phase shift in the unknown
medium, we re-perform the parity measurement for k = 2
to obtain the expectation value, which can be compared
with the results in Fig. 5.

In addition, we can double-check the validity of the
results using the phase variance of parity measurement
given by

Δφ(k) =
1− 〈Π̂(k)〉2

|∂〈Π̂(k)〉/∂φ|2 . (32)

As shown in Fig. 6, or ECSs, the phase variance by parity
measurement is given by

ΔφECS(k) =
1− 〈Π̂ECS(k)〉2

|∂〈Π̂ECS(k)〉/∂φ|2
. (33)

The curves in Fig. 6 show that the phase uncertainty
given by parity measurements for large α approaches to
the bound of quantum Fisher information.
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FIG. 6. ΔφECS(k) compared with the bound of δφECS(k)

with φ(k) = π − 0.001 for k = 1, 2

VI. SUMMARY AND REMARKS

In summary, we have investigated the enhanced phase
estimation in generalised nonclaisscal CV states in lin-
ear/nonlinear phase operation. Two non-trivial exam-
ples (such as |ECS〉 and |EV C〉) are rigorously studied
for phase uncertainty in terms of quantum Fisher infor-
mation and the idea of potential application for calibra-
tion of nonlinearity has been investigated for quantum
metrology.
In practice, particle losses may result in imperfect lin-

ear/nonlinear phase operations in the setup, especially
for k �= 1, however, the robustness of ECSs against parti-
cle losses has been however known for k = 1, 2 [23, 30, 46–
49]. Note that the saturation of the phase variance given
by parity measurement only occurs for φ(2) ≈ π for k = 2
in Fig. 6 and the amount of nonlinear phase shift is still
very challenging to produce with the current optical tech-
nology.
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